kern_time.c revision 1.166 1 /* $NetBSD: kern_time.c,v 1.166 2010/12/17 22:08:18 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1986, 1989, 1993
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
61 */
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.166 2010/12/17 22:08:18 yamt Exp $");
65
66 #include <sys/param.h>
67 #include <sys/resourcevar.h>
68 #include <sys/kernel.h>
69 #include <sys/systm.h>
70 #include <sys/proc.h>
71 #include <sys/vnode.h>
72 #include <sys/signalvar.h>
73 #include <sys/syslog.h>
74 #include <sys/timetc.h>
75 #include <sys/timex.h>
76 #include <sys/kauth.h>
77 #include <sys/mount.h>
78 #include <sys/sa.h>
79 #include <sys/savar.h>
80 #include <sys/syscallargs.h>
81 #include <sys/cpu.h>
82
83 #include <uvm/uvm_extern.h>
84
85 #include "opt_sa.h"
86
87 static void timer_intr(void *);
88 static void itimerfire(struct ptimer *);
89 static void itimerfree(struct ptimers *, int);
90
91 kmutex_t timer_lock;
92
93 static void *timer_sih;
94 static TAILQ_HEAD(, ptimer) timer_queue;
95
96 struct pool ptimer_pool, ptimers_pool;
97
98 /*
99 * Initialize timekeeping.
100 */
101 void
102 time_init(void)
103 {
104
105 pool_init(&ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
106 &pool_allocator_nointr, IPL_NONE);
107 pool_init(&ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
108 &pool_allocator_nointr, IPL_NONE);
109 }
110
111 void
112 time_init2(void)
113 {
114
115 TAILQ_INIT(&timer_queue);
116 mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
117 timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
118 timer_intr, NULL);
119 }
120
121 /* Time of day and interval timer support.
122 *
123 * These routines provide the kernel entry points to get and set
124 * the time-of-day and per-process interval timers. Subroutines
125 * here provide support for adding and subtracting timeval structures
126 * and decrementing interval timers, optionally reloading the interval
127 * timers when they expire.
128 */
129
130 /* This function is used by clock_settime and settimeofday */
131 static int
132 settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
133 {
134 struct timespec delta, now;
135 int s;
136
137 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
138 s = splclock();
139 nanotime(&now);
140 timespecsub(ts, &now, &delta);
141
142 if (check_kauth && kauth_authorize_system(kauth_cred_get(),
143 KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
144 &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
145 splx(s);
146 return (EPERM);
147 }
148
149 #ifdef notyet
150 if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
151 splx(s);
152 return (EPERM);
153 }
154 #endif
155
156 tc_setclock(ts);
157
158 timespecadd(&boottime, &delta, &boottime);
159
160 resettodr();
161 splx(s);
162
163 return (0);
164 }
165
166 int
167 settime(struct proc *p, struct timespec *ts)
168 {
169 return (settime1(p, ts, true));
170 }
171
172 /* ARGSUSED */
173 int
174 sys___clock_gettime50(struct lwp *l,
175 const struct sys___clock_gettime50_args *uap, register_t *retval)
176 {
177 /* {
178 syscallarg(clockid_t) clock_id;
179 syscallarg(struct timespec *) tp;
180 } */
181 int error;
182 struct timespec ats;
183
184 error = clock_gettime1(SCARG(uap, clock_id), &ats);
185 if (error != 0)
186 return error;
187
188 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
189 }
190
191 int
192 clock_gettime1(clockid_t clock_id, struct timespec *ts)
193 {
194
195 switch (clock_id) {
196 case CLOCK_REALTIME:
197 nanotime(ts);
198 break;
199 case CLOCK_MONOTONIC:
200 nanouptime(ts);
201 break;
202 default:
203 return EINVAL;
204 }
205
206 return 0;
207 }
208
209 /* ARGSUSED */
210 int
211 sys___clock_settime50(struct lwp *l,
212 const struct sys___clock_settime50_args *uap, register_t *retval)
213 {
214 /* {
215 syscallarg(clockid_t) clock_id;
216 syscallarg(const struct timespec *) tp;
217 } */
218 int error;
219 struct timespec ats;
220
221 if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
222 return error;
223
224 return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
225 }
226
227
228 int
229 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
230 bool check_kauth)
231 {
232 int error;
233
234 switch (clock_id) {
235 case CLOCK_REALTIME:
236 if ((error = settime1(p, tp, check_kauth)) != 0)
237 return (error);
238 break;
239 case CLOCK_MONOTONIC:
240 return (EINVAL); /* read-only clock */
241 default:
242 return (EINVAL);
243 }
244
245 return 0;
246 }
247
248 int
249 sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
250 register_t *retval)
251 {
252 /* {
253 syscallarg(clockid_t) clock_id;
254 syscallarg(struct timespec *) tp;
255 } */
256 struct timespec ts;
257 int error = 0;
258
259 if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
260 return error;
261
262 if (SCARG(uap, tp))
263 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
264
265 return error;
266 }
267
268 int
269 clock_getres1(clockid_t clock_id, struct timespec *ts)
270 {
271
272 switch (clock_id) {
273 case CLOCK_REALTIME:
274 case CLOCK_MONOTONIC:
275 ts->tv_sec = 0;
276 if (tc_getfrequency() > 1000000000)
277 ts->tv_nsec = 1;
278 else
279 ts->tv_nsec = 1000000000 / tc_getfrequency();
280 break;
281 default:
282 return EINVAL;
283 }
284
285 return 0;
286 }
287
288 /* ARGSUSED */
289 int
290 sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
291 register_t *retval)
292 {
293 /* {
294 syscallarg(struct timespec *) rqtp;
