Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.166
      1 /*	$NetBSD: kern_time.c,v 1.166 2010/12/17 22:08:18 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Christopher G. Demetriou, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1982, 1986, 1989, 1993
     34  *	The Regents of the University of California.  All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. Neither the name of the University nor the names of its contributors
     45  *    may be used to endorse or promote products derived from this software
     46  *    without specific prior written permission.
     47  *
     48  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58  * SUCH DAMAGE.
     59  *
     60  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     61  */
     62 
     63 #include <sys/cdefs.h>
     64 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.166 2010/12/17 22:08:18 yamt Exp $");
     65 
     66 #include <sys/param.h>
     67 #include <sys/resourcevar.h>
     68 #include <sys/kernel.h>
     69 #include <sys/systm.h>
     70 #include <sys/proc.h>
     71 #include <sys/vnode.h>
     72 #include <sys/signalvar.h>
     73 #include <sys/syslog.h>
     74 #include <sys/timetc.h>
     75 #include <sys/timex.h>
     76 #include <sys/kauth.h>
     77 #include <sys/mount.h>
     78 #include <sys/sa.h>
     79 #include <sys/savar.h>
     80 #include <sys/syscallargs.h>
     81 #include <sys/cpu.h>
     82 
     83 #include <uvm/uvm_extern.h>
     84 
     85 #include "opt_sa.h"
     86 
     87 static void	timer_intr(void *);
     88 static void	itimerfire(struct ptimer *);
     89 static void	itimerfree(struct ptimers *, int);
     90 
     91 kmutex_t	timer_lock;
     92 
     93 static void	*timer_sih;
     94 static TAILQ_HEAD(, ptimer) timer_queue;
     95 
     96 struct pool ptimer_pool, ptimers_pool;
     97 
     98 /*
     99  * Initialize timekeeping.
    100  */
    101 void
    102 time_init(void)
    103 {
    104 
    105 	pool_init(&ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
    106 	    &pool_allocator_nointr, IPL_NONE);
    107 	pool_init(&ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
    108 	    &pool_allocator_nointr, IPL_NONE);
    109 }
    110 
    111 void
    112 time_init2(void)
    113 {
    114 
    115 	TAILQ_INIT(&timer_queue);
    116 	mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
    117 	timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
    118 	    timer_intr, NULL);
    119 }
    120 
    121 /* Time of day and interval timer support.
    122  *
    123  * These routines provide the kernel entry points to get and set
    124  * the time-of-day and per-process interval timers.  Subroutines
    125  * here provide support for adding and subtracting timeval structures
    126  * and decrementing interval timers, optionally reloading the interval
    127  * timers when they expire.
    128  */
    129 
    130 /* This function is used by clock_settime and settimeofday */
    131 static int
    132 settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
    133 {
    134 	struct timespec delta, now;
    135 	int s;
    136 
    137 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    138 	s = splclock();
    139 	nanotime(&now);
    140 	timespecsub(ts, &now, &delta);
    141 
    142 	if (check_kauth && kauth_authorize_system(kauth_cred_get(),
    143 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
    144 	    &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
    145 		splx(s);
    146 		return (EPERM);
    147 	}
    148 
    149 #ifdef notyet
    150 	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
    151 		splx(s);
    152 		return (EPERM);
    153 	}
    154 #endif
    155 
    156 	tc_setclock(ts);
    157 
    158 	timespecadd(&boottime, &delta, &boottime);
    159 
    160 	resettodr();
    161 	splx(s);
    162 
    163 	return (0);
    164 }
    165 
    166 int
    167 settime(struct proc *p, struct timespec *ts)
    168 {
    169 	return (settime1(p, ts, true));
    170 }
    171 
    172 /* ARGSUSED */
    173 int
    174 sys___clock_gettime50(struct lwp *l,
    175     const struct sys___clock_gettime50_args *uap, register_t *retval)
    176 {
    177 	/* {
    178 		syscallarg(clockid_t) clock_id;
    179 		syscallarg(struct timespec *) tp;
    180 	} */
    181 	int error;
    182 	struct timespec ats;
    183 
    184 	error = clock_gettime1(SCARG(uap, clock_id), &ats);
    185 	if (error != 0)
    186 		return error;
    187 
    188 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    189 }
    190 
    191 int
    192 clock_gettime1(clockid_t clock_id, struct timespec *ts)
    193 {
    194 
    195 	switch (clock_id) {
    196 	case CLOCK_REALTIME:
    197 		nanotime(ts);
    198 		break;
    199 	case CLOCK_MONOTONIC:
    200 		nanouptime(ts);
    201 		break;
    202 	default:
    203 		return EINVAL;
    204 	}
    205 
    206 	return 0;
    207 }
    208 
    209 /* ARGSUSED */
    210 int
    211 sys___clock_settime50(struct lwp *l,
    212     const struct sys___clock_settime50_args *uap, register_t *retval)
    213 {
    214 	/* {
    215 		syscallarg(clockid_t) clock_id;
    216 		syscallarg(const struct timespec *) tp;
    217 	} */
    218 	int error;
    219 	struct timespec ats;
    220 
    221 	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
    222 		return error;
    223 
    224 	return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
    225 }
    226 
    227 
    228 int
    229 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
    230     bool check_kauth)
    231 {
    232 	int error;
    233 
    234 	switch (clock_id) {
    235 	case CLOCK_REALTIME:
    236 		if ((error = settime1(p, tp, check_kauth)) != 0)
    237 			return (error);
    238 		break;
    239 	case CLOCK_MONOTONIC:
    240 		return (EINVAL);	/* read-only clock */
    241 	default:
    242 		return (EINVAL);
    243 	}
    244 
    245 	return 0;
    246 }
    247 
    248 int
    249 sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
    250     register_t *retval)
    251 {
    252 	/* {
    253 		syscallarg(clockid_t) clock_id;
    254 		syscallarg(struct timespec *) tp;
    255 	} */
    256 	struct timespec ts;
    257 	int error = 0;
    258 
    259 	if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
    260 		return error;
    261 
    262 	if (SCARG(uap, tp))
    263 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    264 
    265 	return error;
    266 }
    267 
    268 int
    269 clock_getres1(clockid_t clock_id, struct timespec *ts)
