kern_time.c revision 1.168 1 /* $NetBSD: kern_time.c,v 1.168 2011/04/08 10:35:37 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1986, 1989, 1993
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
61 */
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.168 2011/04/08 10:35:37 yamt Exp $");
65
66 #include <sys/param.h>
67 #include <sys/resourcevar.h>
68 #include <sys/kernel.h>
69 #include <sys/systm.h>
70 #include <sys/proc.h>
71 #include <sys/vnode.h>
72 #include <sys/signalvar.h>
73 #include <sys/syslog.h>
74 #include <sys/timetc.h>
75 #include <sys/timex.h>
76 #include <sys/kauth.h>
77 #include <sys/mount.h>
78 #include <sys/sa.h>
79 #include <sys/savar.h>
80 #include <sys/syscallargs.h>
81 #include <sys/cpu.h>
82
83 #include <uvm/uvm_extern.h>
84
85 #include "opt_sa.h"
86
87 static void timer_intr(void *);
88 static void itimerfire(struct ptimer *);
89 static void itimerfree(struct ptimers *, int);
90
91 kmutex_t timer_lock;
92
93 static void *timer_sih;
94 static TAILQ_HEAD(, ptimer) timer_queue;
95
96 struct pool ptimer_pool, ptimers_pool;
97
98 #define CLOCK_VIRTUAL_P(clockid) \
99 ((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)
100
101 CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
102 CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
103 CTASSERT(ITIMER_PROF == CLOCK_PROF);
104
105 /*
106 * Initialize timekeeping.
107 */
108 void
109 time_init(void)
110 {
111
112 pool_init(&ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
113 &pool_allocator_nointr, IPL_NONE);
114 pool_init(&ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
115 &pool_allocator_nointr, IPL_NONE);
116 }
117
118 void
119 time_init2(void)
120 {
121
122 TAILQ_INIT(&timer_queue);
123 mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
124 timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
125 timer_intr, NULL);
126 }
127
128 /* Time of day and interval timer support.
129 *
130 * These routines provide the kernel entry points to get and set
131 * the time-of-day and per-process interval timers. Subroutines
132 * here provide support for adding and subtracting timeval structures
133 * and decrementing interval timers, optionally reloading the interval
134 * timers when they expire.
135 */
136
137 /* This function is used by clock_settime and settimeofday */
138 static int
139 settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
140 {
141 struct timespec delta, now;
142 int s;
143
144 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
145 s = splclock();
146 nanotime(&now);
147 timespecsub(ts, &now, &delta);
148
149 if (check_kauth && kauth_authorize_system(kauth_cred_get(),
150 KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
151 &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
152 splx(s);
153 return (EPERM);
154 }
155
156 #ifdef notyet
157 if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
158 splx(s);
159 return (EPERM);
160 }
161 #endif
162
163 tc_setclock(ts);
164
165 timespecadd(&boottime, &delta, &boottime);
166
167 resettodr();
168 splx(s);
169
170 return (0);
171 }
172
173 int
174 settime(struct proc *p, struct timespec *ts)
175 {
176 return (settime1(p, ts, true));
177 }
178
179 /* ARGSUSED */
180 int
181 sys___clock_gettime50(struct lwp *l,
182 const struct sys___clock_gettime50_args *uap, register_t *retval)
183 {
184 /* {
185 syscallarg(clockid_t) clock_id;
186 syscallarg(struct timespec *) tp;
187 } */
188 int error;
189 struct timespec ats;
190
191 error = clock_gettime1(SCARG(uap, clock_id), &ats);
192 if (error != 0)
193 return error;
194
195 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
196 }
197
198 int
199 clock_gettime1(clockid_t clock_id, struct timespec *ts)
200 {
201
202 switch (clock_id) {
203 case CLOCK_REALTIME:
204 nanotime(ts);
205 break;
206 case CLOCK_MONOTONIC:
207 nanouptime(ts);
208 break;
209 default:
210 return EINVAL;
211 }
212
213 return 0;
214 }
215
216 /* ARGSUSED */
217 int
218 sys___clock_settime50(struct lwp *l,
219 const struct sys___clock_settime50_args *uap, register_t *retval)
220 {
221 /* {
222 syscallarg(clockid_t) clock_id;
223 syscallarg(const struct timespec *) tp;
224 } */
225 int error;
226 struct timespec ats;
227
228 if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
229 return error;
230
231 return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
232 }
233
234
235 int
236 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
237 bool check_kauth)
238 {
239 int error;
240
241 switch (clock_id) {
242 case CLOCK_REALTIME:
243 if ((error = settime1(p, tp, check_kauth)) != 0)
244 return (error);
245 break;
246 case CLOCK_MONOTONIC:
247 return (EINVAL); /* read-only clock */
248 default:
249 return (EINVAL);
250 }
251
252 return 0;
253 }
254
255 int
256 sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
257 register_t *retval)
258 {
259 /* {
260 syscallarg(clockid_t) clock_id;
261 syscallarg(struct timespec *) tp;
262 } */
263 struct timespec ts;
264 int error = 0;
265
266 if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
267 return error;
268
269 if (SCARG(uap, tp))
270 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
271
272 return error;
273 }
274
275 int
276 clock_getres1(clockid_t clock_id, struct timespec *ts)
277 {
278
279 switch (clock_id) {
280 case CLOCK_REALTIME:
281 case CLOCK_MONOTONIC:
282 ts->tv_sec = 0;
283 if (tc_getfrequency() > 1000000000)
284 ts->tv_nsec = 1;
285 else
286 ts->tv_nsec = 1000000000 / tc_getfrequency();
287 break;
288 default:
289 return EINVAL;
290 }
291
292 return 0;
293 }
294
295 /* ARGSUSED */
296 int