295 syscallarg(struct timespec *) rmtp;
296 } */
297 struct timespec rmt, rqt;
298 int error, error1;
299
300 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
301 if (error)
302 return (error);
303
304 error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
305 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
306 return error;
307
308 error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
309 return error1 ? error1 : error;
310 }
311
312 int
313 nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
314 {
315 struct timespec rmtstart;
316 int error, timo;
317
318 if ((error = itimespecfix(rqt)) != 0)
319 return error;
320
321 timo = tstohz(rqt);
322 /*
323 * Avoid inadvertantly sleeping forever
324 */
325 if (timo == 0)
326 timo = 1;
327 getnanouptime(&rmtstart);
328 again:
329 error = kpause("nanoslp", true, timo, NULL);
330 if (rmt != NULL || error == 0) {
331 struct timespec rmtend;
332 struct timespec t0;
333 struct timespec *t;
334
335 getnanouptime(&rmtend);
336 t = (rmt != NULL) ? rmt : &t0;
337 timespecsub(&rmtend, &rmtstart, t);
338 timespecsub(rqt, t, t);
339 if (t->tv_sec < 0)
340 timespecclear(t);
341 if (error == 0) {
342 timo = tstohz(t);
343 if (timo > 0)
344 goto again;
345 }
346 }
347
348 if (error == ERESTART)
349 error = EINTR;
350 if (error == EWOULDBLOCK)
351 error = 0;
352
353 return error;
354 }
355
356 /* ARGSUSED */
357 int
358 sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
359 register_t *retval)
360 {
361 /* {
362 syscallarg(struct timeval *) tp;
363 syscallarg(void *) tzp; really "struct timezone *";
364 } */
365 struct timeval atv;
366 int error = 0;
367 struct timezone tzfake;
368
369 if (SCARG(uap, tp)) {
370 microtime(&atv);
371 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
372 if (error)
373 return (error);
374 }
375 if (SCARG(uap, tzp)) {
376 /*
377 * NetBSD has no kernel notion of time zone, so we just
378 * fake up a timezone struct and return it if demanded.
379 */
380 tzfake.tz_minuteswest = 0;
381 tzfake.tz_dsttime = 0;
382 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
383 }
384 return (error);
385 }
386
387 /* ARGSUSED */
388 int
389 sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
390 register_t *retval)
391 {
392 /* {
393 syscallarg(const struct timeval *) tv;
394 syscallarg(const void *) tzp; really "const struct timezone *";
395 } */
396
397 return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
398 }
399
400 int
401 settimeofday1(const struct timeval *utv, bool userspace,
402 const void *utzp, struct lwp *l, bool check_kauth)
403 {
404 struct timeval atv;
405 struct timespec ts;
406 int error;
407
408 /* Verify all parameters before changing time. */
409
410 /*
411 * NetBSD has no kernel notion of time zone, and only an
412 * obsolete program would try to set it, so we log a warning.
413 */
414 if (utzp)
415 log(LOG_WARNING, "pid %d attempted to set the "
416 "(obsolete) kernel time zone\n", l->l_proc->p_pid);
417
418 if (utv == NULL)
419 return 0;
420
421 if (userspace) {
422 if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
423 return error;
424 utv = &atv;
425 }
426
427 TIMEVAL_TO_TIMESPEC(utv, &ts);
428 return settime1(l->l_proc, &ts, check_kauth);
429 }
430
431 int time_adjusted; /* set if an adjustment is made */
432
433 /* ARGSUSED */
434 int
435 sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
436 register_t *retval)
437 {
438 /* {
439 syscallarg(const struct timeval *) delta;
440 syscallarg(struct timeval *) olddelta;
441 } */
442 int error = 0;
443 struct timeval atv, oldatv;
444
445 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
446 KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
447 return error;
448
449 if (SCARG(uap, delta)) {
450 error = copyin(SCARG(uap, delta), &atv,
451 sizeof(*SCARG(uap, delta)));
452 if (error)
453 return (error);
454 }
455 adjtime1(SCARG(uap, delta) ? &atv : NULL,
456 SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
457 if (SCARG(uap, olddelta))
458 error = copyout(&oldatv, SCARG(uap, olddelta),
459 sizeof(*SCARG(uap, olddelta)));
460 return error;
461 }
462
463 void
464 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
465 {
466 extern int64_t time_adjtime; /* in kern_ntptime.c */
467
468 if (olddelta) {
469 mutex_spin_enter(&timecounter_lock);
470 olddelta->tv_sec = time_adjtime / 1000000;
471 olddelta->tv_usec = time_adjtime % 1000000;
472 if (olddelta->tv_usec < 0) {
473 olddelta->tv_usec += 1000000;
474 olddelta->tv_sec--;
475 }
476 mutex_spin_exit(&timecounter_lock);
477 }
478
479 if (delta) {
480 mutex_spin_enter(&timecounter_lock);
481 time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
482
483 if (time_adjtime) {
484 /* We need to save the system time during shutdown */
485 time_adjusted |= 1;
486 }
487 mutex_spin_exit(&timecounter_lock);
488 }
489 }
490
491 /*
492 * Interval timer support. Both the BSD getitimer() family and the POSIX
493 * timer_*() family of routines are supported.
494 *
495 * All timers are kept in an array pointed to by p_timers, which is
496 * allocated on demand - many processes don't use timers at all. The
497 * first three elements in this array are reserved for the BSD timers:
498 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
499 * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
500 * syscall.
501 *
502 * Realtime timers are kept in the ptimer structure as an absolute
503 * time; virtual time timers are kept as a linked list of deltas.