    270 {
    271 
    272 	switch (clock_id) {
    273 	case CLOCK_REALTIME:
    274 	case CLOCK_MONOTONIC:
    275 		ts->tv_sec = 0;
    276 		if (tc_getfrequency() > 1000000000)
    277 			ts->tv_nsec = 1;
    278 		else
    279 			ts->tv_nsec = 1000000000 / tc_getfrequency();
    280 		break;
    281 	default:
    282 		return EINVAL;
    283 	}
    284 
    285 	return 0;
    286 }
    287 
    288 /* ARGSUSED */
    289 int
    290 sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
    291     register_t *retval)
    292 {
    293 	/* {
    294 		syscallarg(struct timespec *) rqtp;
    295 		syscallarg(struct timespec *) rmtp;
    296 	} */
    297 	struct timespec rmt, rqt;
    298 	int error, error1;
    299 
    300 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    301 	if (error)
    302 		return (error);
    303 
    304 	error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
    305 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
    306 		return error;
    307 
    308 	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
    309 	return error1 ? error1 : error;
    310 }
    311 
    312 int
    313 nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
    314 {
    315 	struct timespec rmtstart;
    316 	int error, timo;
    317 
    318 	if ((error = itimespecfix(rqt)) != 0)
    319 		return error;
    320 
    321 	timo = tstohz(rqt);
    322 	/*
    323 	 * Avoid inadvertantly sleeping forever
    324 	 */
    325 	if (timo == 0)
    326 		timo = 1;
    327 	getnanouptime(&rmtstart);
    328 again:
    329 	error = kpause("nanoslp", true, timo, NULL);
    330 	if (rmt != NULL || error == 0) {
    331 		struct timespec rmtend;
    332 		struct timespec t0;
    333 		struct timespec *t;
    334 
    335 		getnanouptime(&rmtend);
    336 		t = (rmt != NULL) ? rmt : &t0;
    337 		timespecsub(&rmtend, &rmtstart, t);
    338 		timespecsub(rqt, t, t);
    339 		if (t->tv_sec < 0)
    340 			timespecclear(t);
    341 		if (error == 0) {
    342 			timo = tstohz(t);
    343 			if (timo > 0)
    344 				goto again;
    345 		}
    346 	}
    347 
    348 	if (error == ERESTART)
    349 		error = EINTR;
    350 	if (error == EWOULDBLOCK)
    351 		error = 0;
    352 
    353 	return error;
    354 }
    355 
    356 /* ARGSUSED */
    357 int
    358 sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
    359     register_t *retval)
    360 {
    361 	/* {
    362 		syscallarg(struct timeval *) tp;
    363 		syscallarg(void *) tzp;		really "struct timezone *";
    364 	} */
    365 	struct timeval atv;
    366 	int error = 0;
    367 	struct timezone tzfake;
    368 
    369 	if (SCARG(uap, tp)) {
    370 		microtime(&atv);
    371 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    372 		if (error)
    373 			return (error);
    374 	}
    375 	if (SCARG(uap, tzp)) {
    376 		/*
    377 		 * NetBSD has no kernel notion of time zone, so we just
    378 		 * fake up a timezone struct and return it if demanded.
    379 		 */
    380 		tzfake.tz_minuteswest = 0;
    381 		tzfake.tz_dsttime = 0;
    382 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    383 	}
    384 	return (error);
    385 }
    386 
    387 /* ARGSUSED */
    388 int
    389 sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
    390     register_t *retval)
    391 {
    392 	/* {
    393 		syscallarg(const struct timeval *) tv;
    394 		syscallarg(const void *) tzp; really "const struct timezone *";
    395 	} */
    396 
    397 	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
    398 }
    399 
    400 int
    401 settimeofday1(const struct timeval *utv, bool userspace,
    402     const void *utzp, struct lwp *l, bool check_kauth)
    403 {
    404 	struct timeval atv;
    405 	struct timespec ts;
    406 	int error;
    407 
    408 	/* Verify all parameters before changing time. */
    409 
    410 	/*
    411 	 * NetBSD has no kernel notion of time zone, and only an
    412 	 * obsolete program would try to set it, so we log a warning.
    413 	 */
    414 	if (utzp)
    415 		log(LOG_WARNING, "pid %d attempted to set the "
    416 		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
    417 
    418 	if (utv == NULL)
    419 		return 0;
    420 
    421 	if (userspace) {
    422 		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
    423 			return error;
    424 		utv = &atv;
    425 	}
    426 
    427 	TIMEVAL_TO_TIMESPEC(utv, &ts);
    428 	return settime1(l->l_proc, &ts, check_kauth);
    429 }
    430 
    431 int	time_adjusted;			/* set if an adjustment is made */
    432 
    433 /* ARGSUSED */
    434 int
    435 sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
    436     register_t *retval)
    437 {
    438 	/* {
    439 		syscallarg(const struct timeval *) delta;
    440 		syscallarg(struct timeval *) olddelta;
    441 	} */
    442 	int error = 0;
    443 	struct timeval atv, oldatv;
    444 
    445 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
    446 	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
    447 		return error;
    448 
    449 	if (SCARG(uap, delta)) {
    450 		error = copyin(SCARG(uap, delta), &atv,
    451 		    sizeof(*SCARG(uap, delta)));
    452 		if (error)
    453 			return (error);
    454 	}
    455 	adjtime1(SCARG(uap, delta) ? &atv : NULL,
    456 	    SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
    457 	if (SCARG(uap, olddelta))
    458 		error = copyout(&oldatv, SCARG(uap, olddelta),
    459 		    sizeof(*SCARG(uap, olddelta)));
    460 	return error;
    461 }
    462 
    463 void
    464 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
    465 {
    466 	extern int64_t time_adjtime;  /* in kern_ntptime.c */
    467 
    468 	if (olddelta) {
    469 		mutex_spin_enter(&timecounter_lock);
    470 		olddelta->tv_sec = time_adjtime / 1000000;
    471 		olddelta->tv_usec = time_adjtime % 1000000;
    472 		if (olddelta->tv_usec < 0) {
    473 			olddelta->tv_usec += 1000000;
    474 			olddelta->tv_sec--;
    475 		}
    476 		mutex_spin_exit(&timecounter_lock);
    477 	}
    478 
    479 	if (delta) {
    480 		mutex_spin_enter(&timecounter_lock);
    481 		time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
    482 
    483 		if (time_adjtime) {
    484 			/* We need to save the system time during shutdown */
    485 			time_adjusted |= 1;
    486 		}
    487 		mutex_spin_exit(&timecounter_lock);
    488 	}
    489 }
    490 
    491 /*
    492  * Interval timer support. Both the BSD getitimer() family and the POSIX
    493  * timer_*() family of routines are supported.