297 sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
298 register_t *retval)
299 {
300 /* {
301 syscallarg(struct timespec *) rqtp;
302 syscallarg(struct timespec *) rmtp;
303 } */
304 struct timespec rmt, rqt;
305 int error, error1;
306
307 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
308 if (error)
309 return (error);
310
311 error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
312 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
313 return error;
314
315 error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
316 return error1 ? error1 : error;
317 }
318
319 int
320 nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
321 {
322 struct timespec rmtstart;
323 int error, timo;
324
325 if ((error = itimespecfix(rqt)) != 0)
326 return error;
327
328 timo = tstohz(rqt);
329 /*
330 * Avoid inadvertantly sleeping forever
331 */
332 if (timo == 0)
333 timo = 1;
334 getnanouptime(&rmtstart);
335 again:
336 error = kpause("nanoslp", true, timo, NULL);
337 if (rmt != NULL || error == 0) {
338 struct timespec rmtend;
339 struct timespec t0;
340 struct timespec *t;
341
342 getnanouptime(&rmtend);
343 t = (rmt != NULL) ? rmt : &t0;
344 timespecsub(&rmtend, &rmtstart, t);
345 timespecsub(rqt, t, t);
346 if (t->tv_sec < 0)
347 timespecclear(t);
348 if (error == 0) {
349 timo = tstohz(t);
350 if (timo > 0)
351 goto again;
352 }
353 }
354
355 if (error == ERESTART)
356 error = EINTR;
357 if (error == EWOULDBLOCK)
358 error = 0;
359
360 return error;
361 }
362
363 /* ARGSUSED */
364 int
365 sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
366 register_t *retval)
367 {
368 /* {
369 syscallarg(struct timeval *) tp;
370 syscallarg(void *) tzp; really "struct timezone *";
371 } */
372 struct timeval atv;
373 int error = 0;
374 struct timezone tzfake;
375
376 if (SCARG(uap, tp)) {
377 microtime(&atv);
378 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
379 if (error)
380 return (error);
381 }
382 if (SCARG(uap, tzp)) {
383 /*
384 * NetBSD has no kernel notion of time zone, so we just
385 * fake up a timezone struct and return it if demanded.
386 */
387 tzfake.tz_minuteswest = 0;
388 tzfake.tz_dsttime = 0;
389 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
390 }
391 return (error);
392 }
393
394 /* ARGSUSED */
395 int
396 sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
397 register_t *retval)
398 {
399 /* {
400 syscallarg(const struct timeval *) tv;
401 syscallarg(const void *) tzp; really "const struct timezone *";
402 } */
403
404 return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
405 }
406
407 int
408 settimeofday1(const struct timeval *utv, bool userspace,
409 const void *utzp, struct lwp *l, bool check_kauth)
410 {
411 struct timeval atv;
412 struct timespec ts;
413 int error;
414
415 /* Verify all parameters before changing time. */
416
417 /*
418 * NetBSD has no kernel notion of time zone, and only an
419 * obsolete program would try to set it, so we log a warning.
420 */
421 if (utzp)
422 log(LOG_WARNING, "pid %d attempted to set the "
423 "(obsolete) kernel time zone\n", l->l_proc->p_pid);
424
425 if (utv == NULL)
426 return 0;
427
428 if (userspace) {
429 if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
430 return error;
431 utv = &atv;
432 }
433
434 TIMEVAL_TO_TIMESPEC(utv, &ts);
435 return settime1(l->l_proc, &ts, check_kauth);
436 }
437
438 int time_adjusted; /* set if an adjustment is made */
439
440 /* ARGSUSED */
441 int
442 sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
443 register_t *retval)
444 {
445 /* {
446 syscallarg(const struct timeval *) delta;
447 syscallarg(struct timeval *) olddelta;
448 } */
449 int error = 0;
450 struct timeval atv, oldatv;
451
452 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
453 KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
454 return error;
455
456 if (SCARG(uap, delta)) {
457 error = copyin(SCARG(uap, delta), &atv,
458 sizeof(*SCARG(uap, delta)));
459 if (error)
460 return (error);
461 }
462 adjtime1(SCARG(uap, delta) ? &atv : NULL,
463 SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
464 if (SCARG(uap, olddelta))
465 error = copyout(&oldatv, SCARG(uap, olddelta),
466 sizeof(*SCARG(uap, olddelta)));
467 return error;
468 }
469
470 void
471 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
472 {
473 extern int64_t time_adjtime; /* in kern_ntptime.c */
474
475 if (olddelta) {
476 mutex_spin_enter(&timecounter_lock);
477 olddelta->tv_sec = time_adjtime / 1000000;
478 olddelta->tv_usec = time_adjtime % 1000000;
479 if (olddelta->tv_usec < 0) {
480 olddelta->tv_usec += 1000000;
481 olddelta->tv_sec--;
482 }
483 mutex_spin_exit(&timecounter_lock);
484 }
485
486 if (delta) {
487 mutex_spin_enter(&timecounter_lock);
488 time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
489
490 if (time_adjtime) {
491 /* We need to save the system time during shutdown */
492 time_adjusted |= 1;
493 }
494 mutex_spin_exit(&timecounter_lock);
495 }
496 }
497
498 /*
499 * Interval timer support. Both the BSD getitimer() family and the POSIX
500 * timer_*() family of routines are supported.
501 *
502 * All timers are kept in an array pointed to by p_timers, which is
503 * allocated on demand - many processes don't use timers at all. The
504 * first three elements in this array are reserved for the BSD timers:
505 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
506 * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
507 * syscall.
508 *
509 * Realtime timers are kept in the ptimer structure as an absolute
510 * time; virtual time timers are kept as a linked list of deltas.