504 * Virtual time timers are processed in the hardclock() routine of
505 * kern_clock.c. The real time timer is processed by a callout
506 * routine, called from the softclock() routine. Since a callout may
507 * be delayed in real time due to interrupt processing in the system,
508 * it is possible for the real time timeout routine (realtimeexpire,
509 * given below), to be delayed in real time past when it is supposed
510 * to occur. It does not suffice, therefore, to reload the real timer
511 * .it_value from the real time timers .it_interval. Rather, we
512 * compute the next time in absolute time the timer should go off. */
513
514 /* Allocate a POSIX realtime timer. */
515 int
516 sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
517 register_t *retval)
518 {
519 /* {
520 syscallarg(clockid_t) clock_id;
521 syscallarg(struct sigevent *) evp;
522 syscallarg(timer_t *) timerid;
523 } */
524
525 return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
526 SCARG(uap, evp), copyin, l);
527 }
528
529 int
530 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
531 copyin_t fetch_event, struct lwp *l)
532 {
533 int error;
534 timer_t timerid;
535 struct ptimers *pts;
536 struct ptimer *pt;
537 struct proc *p;
538
539 p = l->l_proc;
540
541 if (id < CLOCK_REALTIME || id > CLOCK_PROF)
542 return (EINVAL);
543
544 if ((pts = p->p_timers) == NULL)
545 pts = timers_alloc(p);
546
547 pt = pool_get(&ptimer_pool, PR_WAITOK);
548 if (evp != NULL) {
549 if (((error =
550 (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
551 ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
552 (pt->pt_ev.sigev_notify > SIGEV_SA)) ||
553 (pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
554 (pt->pt_ev.sigev_signo <= 0 ||
555 pt->pt_ev.sigev_signo >= NSIG))) {
556 pool_put(&ptimer_pool, pt);
557 return (error ? error : EINVAL);
558 }
559 }
560
561 /* Find a free timer slot, skipping those reserved for setitimer(). */
562 mutex_spin_enter(&timer_lock);
563 for (timerid = 3; timerid < TIMER_MAX; timerid++)
564 if (pts->pts_timers[timerid] == NULL)
565 break;
566 if (timerid == TIMER_MAX) {
567 mutex_spin_exit(&timer_lock);
568 pool_put(&ptimer_pool, pt);
569 return EAGAIN;
570 }
571 if (evp == NULL) {
572 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
573 switch (id) {
574 case CLOCK_REALTIME:
575 pt->pt_ev.sigev_signo = SIGALRM;
576 break;
577 case CLOCK_VIRTUAL:
578 pt->pt_ev.sigev_signo = SIGVTALRM;
579 break;
580 case CLOCK_PROF:
581 pt->pt_ev.sigev_signo = SIGPROF;
582 break;
583 }
584 pt->pt_ev.sigev_value.sival_int = timerid;
585 }
586 pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
587 pt->pt_info.ksi_errno = 0;
588 pt->pt_info.ksi_code = 0;
589 pt->pt_info.ksi_pid = p->p_pid;
590 pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
591 pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
592 pt->pt_type = id;
593 pt->pt_proc = p;
594 pt->pt_overruns = 0;
595 pt->pt_poverruns = 0;
596 pt->pt_entry = timerid;
597 pt->pt_queued = false;
598 timespecclear(&pt->pt_time.it_value);
599 if (id == CLOCK_REALTIME)
600 callout_init(&pt->pt_ch, 0);
601 else
602 pt->pt_active = 0;
603
604 pts->pts_timers[timerid] = pt;
605 mutex_spin_exit(&timer_lock);
606
607 return copyout(&timerid, tid, sizeof(timerid));
608 }
609
610 /* Delete a POSIX realtime timer */
611 int
612 sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
613 register_t *retval)
614 {
615 /* {
616 syscallarg(timer_t) timerid;
617 } */
618 struct proc *p = l->l_proc;
619 timer_t timerid;
620 struct ptimers *pts;
621 struct ptimer *pt, *ptn;
622
623 timerid = SCARG(uap, timerid);
624 pts = p->p_timers;
625
626 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
627 return (EINVAL);
628
629 mutex_spin_enter(&timer_lock);
630 if ((pt = pts->pts_timers[timerid]) == NULL) {
631 mutex_spin_exit(&timer_lock);
632 return (EINVAL);
633 }
634 if (pt->pt_type != CLOCK_REALTIME) {
635 if (pt->pt_active) {
636 ptn = LIST_NEXT(pt, pt_list);
637 LIST_REMOVE(pt, pt_list);
638 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
639 timespecadd(&pt->pt_time.it_value,
640 &ptn->pt_time.it_value,
641 &ptn->pt_time.it_value);
642 pt->pt_active = 0;
643 }
644 }
645 itimerfree(pts, timerid);
646
647 return (0);
648 }
649
650 /*
651 * Set up the given timer. The value in pt->pt_time.it_value is taken
652 * to be an absolute time for CLOCK_REALTIME timers and a relative
653 * time for virtual timers.
654 * Must be called at splclock().
655 */
656 void
657 timer_settime(struct ptimer *pt)
658 {
659 struct ptimer *ptn, *pptn;
660 struct ptlist *ptl;
661
662 KASSERT(mutex_owned(&timer_lock));
663
664 if (pt->pt_type == CLOCK_REALTIME) {
665 callout_stop(&pt->pt_ch);
666 if (timespecisset(&pt->pt_time.it_value)) {
667 /*
668 * Don't need to check tshzto() return value, here.
669 * callout_reset() does it for us.
