kern_time.c revision 1.170 1 /* $NetBSD: kern_time.c,v 1.170 2011/10/27 16:12:52 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1986, 1989, 1993
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
61 */
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.170 2011/10/27 16:12:52 christos Exp $");
65
66 #include <sys/param.h>
67 #include <sys/resourcevar.h>
68 #include <sys/kernel.h>
69 #include <sys/systm.h>
70 #include <sys/proc.h>
71 #include <sys/vnode.h>
72 #include <sys/signalvar.h>
73 #include <sys/syslog.h>
74 #include <sys/timetc.h>
75 #include <sys/timex.h>
76 #include <sys/kauth.h>
77 #include <sys/mount.h>
78 #include <sys/sa.h>
79 #include <sys/savar.h>
80 #include <sys/syscallargs.h>
81 #include <sys/cpu.h>
82
83 #include "opt_sa.h"
84
85 static void timer_intr(void *);
86 static void itimerfire(struct ptimer *);
87 static void itimerfree(struct ptimers *, int);
88
89 kmutex_t timer_lock;
90
91 static void *timer_sih;
92 static TAILQ_HEAD(, ptimer) timer_queue;
93
94 struct pool ptimer_pool, ptimers_pool;
95
96 #define CLOCK_VIRTUAL_P(clockid) \
97 ((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)
98
99 CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
100 CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
101 CTASSERT(ITIMER_PROF == CLOCK_PROF);
102 CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC);
103
104 /*
105 * Initialize timekeeping.
106 */
107 void
108 time_init(void)
109 {
110
111 pool_init(&ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
112 &pool_allocator_nointr, IPL_NONE);
113 pool_init(&ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
114 &pool_allocator_nointr, IPL_NONE);
115 }
116
117 void
118 time_init2(void)
119 {
120
121 TAILQ_INIT(&timer_queue);
122 mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
123 timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
124 timer_intr, NULL);
125 }
126
127 /* Time of day and interval timer support.
128 *
129 * These routines provide the kernel entry points to get and set
130 * the time-of-day and per-process interval timers. Subroutines
131 * here provide support for adding and subtracting timeval structures
132 * and decrementing interval timers, optionally reloading the interval
133 * timers when they expire.
134 */
135
136 /* This function is used by clock_settime and settimeofday */
137 static int
138 settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
139 {
140 struct timespec delta, now;
141 int s;
142
143 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
144 s = splclock();
145 nanotime(&now);
146 timespecsub(ts, &now, &delta);
147
148 if (check_kauth && kauth_authorize_system(kauth_cred_get(),
149 KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
150 &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
151 splx(s);
152 return (EPERM);
153 }
154
155 #ifdef notyet
156 if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
157 splx(s);
158 return (EPERM);
159 }
160 #endif
161
162 tc_setclock(ts);
163
164 timespecadd(&boottime, &delta, &boottime);
165
166 resettodr();
167 splx(s);
168
169 return (0);
170 }
171
172 int
173 settime(struct proc *p, struct timespec *ts)
174 {
175 return (settime1(p, ts, true));
176 }
177
178 /* ARGSUSED */
179 int
180 sys___clock_gettime50(struct lwp *l,
181 const struct sys___clock_gettime50_args *uap, register_t *retval)
182 {
183 /* {
184 syscallarg(clockid_t) clock_id;
185 syscallarg(struct timespec *) tp;
186 } */
187 int error;
188 struct timespec ats;
189
190 error = clock_gettime1(SCARG(uap, clock_id), &ats);
191 if (error != 0)
192 return error;
193
194 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
195 }
196
197 int
198 clock_gettime1(clockid_t clock_id, struct timespec *ts)
199 {
200
201 switch (clock_id) {
202 case CLOCK_REALTIME:
203 nanotime(ts);
204 break;
205 case CLOCK_MONOTONIC:
206 nanouptime(ts);
207 break;
208 default:
209 return EINVAL;
210 }
211
212 return 0;
213 }
214
215 /* ARGSUSED */
216 int
217 sys___clock_settime50(struct lwp *l,
218 const struct sys___clock_settime50_args *uap, register_t *retval)
219 {
220 /* {
221 syscallarg(clockid_t) clock_id;
222 syscallarg(const struct timespec *) tp;
223 } */
224 int error;
225 struct timespec ats;
226
227 if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
228 return error;
229
230 return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
231 }
232
233
234 int
235 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
236 bool check_kauth)
237 {
238 int error;
239
240 switch (clock_id) {
241 case CLOCK_REALTIME:
242 if ((error = settime1(p, tp, check_kauth)) != 0)
243 return (error);
244 break;
245 case CLOCK_MONOTONIC:
246 return (EINVAL); /* read-only clock */
247 default:
248 return (EINVAL);
249 }
250
251 return 0;
252 }
253
254 int
255 sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
256 register_t *retval)
257 {
258 /* {
259 syscallarg(clockid_t) clock_id;
260 syscallarg(struct timespec *) tp;
261 } */
262 struct timespec ts;
263 int error = 0;
264
265 if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