511 * Virtual time timers are processed in the hardclock() routine of
512 * kern_clock.c. The real time timer is processed by a callout
513 * routine, called from the softclock() routine. Since a callout may
514 * be delayed in real time due to interrupt processing in the system,
515 * it is possible for the real time timeout routine (realtimeexpire,
516 * given below), to be delayed in real time past when it is supposed
517 * to occur. It does not suffice, therefore, to reload the real timer
518 * .it_value from the real time timers .it_interval. Rather, we
519 * compute the next time in absolute time the timer should go off. */
520
521 /* Allocate a POSIX realtime timer. */
522 int
523 sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
524 register_t *retval)
525 {
526 /* {
527 syscallarg(clockid_t) clock_id;
528 syscallarg(struct sigevent *) evp;
529 syscallarg(timer_t *) timerid;
530 } */
531
532 return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
533 SCARG(uap, evp), copyin, l);
534 }
535
536 int
537 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
538 copyin_t fetch_event, struct lwp *l)
539 {
540 int error;
541 timer_t timerid;
542 struct ptimers *pts;
543 struct ptimer *pt;
544 struct proc *p;
545
546 p = l->l_proc;
547
548 if (id != CLOCK_REALTIME && id != CLOCK_VIRTUAL &&
549 id != CLOCK_PROF && id != CLOCK_MONOTONIC)
550 return (EINVAL);
551
552 if ((pts = p->p_timers) == NULL)
553 pts = timers_alloc(p);
554
555 pt = pool_get(&ptimer_pool, PR_WAITOK);
556 if (evp != NULL) {
557 if (((error =
558 (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
559 ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
560 (pt->pt_ev.sigev_notify > SIGEV_SA)) ||
561 (pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
562 (pt->pt_ev.sigev_signo <= 0 ||
563 pt->pt_ev.sigev_signo >= NSIG))) {
564 pool_put(&ptimer_pool, pt);
565 return (error ? error : EINVAL);
566 }
567 }
568
569 /* Find a free timer slot, skipping those reserved for setitimer(). */
570 mutex_spin_enter(&timer_lock);
571 for (timerid = 3; timerid < TIMER_MAX; timerid++)
572 if (pts->pts_timers[timerid] == NULL)
573 break;
574 if (timerid == TIMER_MAX) {
575 mutex_spin_exit(&timer_lock);
576 pool_put(&ptimer_pool, pt);
577 return EAGAIN;
578 }
579 if (evp == NULL) {
580 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
581 switch (id) {
582 case CLOCK_REALTIME:
583 case CLOCK_MONOTONIC:
584 pt->pt_ev.sigev_signo = SIGALRM;
585 break;
586 case CLOCK_VIRTUAL:
587 pt->pt_ev.sigev_signo = SIGVTALRM;
588 break;
589 case CLOCK_PROF:
590 pt->pt_ev.sigev_signo = SIGPROF;
591 break;
592 }
593 pt->pt_ev.sigev_value.sival_int = timerid;
594 }
595 pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
596 pt->pt_info.ksi_errno = 0;
597 pt->pt_info.ksi_code = 0;
598 pt->pt_info.ksi_pid = p->p_pid;
599 pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
600 pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
601 pt->pt_type = id;
602 pt->pt_proc = p;
603 pt->pt_overruns = 0;
604 pt->pt_poverruns = 0;
605 pt->pt_entry = timerid;
606 pt->pt_queued = false;
607 timespecclear(&pt->pt_time.it_value);
608 if (!CLOCK_VIRTUAL_P(id))
609 callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
610 else
611 pt->pt_active = 0;
612
613 pts->pts_timers[timerid] = pt;
614 mutex_spin_exit(&timer_lock);
615
616 return copyout(&timerid, tid, sizeof(timerid));
617 }
618
619 /* Delete a POSIX realtime timer */
620 int
621 sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
622 register_t *retval)
623 {
624 /* {
625 syscallarg(timer_t) timerid;
626 } */
627 struct proc *p = l->l_proc;
628 timer_t timerid;
629 struct ptimers *pts;
630 struct ptimer *pt, *ptn;
631
632 timerid = SCARG(uap, timerid);
633 pts = p->p_timers;
634
635 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
636 return (EINVAL);
637
638 mutex_spin_enter(&timer_lock);
639 if ((pt = pts->pts_timers[timerid]) == NULL) {
640 mutex_spin_exit(&timer_lock);
641 return (EINVAL);
642 }
643 if (CLOCK_VIRTUAL_P(pt->pt_type)) {
644 if (pt->pt_active) {
645 ptn = LIST_NEXT(pt, pt_list);
646 LIST_REMOVE(pt, pt_list);
647 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
648 timespecadd(&pt->pt_time.it_value,
649 &ptn->pt_time.it_value,
650 &ptn->pt_time.it_value);
651 pt->pt_active = 0;
652 }
653 }
654 itimerfree(pts, timerid);
655
656 return (0);
657 }
658
659 /*
660 * Set up the given timer. The value in pt->pt_time.it_value is taken
661 * to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC timers and
662 * a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
663 */
664 void
665 timer_settime(struct ptimer *pt)
666 {
667 struct ptimer *ptn, *pptn;
668 struct ptlist *ptl;
669
670 KASSERT(mutex_owned(&timer_lock));
671
672 if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
673 callout_halt(&pt->pt_ch, &timer_lock);
674 if (timespecisset(&pt->pt_time.it_value)) {
675 /*
676 * Don't need to check tshzto() return value, here.
677 * callout_reset() does it for us.