670 */
671 callout_reset(&pt->pt_ch, tshzto(&pt->pt_time.it_value),
672 realtimerexpire, pt);
673 }
674 } else {
675 if (pt->pt_active) {
676 ptn = LIST_NEXT(pt, pt_list);
677 LIST_REMOVE(pt, pt_list);
678 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
679 timespecadd(&pt->pt_time.it_value,
680 &ptn->pt_time.it_value,
681 &ptn->pt_time.it_value);
682 }
683 if (timespecisset(&pt->pt_time.it_value)) {
684 if (pt->pt_type == CLOCK_VIRTUAL)
685 ptl = &pt->pt_proc->p_timers->pts_virtual;
686 else
687 ptl = &pt->pt_proc->p_timers->pts_prof;
688
689 for (ptn = LIST_FIRST(ptl), pptn = NULL;
690 ptn && timespeccmp(&pt->pt_time.it_value,
691 &ptn->pt_time.it_value, >);
692 pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
693 timespecsub(&pt->pt_time.it_value,
694 &ptn->pt_time.it_value,
695 &pt->pt_time.it_value);
696
697 if (pptn)
698 LIST_INSERT_AFTER(pptn, pt, pt_list);
699 else
700 LIST_INSERT_HEAD(ptl, pt, pt_list);
701
702 for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
703 timespecsub(&ptn->pt_time.it_value,
704 &pt->pt_time.it_value,
705 &ptn->pt_time.it_value);
706
707 pt->pt_active = 1;
708 } else
709 pt->pt_active = 0;
710 }
711 }
712
713 void
714 timer_gettime(struct ptimer *pt, struct itimerspec *aits)
715 {
716 struct timespec now;
717 struct ptimer *ptn;
718
719 KASSERT(mutex_owned(&timer_lock));
720
721 *aits = pt->pt_time;
722 if (pt->pt_type == CLOCK_REALTIME) {
723 /*
724 * Convert from absolute to relative time in .it_value
725 * part of real time timer. If time for real time
726 * timer has passed return 0, else return difference
727 * between current time and time for the timer to go
728 * off.
729 */
730 if (timespecisset(&aits->it_value)) {
731 getnanotime(&now);
732 if (timespeccmp(&aits->it_value, &now, <))
733 timespecclear(&aits->it_value);
734 else
735 timespecsub(&aits->it_value, &now,
736 &aits->it_value);
737 }
738 } else if (pt->pt_active) {
739 if (pt->pt_type == CLOCK_VIRTUAL)
740 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
741 else
742 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
743 for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
744 timespecadd(&aits->it_value,
745 &ptn->pt_time.it_value, &aits->it_value);
746 KASSERT(ptn != NULL); /* pt should be findable on the list */
747 } else
748 timespecclear(&aits->it_value);
749 }
750
751
752
753 /* Set and arm a POSIX realtime timer */
754 int
755 sys___timer_settime50(struct lwp *l,
756 const struct sys___timer_settime50_args *uap,
757 register_t *retval)
758 {
759 /* {
760 syscallarg(timer_t) timerid;
761 syscallarg(int) flags;
762 syscallarg(const struct itimerspec *) value;
763 syscallarg(struct itimerspec *) ovalue;
764 } */
765 int error;
766 struct itimerspec value, ovalue, *ovp = NULL;
767
768 if ((error = copyin(SCARG(uap, value), &value,
769 sizeof(struct itimerspec))) != 0)
770 return (error);
771
772 if (SCARG(uap, ovalue))
773 ovp = &ovalue;
774
775 if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
776 SCARG(uap, flags), l->l_proc)) != 0)
777 return error;
778
779 if (ovp)
780 return copyout(&ovalue, SCARG(uap, ovalue),
781 sizeof(struct itimerspec));
782 return 0;
783 }
784
785 int
786 dotimer_settime(int timerid, struct itimerspec *value,
787 struct itimerspec *ovalue, int flags, struct proc *p)
788 {
789 struct timespec now;
790 struct itimerspec val, oval;
791 struct ptimers *pts;
792 struct ptimer *pt;
793 int error;
794
795 pts = p->p_timers;
796
797 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
798 return EINVAL;
799 val = *value;
800 if ((error = itimespecfix(&val.it_value)) != 0 ||
801 (error = itimespecfix(&val.it_interval)) != 0)
802 return error;
803
804 mutex_spin_enter(&timer_lock);
805 if ((pt = pts->pts_timers[timerid]) == NULL) {
806 mutex_spin_exit(&timer_lock);
807 return EINVAL;
808 }
809
810 oval = pt->pt_time;
811 pt->pt_time = val;
812
813 /*
814 * If we've been passed a relative time for a realtime timer,
815 * convert it to absolute; if an absolute time for a virtual
816 * timer, convert it to relative and make sure we don't set it
817 * to zero, which would cancel the timer, or let it go
818 * negative, which would confuse the comparison tests.