    494  *
    495  * All timers are kept in an array pointed to by p_timers, which is
    496  * allocated on demand - many processes don't use timers at all. The
    497  * first three elements in this array are reserved for the BSD timers:
    498  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
    499  * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
    500  * syscall.
    501  *
    502  * Realtime timers are kept in the ptimer structure as an absolute
    503  * time; virtual time timers are kept as a linked list of deltas.
    504  * Virtual time timers are processed in the hardclock() routine of
    505  * kern_clock.c.  The real time timer is processed by a callout
    506  * routine, called from the softclock() routine.  Since a callout may
    507  * be delayed in real time due to interrupt processing in the system,
    508  * it is possible for the real time timeout routine (realtimeexpire,
    509  * given below), to be delayed in real time past when it is supposed
    510  * to occur.  It does not suffice, therefore, to reload the real timer
    511  * .it_value from the real time timers .it_interval.  Rather, we
    512  * compute the next time in absolute time the timer should go off.  */
    513 
    514 /* Allocate a POSIX realtime timer. */
    515 int
    516 sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
    517     register_t *retval)
    518 {
    519 	/* {
    520 		syscallarg(clockid_t) clock_id;
    521 		syscallarg(struct sigevent *) evp;
    522 		syscallarg(timer_t *) timerid;
    523 	} */
    524 
    525 	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
    526 	    SCARG(uap, evp), copyin, l);
    527 }
    528 
    529 int
    530 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
    531     copyin_t fetch_event, struct lwp *l)
    532 {
    533 	int error;
    534 	timer_t timerid;
    535 	struct ptimers *pts;
    536 	struct ptimer *pt;
    537 	struct proc *p;
    538 
    539 	p = l->l_proc;
    540 
    541 	if (id < CLOCK_REALTIME || id > CLOCK_PROF)
    542 		return (EINVAL);
    543 
    544 	if ((pts = p->p_timers) == NULL)
    545 		pts = timers_alloc(p);
    546 
    547 	pt = pool_get(&ptimer_pool, PR_WAITOK);
    548 	if (evp != NULL) {
    549 		if (((error =
    550 		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
    551 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
    552 			(pt->pt_ev.sigev_notify > SIGEV_SA)) ||
    553 			(pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
    554 			 (pt->pt_ev.sigev_signo <= 0 ||
    555 			  pt->pt_ev.sigev_signo >= NSIG))) {
    556 			pool_put(&ptimer_pool, pt);
    557 			return (error ? error : EINVAL);
    558 		}
    559 	}
    560 
    561 	/* Find a free timer slot, skipping those reserved for setitimer(). */
    562 	mutex_spin_enter(&timer_lock);
    563 	for (timerid = 3; timerid < TIMER_MAX; timerid++)
    564 		if (pts->pts_timers[timerid] == NULL)
    565 			break;
    566 	if (timerid == TIMER_MAX) {
    567 		mutex_spin_exit(&timer_lock);
    568 		pool_put(&ptimer_pool, pt);
    569 		return EAGAIN;
    570 	}
    571 	if (evp == NULL) {
    572 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    573 		switch (id) {
    574 		case CLOCK_REALTIME:
    575 			pt->pt_ev.sigev_signo = SIGALRM;
    576 			break;
    577 		case CLOCK_VIRTUAL:
    578 			pt->pt_ev.sigev_signo = SIGVTALRM;
    579 			break;
    580 		case CLOCK_PROF:
    581 			pt->pt_ev.sigev_signo = SIGPROF;
    582 			break;
    583 		}
    584 		pt->pt_ev.sigev_value.sival_int = timerid;
    585 	}
    586 	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
    587 	pt->pt_info.ksi_errno = 0;
    588 	pt->pt_info.ksi_code = 0;
    589 	pt->pt_info.ksi_pid = p->p_pid;
    590 	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
    591 	pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
    592 	pt->pt_type = id;
    593 	pt->pt_proc = p;
    594 	pt->pt_overruns = 0;
    595 	pt->pt_poverruns = 0;
    596 	pt->pt_entry = timerid;
    597 	pt->pt_queued = false;
    598 	timespecclear(&pt->pt_time.it_value);
    599 	if (id == CLOCK_REALTIME)
    600 		callout_init(&pt->pt_ch, 0);
    601 	else
    602 		pt->pt_active = 0;
    603 
    604 	pts->pts_timers[timerid] = pt;
    605 	mutex_spin_exit(&timer_lock);
    606 
    607 	return copyout(&timerid, tid, sizeof(timerid));
    608 }
    609 
    610 /* Delete a POSIX realtime timer */
    611 int
    612 sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
    613     register_t *retval)
    614 {
    615 	/* {
    616 		syscallarg(timer_t) timerid;
    617 	} */
    618 	struct proc *p = l->l_proc;
    619 	timer_t timerid;
    620 	struct ptimers *pts;
    621 	struct ptimer *pt, *ptn;
    622 
    623 	timerid = SCARG(uap, timerid);
    624 	pts = p->p_timers;
    625 
    626 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    627 		return (EINVAL);
    628 
    629 	mutex_spin_enter(&timer_lock);
    630 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    631 		mutex_spin_exit(&timer_lock);
    632 		return (EINVAL);
    633 	}
    634 	if (pt->pt_type != CLOCK_REALTIME) {
    635 		if (pt->pt_active) {
    636 			ptn = LIST_NEXT(pt, pt_list);
    637 			LIST_REMOVE(pt, pt_list);
    638 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    639 				timespecadd(&pt->pt_time.it_value,
    640 				    &ptn->pt_time.it_value,
    641 				    &ptn->pt_time.it_value);
    642 			pt->pt_active = 0;
    643 		}
    644 	}
    645 	itimerfree(pts, timerid);
    646 
    647 	return (0);
    648 }
    649 
    650 /*
    651  * Set up the given timer. The value in pt->pt_time.it_value is taken
    652  * to be an absolute time for CLOCK_REALTIME timers and a relative
    653  * time for virtual timers.
    654  * Must be called at splclock().
    655  */
    656 void
    657 timer_settime(struct ptimer *pt)
    658 {
    659 	struct ptimer *ptn, *pptn;
    660 	struct ptlist *ptl;
    661 
    662 	KASSERT(mutex_owned(&timer_lock));
    663 
    664 	if (pt->pt_type == CLOCK_REALTIME) {
    665 		callout_stop(&pt->pt_ch);
    666 		if (timespecisset(&pt->pt_time.it_value)) {
    667 			/*
    668 			 * Don't need to check tshzto() return value, here.