678 */
679 callout_reset(&pt->pt_ch, tshzto(&pt->pt_time.it_value),
680 realtimerexpire, pt);
681 }
682 } else {
683 if (pt->pt_active) {
684 ptn = LIST_NEXT(pt, pt_list);
685 LIST_REMOVE(pt, pt_list);
686 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
687 timespecadd(&pt->pt_time.it_value,
688 &ptn->pt_time.it_value,
689 &ptn->pt_time.it_value);
690 }
691 if (timespecisset(&pt->pt_time.it_value)) {
692 if (pt->pt_type == CLOCK_VIRTUAL)
693 ptl = &pt->pt_proc->p_timers->pts_virtual;
694 else
695 ptl = &pt->pt_proc->p_timers->pts_prof;
696
697 for (ptn = LIST_FIRST(ptl), pptn = NULL;
698 ptn && timespeccmp(&pt->pt_time.it_value,
699 &ptn->pt_time.it_value, >);
700 pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
701 timespecsub(&pt->pt_time.it_value,
702 &ptn->pt_time.it_value,
703 &pt->pt_time.it_value);
704
705 if (pptn)
706 LIST_INSERT_AFTER(pptn, pt, pt_list);
707 else
708 LIST_INSERT_HEAD(ptl, pt, pt_list);
709
710 for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
711 timespecsub(&ptn->pt_time.it_value,
712 &pt->pt_time.it_value,
713 &ptn->pt_time.it_value);
714
715 pt->pt_active = 1;
716 } else
717 pt->pt_active = 0;
718 }
719 }
720
721 void
722 timer_gettime(struct ptimer *pt, struct itimerspec *aits)
723 {
724 struct timespec now;
725 struct ptimer *ptn;
726
727 KASSERT(mutex_owned(&timer_lock));
728
729 *aits = pt->pt_time;
730 if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
731 /*
732 * Convert from absolute to relative time in .it_value
733 * part of real time timer. If time for real time
734 * timer has passed return 0, else return difference
735 * between current time and time for the timer to go
736 * off.
737 */
738 if (timespecisset(&aits->it_value)) {
739 if (pt->pt_type == CLOCK_REALTIME) {
740 getnanotime(&now);
741 } else { /* CLOCK_MONOTONIC */
742 getnanouptime(&now);
743 }
744 if (timespeccmp(&aits->it_value, &now, <))
745 timespecclear(&aits->it_value);
746 else
747 timespecsub(&aits->it_value, &now,
748 &aits->it_value);
749 }
750 } else if (pt->pt_active) {
751 if (pt->pt_type == CLOCK_VIRTUAL)
752 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
753 else
754 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
755 for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
756 timespecadd(&aits->it_value,
757 &ptn->pt_time.it_value, &aits->it_value);
758 KASSERT(ptn != NULL); /* pt should be findable on the list */
759 } else
760 timespecclear(&aits->it_value);
761 }
762
763
764
765 /* Set and arm a POSIX realtime timer */
766 int
767 sys___timer_settime50(struct lwp *l,
768 const struct sys___timer_settime50_args *uap,
769 register_t *retval)
770 {
771 /* {
772 syscallarg(timer_t) timerid;
773 syscallarg(int) flags;
774 syscallarg(const struct itimerspec *) value;
775 syscallarg(struct itimerspec *) ovalue;
776 } */
777 int error;
778 struct itimerspec value, ovalue, *ovp = NULL;
779
780 if ((error = copyin(SCARG(uap, value), &value,
781 sizeof(struct itimerspec))) != 0)
782 return (error);
783
784 if (SCARG(uap, ovalue))
785 ovp = &ovalue;
786
787 if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
788 SCARG(uap, flags), l->l_proc)) != 0)
789 return error;
790
791 if (ovp)
792 return copyout(&ovalue, SCARG(uap, ovalue),
793 sizeof(struct itimerspec));
794 return 0;
795 }
796
797 int
798 dotimer_settime(int timerid, struct itimerspec *value,
799 struct itimerspec *ovalue, int flags, struct proc *p)
800 {
801 struct timespec now;
802 struct itimerspec val, oval;
803 struct ptimers *pts;
804 struct ptimer *pt;
805 int error;
806
807 pts = p->p_timers;
808
809 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
810 return EINVAL;
811 val = *value;
812 if ((error = itimespecfix(&val.it_value)) != 0 ||
813 (error = itimespecfix(&val.it_interval)) != 0)
814 return error;
815
816 mutex_spin_enter(&timer_lock);
817 if ((pt = pts->pts_timers[timerid]) == NULL) {
818 mutex_spin_exit(&timer_lock);
819 return EINVAL;
820 }
821
822 oval = pt->pt_time;
823 pt->pt_time = val;
824
825 /*
826 * If we've been passed a relative time for a realtime timer,
827 * convert it to absolute; if an absolute time for a virtual
828 * timer, convert it to relative and make sure we don't set it
829 * to zero, which would cancel the timer, or let it go
830 * negative, which would confuse the comparison tests.