819 */
820 if (timespecisset(&pt->pt_time.it_value)) {
821 if (pt->pt_type == CLOCK_REALTIME) {
822 if ((flags & TIMER_ABSTIME) == 0) {
823 getnanotime(&now);
824 timespecadd(&pt->pt_time.it_value, &now,
825 &pt->pt_time.it_value);
826 }
827 } else {
828 if ((flags & TIMER_ABSTIME) != 0) {
829 getnanotime(&now);
830 timespecsub(&pt->pt_time.it_value, &now,
831 &pt->pt_time.it_value);
832 if (!timespecisset(&pt->pt_time.it_value) ||
833 pt->pt_time.it_value.tv_sec < 0) {
834 pt->pt_time.it_value.tv_sec = 0;
835 pt->pt_time.it_value.tv_nsec = 1;
836 }
837 }
838 }
839 }
840
841 timer_settime(pt);
842 mutex_spin_exit(&timer_lock);
843
844 if (ovalue)
845 *ovalue = oval;
846
847 return (0);
848 }
849
850 /* Return the time remaining until a POSIX timer fires. */
851 int
852 sys___timer_gettime50(struct lwp *l,
853 const struct sys___timer_gettime50_args *uap, register_t *retval)
854 {
855 /* {
856 syscallarg(timer_t) timerid;
857 syscallarg(struct itimerspec *) value;
858 } */
859 struct itimerspec its;
860 int error;
861
862 if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
863 &its)) != 0)
864 return error;
865
866 return copyout(&its, SCARG(uap, value), sizeof(its));
867 }
868
869 int
870 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
871 {
872 struct ptimer *pt;
873 struct ptimers *pts;
874
875 pts = p->p_timers;
876 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
877 return (EINVAL);
878 mutex_spin_enter(&timer_lock);
879 if ((pt = pts->pts_timers[timerid]) == NULL) {
880 mutex_spin_exit(&timer_lock);
881 return (EINVAL);
882 }
883 timer_gettime(pt, its);
884 mutex_spin_exit(&timer_lock);
885
886 return 0;
887 }
888
889 /*
890 * Return the count of the number of times a periodic timer expired
891 * while a notification was already pending. The counter is reset when
892 * a timer expires and a notification can be posted.
893 */
894 int
895 sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
896 register_t *retval)
897 {
898 /* {
899 syscallarg(timer_t) timerid;
900 } */
901 struct proc *p = l->l_proc;
902 struct ptimers *pts;
903 int timerid;
904 struct ptimer *pt;
905
906 timerid = SCARG(uap, timerid);
907
908 pts = p->p_timers;
909 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
910 return (EINVAL);
911 mutex_spin_enter(&timer_lock);
912 if ((pt = pts->pts_timers[timerid]) == NULL) {
913 mutex_spin_exit(&timer_lock);
914 return (EINVAL);
915 }
916 *retval = pt->pt_poverruns;
917 mutex_spin_exit(&timer_lock);
918
919 return (0);
920 }
921
922 #ifdef KERN_SA
923 /* Glue function that triggers an upcall; called from userret(). */
924 void
925 timerupcall(struct lwp *l)
926 {
927 struct ptimers *pt = l->l_proc->p_timers;
928 struct proc *p = l->l_proc;
929 unsigned int i, fired, done;
930
931 KDASSERT(l->l_proc->p_sa);
932 /* Bail out if we do not own the virtual processor */
933 if (l->l_savp->savp_lwp != l)
934 return ;
935
936 mutex_enter(p->p_lock);
937
938 fired = pt->pts_fired;
939 done = 0;
940 while ((i = ffs(fired)) != 0) {
941 siginfo_t *si;
942 int mask = 1 << --i;
943 int f;
944
945 f = ~l->l_pflag & LP_SA_NOBLOCK;
946 l->l_pflag |= LP_SA_NOBLOCK;
947 si = siginfo_alloc(PR_WAITOK);
948 si->_info = pt->pts_timers[i]->pt_info.ksi_info;
949 if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
950 sizeof(*si), si, siginfo_free) != 0) {
951 siginfo_free(si);
952 /* XXX What do we do here?? */
953 } else
954 done |= mask;
955 fired &= ~mask;
956 l->l_pflag ^= f;
957 }
958 pt->pts_fired &= ~done;
959 if (pt->pts_fired == 0)
960 l->l_proc->p_timerpend = 0;
961
962 mutex_exit(p->p_lock);
963 }
964 #endif /* KERN_SA */
965
966 /*
967 * Real interval timer expired:
968 * send process whose timer expired an alarm signal.
969 * If time is not set up to reload, then just return.
970 * Else compute next time timer should go off which is > current time.
971 * This is where delay in processing this timeout causes multiple
972 * SIGALRM calls to be compressed into one.
973 */
974 void
975 realtimerexpire(void *arg)
976 {
977 uint64_t last_val, next_val, interval, now_ns;
978 struct timespec now, next;
979 struct ptimer *pt;
980 int backwards;
981
982 pt = arg;
983
984 mutex_spin_enter(&timer_lock);
985 itimerfire(pt);
986
987 if (!timespecisset(&pt->pt_time.it_interval)) {
988 timespecclear(&pt->pt_time.it_value);
989 mutex_spin_exit(&timer_lock);
990 return;
991 }
992
993 getnanotime(&now);
994 backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
995 timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
996 /* Handle the easy case of non-overflown timers first. */
997 if (!backwards && timespeccmp(&next, &now, >)) {
998 pt->pt_time.it_value = next;
999 } else {
1000 now_ns = timespec2ns(&now);
1001 last_val = timespec2ns(&pt->pt_time.it_value);
1002 interval = timespec2ns(&pt->pt_time.it_interval);
1003
1004 next_val = now_ns +
1005 (now_ns - last_val + interval - 1) % interval;
1006
1007 if (backwards)
1008 next_val += interval;
1009 else
1010 pt->pt_overruns += (now_ns - last_val) / interval;
1011
1012 pt->pt_time.it_value.tv_sec = next_val / 1000000000;
1013 pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
1014 }
1015
1016 /*
1017 * Don't need to check tshzto() return value, here.
1018 * callout_reset() does it for us.