    669 			 * callout_reset() does it for us.
    670 			 */
    671 			callout_reset(&pt->pt_ch, tshzto(&pt->pt_time.it_value),
    672 			    realtimerexpire, pt);
    673 		}
    674 	} else {
    675 		if (pt->pt_active) {
    676 			ptn = LIST_NEXT(pt, pt_list);
    677 			LIST_REMOVE(pt, pt_list);
    678 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    679 				timespecadd(&pt->pt_time.it_value,
    680 				    &ptn->pt_time.it_value,
    681 				    &ptn->pt_time.it_value);
    682 		}
    683 		if (timespecisset(&pt->pt_time.it_value)) {
    684 			if (pt->pt_type == CLOCK_VIRTUAL)
    685 				ptl = &pt->pt_proc->p_timers->pts_virtual;
    686 			else
    687 				ptl = &pt->pt_proc->p_timers->pts_prof;
    688 
    689 			for (ptn = LIST_FIRST(ptl), pptn = NULL;
    690 			     ptn && timespeccmp(&pt->pt_time.it_value,
    691 				 &ptn->pt_time.it_value, >);
    692 			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
    693 				timespecsub(&pt->pt_time.it_value,
    694 				    &ptn->pt_time.it_value,
    695 				    &pt->pt_time.it_value);
    696 
    697 			if (pptn)
    698 				LIST_INSERT_AFTER(pptn, pt, pt_list);
    699 			else
    700 				LIST_INSERT_HEAD(ptl, pt, pt_list);
    701 
    702 			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
    703 				timespecsub(&ptn->pt_time.it_value,
    704 				    &pt->pt_time.it_value,
    705 				    &ptn->pt_time.it_value);
    706 
    707 			pt->pt_active = 1;
    708 		} else
    709 			pt->pt_active = 0;
    710 	}
    711 }
    712 
    713 void
    714 timer_gettime(struct ptimer *pt, struct itimerspec *aits)
    715 {
    716 	struct timespec now;
    717 	struct ptimer *ptn;
    718 
    719 	KASSERT(mutex_owned(&timer_lock));
    720 
    721 	*aits = pt->pt_time;
    722 	if (pt->pt_type == CLOCK_REALTIME) {
    723 		/*
    724 		 * Convert from absolute to relative time in .it_value
    725 		 * part of real time timer.  If time for real time
    726 		 * timer has passed return 0, else return difference
    727 		 * between current time and time for the timer to go
    728 		 * off.
    729 		 */
    730 		if (timespecisset(&aits->it_value)) {
    731 			getnanotime(&now);
    732 			if (timespeccmp(&aits->it_value, &now, <))
    733 				timespecclear(&aits->it_value);
    734 			else
    735 				timespecsub(&aits->it_value, &now,
    736 				    &aits->it_value);
    737 		}
    738 	} else if (pt->pt_active) {
    739 		if (pt->pt_type == CLOCK_VIRTUAL)
    740 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
    741 		else
    742 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
    743 		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
    744 			timespecadd(&aits->it_value,
    745 			    &ptn->pt_time.it_value, &aits->it_value);
    746 		KASSERT(ptn != NULL); /* pt should be findable on the list */
    747 	} else
    748 		timespecclear(&aits->it_value);
    749 }
    750 
    751 
    752 
    753 /* Set and arm a POSIX realtime timer */
    754 int
    755 sys___timer_settime50(struct lwp *l,
    756     const struct sys___timer_settime50_args *uap,
    757     register_t *retval)
    758 {
    759 	/* {
    760 		syscallarg(timer_t) timerid;
    761 		syscallarg(int) flags;
    762 		syscallarg(const struct itimerspec *) value;
    763 		syscallarg(struct itimerspec *) ovalue;
    764 	} */
    765 	int error;
    766 	struct itimerspec value, ovalue, *ovp = NULL;
    767 
    768 	if ((error = copyin(SCARG(uap, value), &value,
    769 	    sizeof(struct itimerspec))) != 0)
    770 		return (error);
    771 
    772 	if (SCARG(uap, ovalue))
    773 		ovp = &ovalue;
    774 
    775 	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
    776 	    SCARG(uap, flags), l->l_proc)) != 0)
    777 		return error;
    778 
    779 	if (ovp)
    780 		return copyout(&ovalue, SCARG(uap, ovalue),
    781 		    sizeof(struct itimerspec));
    782 	return 0;
    783 }
    784 
    785 int
    786 dotimer_settime(int timerid, struct itimerspec *value,
    787     struct itimerspec *ovalue, int flags, struct proc *p)
    788 {
    789 	struct timespec now;
    790 	struct itimerspec val, oval;
    791 	struct ptimers *pts;
    792 	struct ptimer *pt;
    793 	int error;
    794 
    795 	pts = p->p_timers;
    796 
    797 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    798 		return EINVAL;
    799 	val = *value;
    800 	if ((error = itimespecfix(&val.it_value)) != 0 ||
    801 	    (error = itimespecfix(&val.it_interval)) != 0)
    802 		return error;
    803 
    804 	mutex_spin_enter(&timer_lock);
    805 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    806 		mutex_spin_exit(&timer_lock);
    807 		return EINVAL;
    808 	}
    809 
    810 	oval = pt->pt_time;
    811 	pt->pt_time = val;
    812 
    813 	/*
    814 	 * If we've been passed a relative time for a realtime timer,
    815 	 * convert it to absolute; if an absolute time for a virtual
    816 	 * timer, convert it to relative and make sure we don't set it
    817 	 * to zero, which would cancel the timer, or let it go
    818 	 * negative, which would confuse the comparison tests.