831 */
832 if (timespecisset(&pt->pt_time.it_value)) {
833 if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
834 if ((flags & TIMER_ABSTIME) == 0) {
835 if (pt->pt_type == CLOCK_REALTIME) {
836 getnanotime(&now);
837 } else { /* CLOCK_MONOTONIC */
838 getnanouptime(&now);
839 }
840 timespecadd(&pt->pt_time.it_value, &now,
841 &pt->pt_time.it_value);
842 }
843 } else {
844 if ((flags & TIMER_ABSTIME) != 0) {
845 getnanotime(&now);
846 timespecsub(&pt->pt_time.it_value, &now,
847 &pt->pt_time.it_value);
848 if (!timespecisset(&pt->pt_time.it_value) ||
849 pt->pt_time.it_value.tv_sec < 0) {
850 pt->pt_time.it_value.tv_sec = 0;
851 pt->pt_time.it_value.tv_nsec = 1;
852 }
853 }
854 }
855 }
856
857 timer_settime(pt);
858 mutex_spin_exit(&timer_lock);
859
860 if (ovalue)
861 *ovalue = oval;
862
863 return (0);
864 }
865
866 /* Return the time remaining until a POSIX timer fires. */
867 int
868 sys___timer_gettime50(struct lwp *l,
869 const struct sys___timer_gettime50_args *uap, register_t *retval)
870 {
871 /* {
872 syscallarg(timer_t) timerid;
873 syscallarg(struct itimerspec *) value;
874 } */
875 struct itimerspec its;
876 int error;
877
878 if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
879 &its)) != 0)
880 return error;
881
882 return copyout(&its, SCARG(uap, value), sizeof(its));
883 }
884
885 int
886 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
887 {
888 struct ptimer *pt;
889 struct ptimers *pts;
890
891 pts = p->p_timers;
892 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
893 return (EINVAL);
894 mutex_spin_enter(&timer_lock);
895 if ((pt = pts->pts_timers[timerid]) == NULL) {
896 mutex_spin_exit(&timer_lock);
897 return (EINVAL);
898 }
899 timer_gettime(pt, its);
900 mutex_spin_exit(&timer_lock);
901
902 return 0;
903 }
904
905 /*
906 * Return the count of the number of times a periodic timer expired
907 * while a notification was already pending. The counter is reset when
908 * a timer expires and a notification can be posted.
909 */
910 int
911 sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
912 register_t *retval)
913 {
914 /* {
915 syscallarg(timer_t) timerid;
916 } */
917 struct proc *p = l->l_proc;
918 struct ptimers *pts;
919 int timerid;
920 struct ptimer *pt;
921
922 timerid = SCARG(uap, timerid);
923
924 pts = p->p_timers;
925 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
926 return (EINVAL);
927 mutex_spin_enter(&timer_lock);
928 if ((pt = pts->pts_timers[timerid]) == NULL) {
929 mutex_spin_exit(&timer_lock);
930 return (EINVAL);
931 }
932 *retval = pt->pt_poverruns;
933 mutex_spin_exit(&timer_lock);
934
935 return (0);
936 }
937
938 #ifdef KERN_SA
939 /* Glue function that triggers an upcall; called from userret(). */
940 void
941 timerupcall(struct lwp *l)
942 {
943 struct ptimers *pt = l->l_proc->p_timers;
944 struct proc *p = l->l_proc;
945 unsigned int i, fired, done;
946
947 KDASSERT(l->l_proc->p_sa);
948 /* Bail out if we do not own the virtual processor */
949 if (l->l_savp->savp_lwp != l)
950 return ;
951
952 mutex_enter(p->p_lock);
953
954 fired = pt->pts_fired;
955 done = 0;
956 while ((i = ffs(fired)) != 0) {
957 siginfo_t *si;
958 int mask = 1 << --i;
959 int f;
960
961 f = ~l->l_pflag & LP_SA_NOBLOCK;
962 l->l_pflag |= LP_SA_NOBLOCK;
963 si = siginfo_alloc(PR_WAITOK);
964 si->_info = pt->pts_timers[i]->pt_info.ksi_info;
965 if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
966 sizeof(*si), si, siginfo_free) != 0) {
967 siginfo_free(si);
968 /* XXX What do we do here?? */
969 } else
970 done |= mask;
971 fired &= ~mask;
972 l->l_pflag ^= f;
973 }
974 pt->pts_fired &= ~done;
975 if (pt->pts_fired == 0)
976 l->l_proc->p_timerpend = 0;
977
978 mutex_exit(p->p_lock);
979 }
980 #endif /* KERN_SA */
981
982 /*
983 * Real interval timer expired:
984 * send process whose timer expired an alarm signal.
985 * If time is not set up to reload, then just return.
986 * Else compute next time timer should go off which is > current time.
987 * This is where delay in processing this timeout causes multiple
988 * SIGALRM calls to be compressed into one.
989 */
990 void
991 realtimerexpire(void *arg)
992 {
993 uint64_t last_val, next_val, interval, now_ns;
994 struct timespec now, next;
995 struct ptimer *pt;
996 int backwards;
997
998 pt = arg;
999
1000 mutex_spin_enter(&timer_lock);
1001 itimerfire(pt);
1002
1003 if (!timespecisset(&pt->pt_time.it_interval)) {
1004 timespecclear(&pt->pt_time.it_value);
1005 mutex_spin_exit(&timer_lock);
1006 return;
1007 }
1008
1009 getnanotime(&now);
1010 backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
1011 timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
1012 /* Handle the easy case of non-overflown timers first. */
1013 if (!backwards && timespeccmp(&next, &now, >)) {
1014 pt->pt_time.it_value = next;
1015 } else {
1016 now_ns = timespec2ns(&now);
1017 last_val = timespec2ns(&pt->pt_time.it_value);
1018 interval = timespec2ns(&pt->pt_time.it_interval);
1019
1020 next_val = now_ns +
1021 (now_ns - last_val + interval - 1) % interval;
1022
1023 if (backwards)
1024 next_val += interval;
1025 else
1026 pt->pt_overruns += (now_ns - last_val) / interval;
1027
1028 pt->pt_time.it_value.tv_sec = next_val / 1000000000;
1029 pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
1030 }
1031
1032 /*
1033 * Don't need to check tshzto() return value, here.
1034 * callout_reset() does it for us.