1019 */
1020 callout_reset(&pt->pt_ch, tshzto(&pt->pt_time.it_value),
1021 realtimerexpire, pt);
1022 mutex_spin_exit(&timer_lock);
1023 }
1024
1025 /* BSD routine to get the value of an interval timer. */
1026 /* ARGSUSED */
1027 int
1028 sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
1029 register_t *retval)
1030 {
1031 /* {
1032 syscallarg(int) which;
1033 syscallarg(struct itimerval *) itv;
1034 } */
1035 struct proc *p = l->l_proc;
1036 struct itimerval aitv;
1037 int error;
1038
1039 error = dogetitimer(p, SCARG(uap, which), &aitv);
1040 if (error)
1041 return error;
1042 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1043 }
1044
1045 int
1046 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1047 {
1048 struct ptimers *pts;
1049 struct ptimer *pt;
1050 struct itimerspec its;
1051
1052 if ((u_int)which > ITIMER_PROF)
1053 return (EINVAL);
1054
1055 mutex_spin_enter(&timer_lock);
1056 pts = p->p_timers;
1057 if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
1058 timerclear(&itvp->it_value);
1059 timerclear(&itvp->it_interval);
1060 } else {
1061 timer_gettime(pt, &its);
1062 TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
1063 TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
1064 }
1065 mutex_spin_exit(&timer_lock);
1066
1067 return 0;
1068 }
1069
1070 /* BSD routine to set/arm an interval timer. */
1071 /* ARGSUSED */
1072 int
1073 sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
1074 register_t *retval)
1075 {
1076 /* {
1077 syscallarg(int) which;
1078 syscallarg(const struct itimerval *) itv;
1079 syscallarg(struct itimerval *) oitv;
1080 } */
1081 struct proc *p = l->l_proc;
1082 int which = SCARG(uap, which);
1083 struct sys___getitimer50_args getargs;
1084 const struct itimerval *itvp;
1085 struct itimerval aitv;
1086 int error;
1087
1088 if ((u_int)which > ITIMER_PROF)
1089 return (EINVAL);
1090 itvp = SCARG(uap, itv);
1091 if (itvp &&
1092 (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
1093 return (error);
1094 if (SCARG(uap, oitv) != NULL) {
1095 SCARG(&getargs, which) = which;
1096 SCARG(&getargs, itv) = SCARG(uap, oitv);
1097 if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
1098 return (error);
1099 }
1100 if (itvp == 0)
1101 return (0);
1102
1103 return dosetitimer(p, which, &aitv);
1104 }
1105
1106 int
1107 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1108 {
1109 struct timespec now;
1110 struct ptimers *pts;
1111 struct ptimer *pt, *spare;
1112
1113 if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1114 return (EINVAL);
1115
1116 /*
1117 * Don't bother allocating data structures if the process just
1118 * wants to clear the timer.
1119 */
1120 spare = NULL;
1121 pts = p->p_timers;
1122 retry:
1123 if (!timerisset(&itvp->it_value) && (pts == NULL ||
1124 pts->pts_timers[which] == NULL))
1125 return (0);
1126 if (pts == NULL)
1127 pts = timers_alloc(p);
1128 mutex_spin_enter(&timer_lock);
1129 pt = pts->pts_timers[which];
1130 if (pt == NULL) {
1131 if (spare == NULL) {
1132 mutex_spin_exit(&timer_lock);
1133 spare = pool_get(&ptimer_pool, PR_WAITOK);
1134 goto retry;
1135 }
1136 pt = spare;
1137 spare = NULL;
1138 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1139 pt->pt_ev.sigev_value.sival_int = which;
1140 pt->pt_overruns = 0;
1141 pt->pt_proc = p;
1142 pt->pt_type = which;
1143 pt->pt_entry = which;
1144 pt->pt_queued = false;
1145 if (pt->pt_type == CLOCK_REALTIME)
1146 callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
1147 else
1148 pt->pt_active = 0;
1149
1150 switch (which) {
1151 case ITIMER_REAL:
1152 pt->pt_ev.sigev_signo = SIGALRM;
1153 break;
1154 case ITIMER_VIRTUAL:
1155 pt->pt_ev.sigev_signo = SIGVTALRM;
1156 break;
1157 case ITIMER_PROF:
1158 pt->pt_ev.sigev_signo = SIGPROF;
1159 break;
1160 }
1161 pts->pts_timers[which] = pt;
1162 }
1163
1164 TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
1165 TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
1166
1167 if ((which == ITIMER_REAL) && timespecisset(&pt->pt_time.it_value)) {
1168 /* Convert to absolute time */
1169 /* XXX need to wrap in splclock for timecounters case? */
1170 getnanotime(&now);
1171 timespecadd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
1172 }
1173 timer_settime(pt);
1174 mutex_spin_exit(&timer_lock);
1175 if (spare != NULL)
1176 pool_put(&ptimer_pool, spare);
1177
1178 return (0);
1179 }
1180
1181 /* Utility routines to manage the array of pointers to timers. */
1182 struct ptimers *
1183 timers_alloc(struct proc *p)
1184 {
1185 struct ptimers *pts;
1186 int i;
1187
1188 pts = pool_get(&ptimers_pool, PR_WAITOK);
1189 LIST_INIT(&pts->pts_virtual);
1190 LIST_INIT(&pts->pts_prof);
1191 for (i = 0; i < TIMER_MAX; i++)
1192 pts->pts_timers[i] = NULL;
1193 pts->pts_fired = 0;
1194 mutex_spin_enter(&timer_lock);
1195 if (p->p_timers == NULL) {
1196 p->p_timers = pts;
1197 mutex_spin_exit(&timer_lock);
1198 return pts;
1199 }
1200 mutex_spin_exit(&timer_lock);
1201 pool_put(&ptimers_pool, pts);
1202 return p->p_timers;
1203 }
1204
1205 /*
1206 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1207 * then clean up all timers and free all the data structures. If
1208 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1209 * by timer_create(), not the BSD setitimer() timers, and only free the
1210 * structure if none of those remain.