    819 	 */
    820 	if (timespecisset(&pt->pt_time.it_value)) {
    821 		if (pt->pt_type == CLOCK_REALTIME) {
    822 			if ((flags & TIMER_ABSTIME) == 0) {
    823 				getnanotime(&now);
    824 				timespecadd(&pt->pt_time.it_value, &now,
    825 				    &pt->pt_time.it_value);
    826 			}
    827 		} else {
    828 			if ((flags & TIMER_ABSTIME) != 0) {
    829 				getnanotime(&now);
    830 				timespecsub(&pt->pt_time.it_value, &now,
    831 				    &pt->pt_time.it_value);
    832 				if (!timespecisset(&pt->pt_time.it_value) ||
    833 				    pt->pt_time.it_value.tv_sec < 0) {
    834 					pt->pt_time.it_value.tv_sec = 0;
    835 					pt->pt_time.it_value.tv_nsec = 1;
    836 				}
    837 			}
    838 		}
    839 	}
    840 
    841 	timer_settime(pt);
    842 	mutex_spin_exit(&timer_lock);
    843 
    844 	if (ovalue)
    845 		*ovalue = oval;
    846 
    847 	return (0);
    848 }
    849 
    850 /* Return the time remaining until a POSIX timer fires. */
    851 int
    852 sys___timer_gettime50(struct lwp *l,
    853     const struct sys___timer_gettime50_args *uap, register_t *retval)
    854 {
    855 	/* {
    856 		syscallarg(timer_t) timerid;
    857 		syscallarg(struct itimerspec *) value;
    858 	} */
    859 	struct itimerspec its;
    860 	int error;
    861 
    862 	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
    863 	    &its)) != 0)
    864 		return error;
    865 
    866 	return copyout(&its, SCARG(uap, value), sizeof(its));
    867 }
    868 
    869 int
    870 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
    871 {
    872 	struct ptimer *pt;
    873 	struct ptimers *pts;
    874 
    875 	pts = p->p_timers;
    876 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    877 		return (EINVAL);
    878 	mutex_spin_enter(&timer_lock);
    879 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    880 		mutex_spin_exit(&timer_lock);
    881 		return (EINVAL);
    882 	}
    883 	timer_gettime(pt, its);
    884 	mutex_spin_exit(&timer_lock);
    885 
    886 	return 0;
    887 }
    888 
    889 /*
    890  * Return the count of the number of times a periodic timer expired
    891  * while a notification was already pending. The counter is reset when
    892  * a timer expires and a notification can be posted.
    893  */
    894 int
    895 sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
    896     register_t *retval)
    897 {
    898 	/* {
    899 		syscallarg(timer_t) timerid;
    900 	} */
    901 	struct proc *p = l->l_proc;
    902 	struct ptimers *pts;
    903 	int timerid;
    904 	struct ptimer *pt;
    905 
    906 	timerid = SCARG(uap, timerid);
    907 
    908 	pts = p->p_timers;
    909 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    910 		return (EINVAL);
    911 	mutex_spin_enter(&timer_lock);
    912 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    913 		mutex_spin_exit(&timer_lock);
    914 		return (EINVAL);
    915 	}
    916 	*retval = pt->pt_poverruns;
    917 	mutex_spin_exit(&timer_lock);
    918 
    919 	return (0);
    920 }
    921 
    922 #ifdef KERN_SA
    923 /* Glue function that triggers an upcall; called from userret(). */
    924 void
    925 timerupcall(struct lwp *l)
    926 {
    927 	struct ptimers *pt = l->l_proc->p_timers;
    928 	struct proc *p = l->l_proc;
    929 	unsigned int i, fired, done;
    930 
    931 	KDASSERT(l->l_proc->p_sa);
    932 	/* Bail out if we do not own the virtual processor */
    933 	if (l->l_savp->savp_lwp != l)
    934 		return ;
    935 
    936 	mutex_enter(p->p_lock);
    937 
    938 	fired = pt->pts_fired;
    939 	done = 0;
    940 	while ((i = ffs(fired)) != 0) {
    941 		siginfo_t *si;
    942 		int mask = 1 << --i;
    943 		int f;
    944 
    945 		f = ~l->l_pflag & LP_SA_NOBLOCK;
    946 		l->l_pflag |= LP_SA_NOBLOCK;
    947 		si = siginfo_alloc(PR_WAITOK);
    948 		si->_info = pt->pts_timers[i]->pt_info.ksi_info;
    949 		if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
    950 		    sizeof(*si), si, siginfo_free) != 0) {
    951 			siginfo_free(si);
    952 			/* XXX What do we do here?? */
    953 		} else
    954 			done |= mask;
    955 		fired &= ~mask;
    956 		l->l_pflag ^= f;
    957 	}
    958 	pt->pts_fired &= ~done;
    959 	if (pt->pts_fired == 0)
    960 		l->l_proc->p_timerpend = 0;
    961 
    962 	mutex_exit(p->p_lock);
    963 }
    964 #endif /* KERN_SA */
    965 
    966 /*
    967  * Real interval timer expired:
    968  * send process whose timer expired an alarm signal.
    969  * If time is not set up to reload, then just return.
    970  * Else compute next time timer should go off which is > current time.
    971  * This is where delay in processing this timeout causes multiple
    972  * SIGALRM calls to be compressed into one.
    973  */
    974 void
    975 realtimerexpire(void *arg)
    976 {
    977 	uint64_t last_val, next_val, interval, now_ns;
    978 	struct timespec now, next;
    979 	struct ptimer *pt;
    980 	int backwards;
    981 
    982 	pt = arg;
    983 
    984 	mutex_spin_enter(&timer_lock);
    985 	itimerfire(pt);
    986 
    987 	if (!timespecisset(&pt->pt_time.it_interval)) {
    988 		timespecclear(&pt->pt_time.it_value);
    989 		mutex_spin_exit(&timer_lock);
    990 		return;
    991 	}
    992 
    993 	getnanotime(&now);
    994 	backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
    995 	timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
    996 	/* Handle the easy case of non-overflown timers first. */
    997 	if (!backwards && timespeccmp(&next, &now, >)) {
    998 		pt->pt_time.it_value = next;
    999 	} else {
   1000 		now_ns = timespec2ns(&now);
   1001 		last_val = timespec2ns(&pt->pt_time.it_value);
   1002 		interval = timespec2ns(&pt->pt_time.it_interval);
   1003 
   1004 		next_val = now_ns +
   1005 		    (now_ns - last_val + interval - 1) % interval;
   1006 
   1007 		if (backwards)
   1008 			next_val += interval;
   1009 		else
   1010 			pt->pt_overruns += (now_ns - last_val) / interval;
   1011 
   1012 		pt->pt_time.it_value.tv_sec = next_val / 1000000000;
   1013 		pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
   1014 	}
   1015 
   1016 	/*
   1017 	 * Don't need to check tshzto() return value, here.
   1018 	 * callout_reset() does it for us.