1035 */
1036 callout_reset(&pt->pt_ch, tshzto(&pt->pt_time.it_value),
1037 realtimerexpire, pt);
1038 mutex_spin_exit(&timer_lock);
1039 }
1040
1041 /* BSD routine to get the value of an interval timer. */
1042 /* ARGSUSED */
1043 int
1044 sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
1045 register_t *retval)
1046 {
1047 /* {
1048 syscallarg(int) which;
1049 syscallarg(struct itimerval *) itv;
1050 } */
1051 struct proc *p = l->l_proc;
1052 struct itimerval aitv;
1053 int error;
1054
1055 error = dogetitimer(p, SCARG(uap, which), &aitv);
1056 if (error)
1057 return error;
1058 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1059 }
1060
1061 int
1062 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1063 {
1064 struct ptimers *pts;
1065 struct ptimer *pt;
1066 struct itimerspec its;
1067
1068 if ((u_int)which > ITIMER_PROF)
1069 return (EINVAL);
1070
1071 mutex_spin_enter(&timer_lock);
1072 pts = p->p_timers;
1073 if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
1074 timerclear(&itvp->it_value);
1075 timerclear(&itvp->it_interval);
1076 } else {
1077 timer_gettime(pt, &its);
1078 TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
1079 TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
1080 }
1081 mutex_spin_exit(&timer_lock);
1082
1083 return 0;
1084 }
1085
1086 /* BSD routine to set/arm an interval timer. */
1087 /* ARGSUSED */
1088 int
1089 sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
1090 register_t *retval)
1091 {
1092 /* {
1093 syscallarg(int) which;
1094 syscallarg(const struct itimerval *) itv;
1095 syscallarg(struct itimerval *) oitv;
1096 } */
1097 struct proc *p = l->l_proc;
1098 int which = SCARG(uap, which);
1099 struct sys___getitimer50_args getargs;
1100 const struct itimerval *itvp;
1101 struct itimerval aitv;
1102 int error;
1103
1104 if ((u_int)which > ITIMER_PROF)
1105 return (EINVAL);
1106 itvp = SCARG(uap, itv);
1107 if (itvp &&
1108 (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
1109 return (error);
1110 if (SCARG(uap, oitv) != NULL) {
1111 SCARG(&getargs, which) = which;
1112 SCARG(&getargs, itv) = SCARG(uap, oitv);
1113 if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
1114 return (error);
1115 }
1116 if (itvp == 0)
1117 return (0);
1118
1119 return dosetitimer(p, which, &aitv);
1120 }
1121
1122 int
1123 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1124 {
1125 struct timespec now;
1126 struct ptimers *pts;
1127 struct ptimer *pt, *spare;
1128
1129 KASSERT(which == CLOCK_REALTIME || which == CLOCK_VIRTUAL ||
1130 which == CLOCK_PROF);
1131 if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1132 return (EINVAL);
1133
1134 /*
1135 * Don't bother allocating data structures if the process just
1136 * wants to clear the timer.
1137 */
1138 spare = NULL;
1139 pts = p->p_timers;
1140 retry:
1141 if (!timerisset(&itvp->it_value) && (pts == NULL ||
1142 pts->pts_timers[which] == NULL))
1143 return (0);
1144 if (pts == NULL)
1145 pts = timers_alloc(p);
1146 mutex_spin_enter(&timer_lock);
1147 pt = pts->pts_timers[which];
1148 if (pt == NULL) {
1149 if (spare == NULL) {
1150 mutex_spin_exit(&timer_lock);
1151 spare = pool_get(&ptimer_pool, PR_WAITOK);
1152 goto retry;
1153 }
1154 pt = spare;
1155 spare = NULL;
1156 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1157 pt->pt_ev.sigev_value.sival_int = which;
1158 pt->pt_overruns = 0;
1159 pt->pt_proc = p;
1160 pt->pt_type = which;
1161 pt->pt_entry = which;
1162 pt->pt_queued = false;
1163 if (pt->pt_type == CLOCK_REALTIME)
1164 callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
1165 else
1166 pt->pt_active = 0;
1167
1168 switch (which) {
1169 case ITIMER_REAL:
1170 pt->pt_ev.sigev_signo = SIGALRM;
1171 break;
1172 case ITIMER_VIRTUAL:
1173 pt->pt_ev.sigev_signo = SIGVTALRM;
1174 break;
1175 case ITIMER_PROF:
1176 pt->pt_ev.sigev_signo = SIGPROF;
1177 break;
1178 }
1179 pts->pts_timers[which] = pt;
1180 }
1181
1182 TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
1183 TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
1184
1185 if ((which == ITIMER_REAL) && timespecisset(&pt->pt_time.it_value)) {
1186 /* Convert to absolute time */
1187 /* XXX need to wrap in splclock for timecounters case? */
1188 getnanotime(&now);
1189 timespecadd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
1190 }
1191 timer_settime(pt);
1192 mutex_spin_exit(&timer_lock);
1193 if (spare != NULL)
1194 pool_put(&ptimer_pool, spare);
1195
1196 return (0);
1197 }
1198
1199 /* Utility routines to manage the array of pointers to timers. */
1200 struct ptimers *
1201 timers_alloc(struct proc *p)
1202 {
1203 struct ptimers *pts;
1204 int i;
1205
1206 pts = pool_get(&ptimers_pool, PR_WAITOK);
1207 LIST_INIT(&pts->pts_virtual);
1208 LIST_INIT(&pts->pts_prof);
1209 for (i = 0; i < TIMER_MAX; i++)
1210 pts->pts_timers[i] = NULL;
1211 pts->pts_fired = 0;
1212 mutex_spin_enter(&timer_lock);
1213 if (p->p_timers == NULL) {
1214 p->p_timers = pts;
1215 mutex_spin_exit(&timer_lock);
1216 return pts;
1217 }
1218 mutex_spin_exit(&timer_lock);
1219 pool_put(&ptimers_pool, pts);
1220 return p->p_timers;
1221 }
1222
1223 /*
1224 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1225 * then clean up all timers and free all the data structures. If
1226 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1227 * by timer_create(), not the BSD setitimer() timers, and only free the
1228 * structure if none of those remain.