1211 */
1212 void
1213 timers_free(struct proc *p, int which)
1214 {
1215 struct ptimers *pts;
1216 struct ptimer *ptn;
1217 struct timespec ts;
1218 int i;
1219
1220 if (p->p_timers == NULL)
1221 return;
1222
1223 pts = p->p_timers;
1224 mutex_spin_enter(&timer_lock);
1225 if (which == TIMERS_ALL) {
1226 p->p_timers = NULL;
1227 i = 0;
1228 } else {
1229 timespecclear(&ts);
1230 for (ptn = LIST_FIRST(&pts->pts_virtual);
1231 ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1232 ptn = LIST_NEXT(ptn, pt_list)) {
1233 KASSERT(ptn->pt_type != CLOCK_REALTIME);
1234 timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1235 }
1236 LIST_FIRST(&pts->pts_virtual) = NULL;
1237 if (ptn) {
1238 KASSERT(ptn->pt_type != CLOCK_REALTIME);
1239 timespecadd(&ts, &ptn->pt_time.it_value,
1240 &ptn->pt_time.it_value);
1241 LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
1242 }
1243 timespecclear(&ts);
1244 for (ptn = LIST_FIRST(&pts->pts_prof);
1245 ptn && ptn != pts->pts_timers[ITIMER_PROF];
1246 ptn = LIST_NEXT(ptn, pt_list)) {
1247 KASSERT(ptn->pt_type != CLOCK_REALTIME);
1248 timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1249 }
1250 LIST_FIRST(&pts->pts_prof) = NULL;
1251 if (ptn) {
1252 KASSERT(ptn->pt_type != CLOCK_REALTIME);
1253 timespecadd(&ts, &ptn->pt_time.it_value,
1254 &ptn->pt_time.it_value);
1255 LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
1256 }
1257 i = 3;
1258 }
1259 for ( ; i < TIMER_MAX; i++) {
1260 if (pts->pts_timers[i] != NULL) {
1261 itimerfree(pts, i);
1262 mutex_spin_enter(&timer_lock);
1263 }
1264 }
1265 if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
1266 pts->pts_timers[2] == NULL) {
1267 p->p_timers = NULL;
1268 mutex_spin_exit(&timer_lock);
1269 pool_put(&ptimers_pool, pts);
1270 } else
1271 mutex_spin_exit(&timer_lock);
1272 }
1273
1274 static void
1275 itimerfree(struct ptimers *pts, int index)
1276 {
1277 struct ptimer *pt;
1278
1279 KASSERT(mutex_owned(&timer_lock));
1280
1281 pt = pts->pts_timers[index];
1282 pts->pts_timers[index] = NULL;
1283 if (pt->pt_type == CLOCK_REALTIME)
1284 callout_halt(&pt->pt_ch, &timer_lock);
1285 else if (pt->pt_queued)
1286 TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1287 mutex_spin_exit(&timer_lock);
1288 if (pt->pt_type == CLOCK_REALTIME)
1289 callout_destroy(&pt->pt_ch);
1290 pool_put(&ptimer_pool, pt);
1291 }
1292
1293 /*
1294 * Decrement an interval timer by a specified number
1295 * of nanoseconds, which must be less than a second,
1296 * i.e. < 1000000000. If the timer expires, then reload
1297 * it. In this case, carry over (nsec - old value) to
1298 * reduce the value reloaded into the timer so that
1299 * the timer does not drift. This routine assumes
1300 * that it is called in a context where the timers
1301 * on which it is operating cannot change in value.
1302 */
1303 static int
1304 itimerdecr(struct ptimer *pt, int nsec)
1305 {
1306 struct itimerspec *itp;
1307
1308 KASSERT(mutex_owned(&timer_lock));
1309
1310 itp = &pt->pt_time;
1311 if (itp->it_value.tv_nsec < nsec) {
1312 if (itp->it_value.tv_sec == 0) {
1313 /* expired, and already in next interval */
1314 nsec -= itp->it_value.tv_nsec;
1315 goto expire;
1316 }
1317 itp->it_value.tv_nsec += 1000000000;
1318 itp->it_value.tv_sec--;
1319 }
1320 itp->it_value.tv_nsec -= nsec;
1321 nsec = 0;
1322 if (timespecisset(&itp->it_value))
1323 return (1);
1324 /* expired, exactly at end of interval */
1325 expire:
1326 if (timespecisset(&itp->it_interval)) {
1327 itp->it_value = itp->it_interval;
1328 itp->it_value.tv_nsec -= nsec;
1329 if (itp->it_value.tv_nsec < 0) {
1330 itp->it_value.tv_nsec += 1000000000;
1331 itp->it_value.tv_sec--;
1332 }
1333 timer_settime(pt);
1334 } else
1335 itp->it_value.tv_nsec = 0; /* sec is already 0 */
1336 return (0);
1337 }
1338
1339 static void
1340 itimerfire(struct ptimer *pt)
1341 {
1342
1343 KASSERT(mutex_owned(&timer_lock));
1344
1345 /*
1346 * XXX Can overrun, but we don't do signal queueing yet, anyway.
1347 * XXX Relying on the clock interrupt is stupid.