   1019 	 */
   1020 	callout_reset(&pt->pt_ch, tshzto(&pt->pt_time.it_value),
   1021 	    realtimerexpire, pt);
   1022 	mutex_spin_exit(&timer_lock);
   1023 }
   1024 
   1025 /* BSD routine to get the value of an interval timer. */
   1026 /* ARGSUSED */
   1027 int
   1028 sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
   1029     register_t *retval)
   1030 {
   1031 	/* {
   1032 		syscallarg(int) which;
   1033 		syscallarg(struct itimerval *) itv;
   1034 	} */
   1035 	struct proc *p = l->l_proc;
   1036 	struct itimerval aitv;
   1037 	int error;
   1038 
   1039 	error = dogetitimer(p, SCARG(uap, which), &aitv);
   1040 	if (error)
   1041 		return error;
   1042 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
   1043 }
   1044 
   1045 int
   1046 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
   1047 {
   1048 	struct ptimers *pts;
   1049 	struct ptimer *pt;
   1050 	struct itimerspec its;
   1051 
   1052 	if ((u_int)which > ITIMER_PROF)
   1053 		return (EINVAL);
   1054 
   1055 	mutex_spin_enter(&timer_lock);
   1056 	pts = p->p_timers;
   1057 	if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
   1058 		timerclear(&itvp->it_value);
   1059 		timerclear(&itvp->it_interval);
   1060 	} else {
   1061 		timer_gettime(pt, &its);
   1062 		TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
   1063 		TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
   1064 	}
   1065 	mutex_spin_exit(&timer_lock);
   1066 
   1067 	return 0;
   1068 }
   1069 
   1070 /* BSD routine to set/arm an interval timer. */
   1071 /* ARGSUSED */
   1072 int
   1073 sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
   1074     register_t *retval)
   1075 {
   1076 	/* {
   1077 		syscallarg(int) which;
   1078 		syscallarg(const struct itimerval *) itv;
   1079 		syscallarg(struct itimerval *) oitv;
   1080 	} */
   1081 	struct proc *p = l->l_proc;
   1082 	int which = SCARG(uap, which);
   1083 	struct sys___getitimer50_args getargs;
   1084 	const struct itimerval *itvp;
   1085 	struct itimerval aitv;
   1086 	int error;
   1087 
   1088 	if ((u_int)which > ITIMER_PROF)
   1089 		return (EINVAL);
   1090 	itvp = SCARG(uap, itv);
   1091 	if (itvp &&
   1092 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
   1093 		return (error);
   1094 	if (SCARG(uap, oitv) != NULL) {
   1095 		SCARG(&getargs, which) = which;
   1096 		SCARG(&getargs, itv) = SCARG(uap, oitv);
   1097 		if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
   1098 			return (error);
   1099 	}
   1100 	if (itvp == 0)
   1101 		return (0);
   1102 
   1103 	return dosetitimer(p, which, &aitv);
   1104 }
   1105 
   1106 int
   1107 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
   1108 {
   1109 	struct timespec now;
   1110 	struct ptimers *pts;
   1111 	struct ptimer *pt, *spare;
   1112 
   1113 	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
   1114 		return (EINVAL);
   1115 
   1116 	/*
   1117 	 * Don't bother allocating data structures if the process just
   1118 	 * wants to clear the timer.
   1119 	 */
   1120 	spare = NULL;
   1121 	pts = p->p_timers;
   1122  retry:
   1123 	if (!timerisset(&itvp->it_value) && (pts == NULL ||
   1124 	    pts->pts_timers[which] == NULL))
   1125 		return (0);
   1126 	if (pts == NULL)
   1127 		pts = timers_alloc(p);
   1128 	mutex_spin_enter(&timer_lock);
   1129 	pt = pts->pts_timers[which];
   1130 	if (pt == NULL) {
   1131 		if (spare == NULL) {
   1132 			mutex_spin_exit(&timer_lock);
   1133 			spare = pool_get(&ptimer_pool, PR_WAITOK);
   1134 			goto retry;
   1135 		}
   1136 		pt = spare;
   1137 		spare = NULL;
   1138 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
   1139 		pt->pt_ev.sigev_value.sival_int = which;
   1140 		pt->pt_overruns = 0;
   1141 		pt->pt_proc = p;
   1142 		pt->pt_type = which;
   1143 		pt->pt_entry = which;
   1144 		pt->pt_queued = false;
   1145 		if (pt->pt_type == CLOCK_REALTIME)
   1146 			callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
   1147 		else
   1148 			pt->pt_active = 0;
   1149 
   1150 		switch (which) {
   1151 		case ITIMER_REAL:
   1152 			pt->pt_ev.sigev_signo = SIGALRM;
   1153 			break;
   1154 		case ITIMER_VIRTUAL:
   1155 			pt->pt_ev.sigev_signo = SIGVTALRM;
   1156 			break;
   1157 		case ITIMER_PROF:
   1158 			pt->pt_ev.sigev_signo = SIGPROF;
   1159 			break;
   1160 		}
   1161 		pts->pts_timers[which] = pt;
   1162 	}
   1163 
   1164 	TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
   1165 	TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
   1166 
   1167 	if ((which == ITIMER_REAL) && timespecisset(&pt->pt_time.it_value)) {
   1168 		/* Convert to absolute time */
   1169 		/* XXX need to wrap in splclock for timecounters case? */
   1170 		getnanotime(&now);
   1171 		timespecadd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
   1172 	}
   1173 	timer_settime(pt);
   1174 	mutex_spin_exit(&timer_lock);
   1175 	if (spare != NULL)
   1176 		pool_put(&ptimer_pool, spare);
   1177 
   1178 	return (0);
   1179 }
   1180 
   1181 /* Utility routines to manage the array of pointers to timers. */
   1182 struct ptimers *
   1183 timers_alloc(struct proc *p)
   1184 {
   1185 	struct ptimers *pts;
   1186 	int i;
   1187 
   1188 	pts = pool_get(&ptimers_pool, PR_WAITOK);
   1189 	LIST_INIT(&pts->pts_virtual);
   1190 	LIST_INIT(&pts->pts_prof);
   1191 	for (i = 0; i < TIMER_MAX; i++)
   1192 		pts->pts_timers[i] = NULL;
   1193 	pts->pts_fired = 0;
   1194 	mutex_spin_enter(&timer_lock);
   1195 	if (p->p_timers == NULL) {
   1196 		p->p_timers = pts;
   1197 		mutex_spin_exit(&timer_lock);
   1198 		return pts;
   1199 	}
   1200 	mutex_spin_exit(&timer_lock);
   1201 	pool_put(&ptimers_pool, pts);
   1202 	return p->p_timers;
   1203 }
   1204 
   1205 /*
   1206  * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
   1207  * then clean up all timers and free all the data structures. If
   1208  * "which" is set to TIMERS_POSIX, only clean up the timers allocated
   1209  * by timer_create(), not the BSD setitimer() timers, and only free the
   1210  * structure if none of those remain.