1229 */
1230 void
1231 timers_free(struct proc *p, int which)
1232 {
1233 struct ptimers *pts;
1234 struct ptimer *ptn;
1235 struct timespec ts;
1236 int i;
1237
1238 if (p->p_timers == NULL)
1239 return;
1240
1241 pts = p->p_timers;
1242 mutex_spin_enter(&timer_lock);
1243 if (which == TIMERS_ALL) {
1244 p->p_timers = NULL;
1245 i = 0;
1246 } else {
1247 timespecclear(&ts);
1248 for (ptn = LIST_FIRST(&pts->pts_virtual);
1249 ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1250 ptn = LIST_NEXT(ptn, pt_list)) {
1251 KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1252 timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1253 }
1254 LIST_FIRST(&pts->pts_virtual) = NULL;
1255 if (ptn) {
1256 KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1257 timespecadd(&ts, &ptn->pt_time.it_value,
1258 &ptn->pt_time.it_value);
1259 LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
1260 }
1261 timespecclear(&ts);
1262 for (ptn = LIST_FIRST(&pts->pts_prof);
1263 ptn && ptn != pts->pts_timers[ITIMER_PROF];
1264 ptn = LIST_NEXT(ptn, pt_list)) {
1265 KASSERT(ptn->pt_type == CLOCK_PROF);
1266 timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1267 }
1268 LIST_FIRST(&pts->pts_prof) = NULL;
1269 if (ptn) {
1270 KASSERT(ptn->pt_type == CLOCK_PROF);
1271 timespecadd(&ts, &ptn->pt_time.it_value,
1272 &ptn->pt_time.it_value);
1273 LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
1274 }
1275 i = 3;
1276 }
1277 for ( ; i < TIMER_MAX; i++) {
1278 if (pts->pts_timers[i] != NULL) {
1279 itimerfree(pts, i);
1280 mutex_spin_enter(&timer_lock);
1281 }
1282 }
1283 if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
1284 pts->pts_timers[2] == NULL) {
1285 p->p_timers = NULL;
1286 mutex_spin_exit(&timer_lock);
1287 pool_put(&ptimers_pool, pts);
1288 } else
1289 mutex_spin_exit(&timer_lock);
1290 }
1291
1292 static void
1293 itimerfree(struct ptimers *pts, int index)
1294 {
1295 struct ptimer *pt;
1296
1297 KASSERT(mutex_owned(&timer_lock));
1298
1299 pt = pts->pts_timers[index];
1300 pts->pts_timers[index] = NULL;
1301 if (!CLOCK_VIRTUAL_P(pt->pt_type))
1302 callout_halt(&pt->pt_ch, &timer_lock);
1303 if (pt->pt_queued)
1304 TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1305 mutex_spin_exit(&timer_lock);
1306 if (!CLOCK_VIRTUAL_P(pt->pt_type))
1307 callout_destroy(&pt->pt_ch);
1308 pool_put(&ptimer_pool, pt);
1309 }
1310
1311 /*
1312 * Decrement an interval timer by a specified number
1313 * of nanoseconds, which must be less than a second,
1314 * i.e. < 1000000000. If the timer expires, then reload
1315 * it. In this case, carry over (nsec - old value) to
1316 * reduce the value reloaded into the timer so that
1317 * the timer does not drift. This routine assumes
1318 * that it is called in a context where the timers
1319 * on which it is operating cannot change in value.
1320 */
1321 static int
1322 itimerdecr(struct ptimer *pt, int nsec)
1323 {
1324 struct itimerspec *itp;
1325
1326 KASSERT(mutex_owned(&timer_lock));
1327 KASSERT(CLOCK_VIRTUAL_P(pt->pt_type));
1328
1329 itp = &pt->pt_time;
1330 if (itp->it_value.tv_nsec < nsec) {
1331 if (itp->it_value.tv_sec == 0) {
1332 /* expired, and already in next interval */
1333 nsec -= itp->it_value.tv_nsec;
1334 goto expire;
1335 }
1336 itp->it_value.tv_nsec += 1000000000;
1337 itp->it_value.tv_sec--;
1338 }
1339 itp->it_value.tv_nsec -= nsec;
1340 nsec = 0;
1341 if (timespecisset(&itp->it_value))
1342 return (1);
1343 /* expired, exactly at end of interval */
1344 expire:
1345 if (timespecisset(&itp->it_interval)) {
1346 itp->it_value = itp->it_interval;
1347 itp->it_value.tv_nsec -= nsec;
1348 if (itp->it_value.tv_nsec < 0) {
1349 itp->it_value.tv_nsec += 1000000000;
1350 itp->it_value.tv_sec--;
1351 }
1352 timer_settime(pt);
1353 } else
1354 itp->it_value.tv_nsec = 0; /* sec is already 0 */
1355 return (0);
1356 }
1357
1358 static void
1359 itimerfire(struct ptimer *pt)
1360 {
1361
1362 KASSERT(mutex_owned(&timer_lock));
1363
1364 /*
1365 * XXX Can overrun, but we don't do signal queueing yet, anyway.
1366 * XXX Relying on the clock interrupt is stupid.