1348 */
1349 if ((pt->pt_ev.sigev_notify == SIGEV_SA && pt->pt_proc->p_sa == NULL) ||
1350 (pt->pt_ev.sigev_notify != SIGEV_SIGNAL &&
1351 pt->pt_ev.sigev_notify != SIGEV_SA) || pt->pt_queued)
1352 return;
1353 TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
1354 pt->pt_queued = true;
1355 softint_schedule(timer_sih);
1356 }
1357
1358 void
1359 timer_tick(lwp_t *l, bool user)
1360 {
1361 struct ptimers *pts;
1362 struct ptimer *pt;
1363 proc_t *p;
1364
1365 p = l->l_proc;
1366 if (p->p_timers == NULL)
1367 return;
1368
1369 mutex_spin_enter(&timer_lock);
1370 if ((pts = l->l_proc->p_timers) != NULL) {
1371 /*
1372 * Run current process's virtual and profile time, as needed.
1373 */
1374 if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
1375 if (itimerdecr(pt, tick * 1000) == 0)
1376 itimerfire(pt);
1377 if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
1378 if (itimerdecr(pt, tick * 1000) == 0)
1379 itimerfire(pt);
1380 }
1381 mutex_spin_exit(&timer_lock);
1382 }
1383
1384 #ifdef KERN_SA
1385 /*
1386 * timer_sa_intr:
1387 *
1388 * SIGEV_SA handling for timer_intr(). We are called (and return)
1389 * with the timer lock held. We know that the process had SA enabled
1390 * when this timer was enqueued. As timer_intr() is a soft interrupt
1391 * handler, SA should still be enabled by the time we get here.
1392 */
1393 static void
1394 timer_sa_intr(struct ptimer *pt, proc_t *p)
1395 {
1396 unsigned int i;
1397 struct sadata *sa;
1398 struct sadata_vp *vp;
1399
1400 /* Cause the process to generate an upcall when it returns. */
1401 if (!p->p_timerpend) {
1402 /*
1403 * XXX stop signals can be processed inside tsleep,
1404 * which can be inside sa_yield's inner loop, which
1405 * makes testing for sa_idle alone insuffucent to
1406 * determine if we really should call setrunnable.
1407 */
1408 pt->pt_poverruns = pt->pt_overruns;
1409 pt->pt_overruns = 0;
1410 i = 1 << pt->pt_entry;
1411 p->p_timers->pts_fired = i;
1412 p->p_timerpend = 1;
1413
1414 sa = p->p_sa;
1415 mutex_enter(&sa->sa_mutex);
1416 SLIST_FOREACH(vp, &sa->sa_vps, savp_next) {
1417 struct lwp *vp_lwp = vp->savp_lwp;
1418 lwp_lock(vp_lwp);
1419 lwp_need_userret(vp_lwp);
1420 if (vp_lwp->l_flag & LW_SA_IDLE) {
1421 vp_lwp->l_flag &= ~LW_SA_IDLE;
1422 lwp_unsleep(vp_lwp, true);
1423 break;
1424 }
1425 lwp_unlock(vp_lwp);
1426 }
1427 mutex_exit(&sa->sa_mutex);
1428 } else {
1429 i = 1 << pt->pt_entry;
1430 if ((p->p_timers->pts_fired & i) == 0) {
1431 pt->pt_poverruns = pt->pt_overruns;
1432 pt->pt_overruns = 0;
1433 p->p_timers->pts_fired |= i;
1434 } else
1435 pt->pt_overruns++;
1436 }
1437 }
1438 #endif /* KERN_SA */
1439
1440 static void
1441 timer_intr(void *cookie)
1442 {
1443 ksiginfo_t ksi;
1444 struct ptimer *pt;
1445 proc_t *p;
1446
1447 mutex_enter(proc_lock);
1448 mutex_spin_enter(&timer_lock);
1449 while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
1450 TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1451 KASSERT(pt->pt_queued);
1452 pt->pt_queued = false;
1453
1454 if (pt->pt_proc->p_timers == NULL) {
1455 /* Process is dying. */
1456 continue;
1457 }
1458 p = pt->pt_proc;
1459 #ifdef KERN_SA
1460 if (pt->pt_ev.sigev_notify == SIGEV_SA) {
1461 timer_sa_intr(pt, p);
1462 continue;
1463 }
1464 #endif /* KERN_SA */
1465 if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL)
1466 continue;
1467 if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
1468 pt->pt_overruns++;
1469 continue;
1470 }
1471
1472 KSI_INIT(&ksi);
1473 ksi.ksi_signo = pt->pt_ev.sigev_signo;
1474 ksi.ksi_code = SI_TIMER;
1475 ksi.ksi_value = pt->pt_ev.sigev_value;
1476 pt->pt_poverruns = pt->pt_overruns;
1477 pt->pt_overruns = 0;
1478 mutex_spin_exit(&timer_lock);
1479 kpsignal(p, &ksi, NULL);
1480 mutex_spin_enter(&timer_lock);
1481 }
1482 mutex_spin_exit(&timer_lock);
1483 mutex_exit(proc_lock);
1484 }
1485
1486 /*
1487 * Check if the time will wrap if set to ts.
1488 *
1489 * ts - timespec describing the new time
1490 * delta - the delta between the current time and ts
1491 */
1492 bool
1493 time_wraps(struct timespec *ts, struct timespec *delta)
1494 {
1495
1496 /*
1497 * Don't allow the time to be set forward so far it
1498 * will wrap and become negative, thus allowing an
1499 * attacker to bypass the next check below. The
1500 * cutoff is 1 year before rollover occurs, so even
1501 * if the attacker uses adjtime(2) to move the time
1502 * past the cutoff, it will take a very long time
1503 * to get to the wrap point.
1504 */
1505 if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
1506 (delta->tv_sec < 0 || delta->tv_nsec < 0))
1507 return true;
1508
1509 return false;
1510 }
1511