   1211  */
   1212 void
   1213 timers_free(struct proc *p, int which)
   1214 {
   1215 	struct ptimers *pts;
   1216 	struct ptimer *ptn;
   1217 	struct timespec ts;
   1218 	int i;
   1219 
   1220 	if (p->p_timers == NULL)
   1221 		return;
   1222 
   1223 	pts = p->p_timers;
   1224 	mutex_spin_enter(&timer_lock);
   1225 	if (which == TIMERS_ALL) {
   1226 		p->p_timers = NULL;
   1227 		i = 0;
   1228 	} else {
   1229 		timespecclear(&ts);
   1230 		for (ptn = LIST_FIRST(&pts->pts_virtual);
   1231 		     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
   1232 		     ptn = LIST_NEXT(ptn, pt_list)) {
   1233 			KASSERT(ptn->pt_type != CLOCK_REALTIME);
   1234 			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
   1235 		}
   1236 		LIST_FIRST(&pts->pts_virtual) = NULL;
   1237 		if (ptn) {
   1238 			KASSERT(ptn->pt_type != CLOCK_REALTIME);
   1239 			timespecadd(&ts, &ptn->pt_time.it_value,
   1240 			    &ptn->pt_time.it_value);
   1241 			LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
   1242 		}
   1243 		timespecclear(&ts);
   1244 		for (ptn = LIST_FIRST(&pts->pts_prof);
   1245 		     ptn && ptn != pts->pts_timers[ITIMER_PROF];
   1246 		     ptn = LIST_NEXT(ptn, pt_list)) {
   1247 			KASSERT(ptn->pt_type != CLOCK_REALTIME);
   1248 			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
   1249 		}
   1250 		LIST_FIRST(&pts->pts_prof) = NULL;
   1251 		if (ptn) {
   1252 			KASSERT(ptn->pt_type != CLOCK_REALTIME);
   1253 			timespecadd(&ts, &ptn->pt_time.it_value,
   1254 			    &ptn->pt_time.it_value);
   1255 			LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
   1256 		}
   1257 		i = 3;
   1258 	}
   1259 	for ( ; i < TIMER_MAX; i++) {
   1260 		if (pts->pts_timers[i] != NULL) {
   1261 			itimerfree(pts, i);
   1262 			mutex_spin_enter(&timer_lock);
   1263 		}
   1264 	}
   1265 	if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
   1266 	    pts->pts_timers[2] == NULL) {
   1267 		p->p_timers = NULL;
   1268 		mutex_spin_exit(&timer_lock);
   1269 		pool_put(&ptimers_pool, pts);
   1270 	} else
   1271 		mutex_spin_exit(&timer_lock);
   1272 }
   1273 
   1274 static void
   1275 itimerfree(struct ptimers *pts, int index)
   1276 {
   1277 	struct ptimer *pt;
   1278 
   1279 	KASSERT(mutex_owned(&timer_lock));
   1280 
   1281 	pt = pts->pts_timers[index];
   1282 	pts->pts_timers[index] = NULL;
   1283 	if (pt->pt_type == CLOCK_REALTIME)
   1284 		callout_halt(&pt->pt_ch, &timer_lock);
   1285 	else if (pt->pt_queued)
   1286 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
   1287 	mutex_spin_exit(&timer_lock);
   1288 	if (pt->pt_type == CLOCK_REALTIME)
   1289 		callout_destroy(&pt->pt_ch);
   1290 	pool_put(&ptimer_pool, pt);
   1291 }
   1292 
   1293 /*
   1294  * Decrement an interval timer by a specified number
   1295  * of nanoseconds, which must be less than a second,
   1296  * i.e. < 1000000000.  If the timer expires, then reload
   1297  * it.  In this case, carry over (nsec - old value) to
   1298  * reduce the value reloaded into the timer so that
   1299  * the timer does not drift.  This routine assumes
   1300  * that it is called in a context where the timers
   1301  * on which it is operating cannot change in value.
   1302  */
   1303 static int
   1304 itimerdecr(struct ptimer *pt, int nsec)
   1305 {
   1306 	struct itimerspec *itp;
   1307 
   1308 	KASSERT(mutex_owned(&timer_lock));
   1309 
   1310 	itp = &pt->pt_time;
   1311 	if (itp->it_value.tv_nsec < nsec) {
   1312 		if (itp->it_value.tv_sec == 0) {
   1313 			/* expired, and already in next interval */
   1314 			nsec -= itp->it_value.tv_nsec;
   1315 			goto expire;
   1316 		}
   1317 		itp->it_value.tv_nsec += 1000000000;
   1318 		itp->it_value.tv_sec--;
   1319 	}
   1320 	itp->it_value.tv_nsec -= nsec;
   1321 	nsec = 0;
   1322 	if (timespecisset(&itp->it_value))
   1323 		return (1);
   1324 	/* expired, exactly at end of interval */
   1325 expire:
   1326 	if (timespecisset(&itp->it_interval)) {
   1327 		itp->it_value = itp->it_interval;
   1328 		itp->it_value.tv_nsec -= nsec;
   1329 		if (itp->it_value.tv_nsec < 0) {
   1330 			itp->it_value.tv_nsec += 1000000000;
   1331 			itp->it_value.tv_sec--;
   1332 		}
   1333 		timer_settime(pt);
   1334 	} else
   1335 		itp->it_value.tv_nsec = 0;		/* sec is already 0 */
   1336 	return (0);
   1337 }
   1338 
   1339 static void
   1340 itimerfire(struct ptimer *pt)
   1341 {
   1342 
   1343 	KASSERT(mutex_owned(&timer_lock));
   1344 
   1345 	/*
   1346 	 * XXX Can overrun, but we don't do signal queueing yet, anyway.
   1347 	 * XXX Relying on the clock interrupt is stupid.