1367 */
1368 if ((pt->pt_ev.sigev_notify == SIGEV_SA && pt->pt_proc->p_sa == NULL) ||
1369 (pt->pt_ev.sigev_notify != SIGEV_SIGNAL &&
1370 pt->pt_ev.sigev_notify != SIGEV_SA) || pt->pt_queued)
1371 return;
1372 TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
1373 pt->pt_queued = true;
1374 softint_schedule(timer_sih);
1375 }
1376
1377 void
1378 timer_tick(lwp_t *l, bool user)
1379 {
1380 struct ptimers *pts;
1381 struct ptimer *pt;
1382 proc_t *p;
1383
1384 p = l->l_proc;
1385 if (p->p_timers == NULL)
1386 return;
1387
1388 mutex_spin_enter(&timer_lock);
1389 if ((pts = l->l_proc->p_timers) != NULL) {
1390 /*
1391 * Run current process's virtual and profile time, as needed.
1392 */
1393 if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
1394 if (itimerdecr(pt, tick * 1000) == 0)
1395 itimerfire(pt);
1396 if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
1397 if (itimerdecr(pt, tick * 1000) == 0)
1398 itimerfire(pt);
1399 }
1400 mutex_spin_exit(&timer_lock);
1401 }
1402
1403 #ifdef KERN_SA
1404 /*
1405 * timer_sa_intr:
1406 *
1407 * SIGEV_SA handling for timer_intr(). We are called (and return)
1408 * with the timer lock held. We know that the process had SA enabled
1409 * when this timer was enqueued. As timer_intr() is a soft interrupt
1410 * handler, SA should still be enabled by the time we get here.
1411 */
1412 static void
1413 timer_sa_intr(struct ptimer *pt, proc_t *p)
1414 {
1415 unsigned int i;
1416 struct sadata *sa;
1417 struct sadata_vp *vp;
1418
1419 /* Cause the process to generate an upcall when it returns. */
1420 if (!p->p_timerpend) {
1421 /*
1422 * XXX stop signals can be processed inside tsleep,
1423 * which can be inside sa_yield's inner loop, which
1424 * makes testing for sa_idle alone insuffucent to
1425 * determine if we really should call setrunnable.
1426 */
1427 pt->pt_poverruns = pt->pt_overruns;
1428 pt->pt_overruns = 0;
1429 i = 1 << pt->pt_entry;
1430 p->p_timers->pts_fired = i;
1431 p->p_timerpend = 1;
1432
1433 sa = p->p_sa;
1434 mutex_enter(&sa->sa_mutex);
1435 SLIST_FOREACH(vp, &sa->sa_vps, savp_next) {
1436 struct lwp *vp_lwp = vp->savp_lwp;
1437 lwp_lock(vp_lwp);
1438 lwp_need_userret(vp_lwp);
1439 if (vp_lwp->l_flag & LW_SA_IDLE) {
1440 vp_lwp->l_flag &= ~LW_SA_IDLE;
1441 lwp_unsleep(vp_lwp, true);
1442 break;
1443 }
1444 lwp_unlock(vp_lwp);
1445 }
1446 mutex_exit(&sa->sa_mutex);
1447 } else {
1448 i = 1 << pt->pt_entry;
1449 if ((p->p_timers->pts_fired & i) == 0) {
1450 pt->pt_poverruns = pt->pt_overruns;
1451 pt->pt_overruns = 0;
1452 p->p_timers->pts_fired |= i;
1453 } else
1454 pt->pt_overruns++;
1455 }
1456 }
1457 #endif /* KERN_SA */
1458
1459 static void
1460 timer_intr(void *cookie)
1461 {
1462 ksiginfo_t ksi;
1463 struct ptimer *pt;
1464 proc_t *p;
1465
1466 mutex_enter(proc_lock);
1467 mutex_spin_enter(&timer_lock);
1468 while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
1469 TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1470 KASSERT(pt->pt_queued);
1471 pt->pt_queued = false;
1472
1473 if (pt->pt_proc->p_timers == NULL) {
1474 /* Process is dying. */
1475 continue;
1476 }
1477 p = pt->pt_proc;
1478 #ifdef KERN_SA
1479 if (pt->pt_ev.sigev_notify == SIGEV_SA) {
1480 timer_sa_intr(pt, p);
1481 continue;
1482 }
1483 #endif /* KERN_SA */
1484 if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL)
1485 continue;
1486 if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
1487 pt->pt_overruns++;
1488 continue;
1489 }
1490
1491 KSI_INIT(&ksi);
1492 ksi.ksi_signo = pt->pt_ev.sigev_signo;
1493 ksi.ksi_code = SI_TIMER;
1494 ksi.ksi_value = pt->pt_ev.sigev_value;
1495 pt->pt_poverruns = pt->pt_overruns;
1496 pt->pt_overruns = 0;
1497 mutex_spin_exit(&timer_lock);
1498 kpsignal(p, &ksi, NULL);
1499 mutex_spin_enter(&timer_lock);
1500 }
1501 mutex_spin_exit(&timer_lock);
1502 mutex_exit(proc_lock);
1503 }
1504
1505 /*
1506 * Check if the time will wrap if set to ts.
1507 *
1508 * ts - timespec describing the new time
1509 * delta - the delta between the current time and ts
1510 */
1511 bool
1512 time_wraps(struct timespec *ts, struct timespec *delta)
1513 {
1514
1515 /*
1516 * Don't allow the time to be set forward so far it
1517 * will wrap and become negative, thus allowing an
1518 * attacker to bypass the next check below. The
1519 * cutoff is 1 year before rollover occurs, so even
1520 * if the attacker uses adjtime(2) to move the time
1521 * past the cutoff, it will take a very long time
1522 * to get to the wrap point.
1523 */
1524 if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
1525 (delta->tv_sec < 0 || delta->tv_nsec < 0))
1526 return true;
1527
1528 return false;
1529 }
1530