   1348 	 */
   1349 	if ((pt->pt_ev.sigev_notify == SIGEV_SA && pt->pt_proc->p_sa == NULL) ||
   1350 	    (pt->pt_ev.sigev_notify != SIGEV_SIGNAL &&
   1351 	    pt->pt_ev.sigev_notify != SIGEV_SA) || pt->pt_queued)
   1352 		return;
   1353 	TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
   1354 	pt->pt_queued = true;
   1355 	softint_schedule(timer_sih);
   1356 }
   1357 
   1358 void
   1359 timer_tick(lwp_t *l, bool user)
   1360 {
   1361 	struct ptimers *pts;
   1362 	struct ptimer *pt;
   1363 	proc_t *p;
   1364 
   1365 	p = l->l_proc;
   1366 	if (p->p_timers == NULL)
   1367 		return;
   1368 
   1369 	mutex_spin_enter(&timer_lock);
   1370 	if ((pts = l->l_proc->p_timers) != NULL) {
   1371 		/*
   1372 		 * Run current process's virtual and profile time, as needed.
   1373 		 */
   1374 		if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
   1375 			if (itimerdecr(pt, tick * 1000) == 0)
   1376 				itimerfire(pt);
   1377 		if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
   1378 			if (itimerdecr(pt, tick * 1000) == 0)
   1379 				itimerfire(pt);
   1380 	}
   1381 	mutex_spin_exit(&timer_lock);
   1382 }
   1383 
   1384 #ifdef KERN_SA
   1385 /*
   1386  * timer_sa_intr:
   1387  *
   1388  *	SIGEV_SA handling for timer_intr(). We are called (and return)
   1389  * with the timer lock held. We know that the process had SA enabled
   1390  * when this timer was enqueued. As timer_intr() is a soft interrupt
   1391  * handler, SA should still be enabled by the time we get here.
   1392  */
   1393 static void
   1394 timer_sa_intr(struct ptimer *pt, proc_t *p)
   1395 {
   1396 	unsigned int		i;
   1397 	struct sadata		*sa;
   1398 	struct sadata_vp	*vp;
   1399 
   1400 	/* Cause the process to generate an upcall when it returns. */
   1401 	if (!p->p_timerpend) {
   1402 		/*
   1403 		 * XXX stop signals can be processed inside tsleep,
   1404 		 * which can be inside sa_yield's inner loop, which
   1405 		 * makes testing for sa_idle alone insuffucent to
   1406 		 * determine if we really should call setrunnable.
   1407 		 */
   1408 		pt->pt_poverruns = pt->pt_overruns;
   1409 		pt->pt_overruns = 0;
   1410 		i = 1 << pt->pt_entry;
   1411 		p->p_timers->pts_fired = i;
   1412 		p->p_timerpend = 1;
   1413 
   1414 		sa = p->p_sa;
   1415 		mutex_enter(&sa->sa_mutex);
   1416 		SLIST_FOREACH(vp, &sa->sa_vps, savp_next) {
   1417 			struct lwp *vp_lwp = vp->savp_lwp;
   1418 			lwp_lock(vp_lwp);
   1419 			lwp_need_userret(vp_lwp);
   1420 			if (vp_lwp->l_flag & LW_SA_IDLE) {
   1421 				vp_lwp->l_flag &= ~LW_SA_IDLE;
   1422 				lwp_unsleep(vp_lwp, true);
   1423 				break;
   1424 			}
   1425 			lwp_unlock(vp_lwp);
   1426 		}
   1427 		mutex_exit(&sa->sa_mutex);
   1428 	} else {
   1429 		i = 1 << pt->pt_entry;
   1430 		if ((p->p_timers->pts_fired & i) == 0) {
   1431 			pt->pt_poverruns = pt->pt_overruns;
   1432 			pt->pt_overruns = 0;
   1433 			p->p_timers->pts_fired |= i;
   1434 		} else
   1435 			pt->pt_overruns++;
   1436 	}
   1437 }
   1438 #endif /* KERN_SA */
   1439 
   1440 static void
   1441 timer_intr(void *cookie)
   1442 {
   1443 	ksiginfo_t ksi;
   1444 	struct ptimer *pt;
   1445 	proc_t *p;
   1446 
   1447 	mutex_enter(proc_lock);
   1448 	mutex_spin_enter(&timer_lock);
   1449 	while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
   1450 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
   1451 		KASSERT(pt->pt_queued);
   1452 		pt->pt_queued = false;
   1453 
   1454 		if (pt->pt_proc->p_timers == NULL) {
   1455 			/* Process is dying. */
   1456 			continue;
   1457 		}
   1458 		p = pt->pt_proc;
   1459 #ifdef KERN_SA
   1460 		if (pt->pt_ev.sigev_notify == SIGEV_SA) {
   1461 			timer_sa_intr(pt, p);
   1462 			continue;
   1463 		}
   1464 #endif /* KERN_SA */
   1465 		if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL)
   1466 			continue;
   1467 		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
   1468 			pt->pt_overruns++;
   1469 			continue;
   1470 		}
   1471 
   1472 		KSI_INIT(&ksi);
   1473 		ksi.ksi_signo = pt->pt_ev.sigev_signo;
   1474 		ksi.ksi_code = SI_TIMER;
   1475 		ksi.ksi_value = pt->pt_ev.sigev_value;
   1476 		pt->pt_poverruns = pt->pt_overruns;
   1477 		pt->pt_overruns = 0;
   1478 		mutex_spin_exit(&timer_lock);
   1479 		kpsignal(p, &ksi, NULL);
   1480 		mutex_spin_enter(&timer_lock);
   1481 	}
   1482 	mutex_spin_exit(&timer_lock);
   1483 	mutex_exit(proc_lock);
   1484 }
   1485 
   1486 /*
   1487  * Check if the time will wrap if set to ts.
   1488  *
   1489  * ts - timespec describing the new time
   1490  * delta - the delta between the current time and ts
   1491  */
   1492 bool
   1493 time_wraps(struct timespec *ts, struct timespec *delta)
   1494 {
   1495 
   1496 	/*
   1497 	 * Don't allow the time to be set forward so far it
   1498 	 * will wrap and become negative, thus allowing an
   1499 	 * attacker to bypass the next check below.  The
   1500 	 * cutoff is 1 year before rollover occurs, so even
   1501 	 * if the attacker uses adjtime(2) to move the time
   1502 	 * past the cutoff, it will take a very long time
   1503 	 * to get to the wrap point.
   1504 	 */
   1505 	if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
   1506 	    (delta->tv_sec < 0 || delta->tv_nsec < 0))
   1507 		return true;
   1508 
   1509 	return false;
   1510 }
   1511