266 return error;
267
268 if (SCARG(uap, tp))
269 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
270
271 return error;
272 }
273
274 int
275 clock_getres1(clockid_t clock_id, struct timespec *ts)
276 {
277
278 switch (clock_id) {
279 case CLOCK_REALTIME:
280 case CLOCK_MONOTONIC:
281 ts->tv_sec = 0;
282 if (tc_getfrequency() > 1000000000)
283 ts->tv_nsec = 1;
284 else
285 ts->tv_nsec = 1000000000 / tc_getfrequency();
286 break;
287 default:
288 return EINVAL;
289 }
290
291 return 0;
292 }
293
294 /* ARGSUSED */
295 int
296 sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
297 register_t *retval)
298 {
299 /* {
300 syscallarg(struct timespec *) rqtp;
301 syscallarg(struct timespec *) rmtp;
302 } */
303 struct timespec rmt, rqt;
304 int error, error1;
305
306 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
307 if (error)
308 return (error);
309
310 error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
311 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
312 return error;
313
314 error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
315 return error1 ? error1 : error;
316 }
317
318 int
319 nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
320 {
321 struct timespec rmtstart;
322 int error, timo;
323
324 if ((error = itimespecfix(rqt)) != 0)
325 return error;
326
327 timo = tstohz(rqt);
328 /*
329 * Avoid inadvertantly sleeping forever
330 */
331 if (timo == 0)
332 timo = 1;
333 getnanouptime(&rmtstart);
334 again:
335 error = kpause("nanoslp", true, timo, NULL);
336 if (rmt != NULL || error == 0) {
337 struct timespec rmtend;
338 struct timespec t0;
339 struct timespec *t;
340
341 getnanouptime(&rmtend);
342 t = (rmt != NULL) ? rmt : &t0;
343 timespecsub(&rmtend, &rmtstart, t);
344 timespecsub(rqt, t, t);
345 if (t->tv_sec < 0)
346 timespecclear(t);
347 if (error == 0) {
348 timo = tstohz(t);
349 if (timo > 0)
350 goto again;
351 }
352 }
353
354 if (error == ERESTART)
355 error = EINTR;
356 if (error == EWOULDBLOCK)
357 error = 0;
358
359 return error;
360 }
361
362 /* ARGSUSED */
363 int
364 sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
365 register_t *retval)
366 {
367 /* {
368 syscallarg(struct timeval *) tp;
369 syscallarg(void *) tzp; really "struct timezone *";
370 } */
371 struct timeval atv;
372 int error = 0;
373 struct timezone tzfake;
374
375 if (SCARG(uap, tp)) {
376 microtime(&atv);
377 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
378 if (error)
379 return (error);
380 }
381 if (SCARG(uap, tzp)) {
382 /*
383 * NetBSD has no kernel notion of time zone, so we just
384 * fake up a timezone struct and return it if demanded.
385 */
386 tzfake.tz_minuteswest = 0;
387 tzfake.tz_dsttime = 0;
388 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
389 }
390 return (error);
391 }
392
393 /* ARGSUSED */
394 int
395 sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
396 register_t *retval)
397 {
398 /* {
399 syscallarg(const struct timeval *) tv;
400 syscallarg(const void *) tzp; really "const struct timezone *";
401 } */
402
403 return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
404 }
405
406 int
407 settimeofday1(const struct timeval *utv, bool userspace,
408 const void *utzp, struct lwp *l, bool check_kauth)
409 {
410 struct timeval atv;
411 struct timespec ts;
412 int error;
413
414 /* Verify all parameters before changing time. */
415
416 /*
417 * NetBSD has no kernel notion of time zone, and only an
418 * obsolete program would try to set it, so we log a warning.
419 */
420 if (utzp)
421 log(LOG_WARNING, "pid %d attempted to set the "
422 "(obsolete) kernel time zone\n", l->l_proc->p_pid);
423
424 if (utv == NULL)
425 return 0;
426
427 if (userspace) {
428 if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
429 return error;
430 utv = &atv;
431 }
432
433 TIMEVAL_TO_TIMESPEC(utv, &ts);
434 return settime1(l->l_proc, &ts, check_kauth);
435 }
436
437 int time_adjusted; /* set if an adjustment is made */
438
439 /* ARGSUSED */
440 int
441 sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
442 register_t *retval)
443 {
444 /* {
445 syscallarg(const struct timeval *) delta;
446 syscallarg(struct timeval *) olddelta;
447 } */
448 int error = 0;
449 struct timeval atv, oldatv;
450
451 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
452 KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
453 return error;
454
455 if (SCARG(uap, delta)) {
456 error = copyin(SCARG(uap, delta), &atv,
457 sizeof(*SCARG(uap, delta)));
458 if (error)
459 return (error);
460 }
461 adjtime1(SCARG(uap, delta) ? &atv : NULL,
462 SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
463 if (SCARG(uap, olddelta))
464 error = copyout(&oldatv, SCARG(uap, olddelta),
465 sizeof(*SCARG(uap, olddelta)));
466 return error;
467 }
468
469 void
470 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
471 {
472 extern int64_t time_adjtime; /* in kern_ntptime.c */
473
474 if (olddelta) {
475 mutex_spin_enter(&timecounter_lock);
476 olddelta->tv_sec = time_adjtime / 1000000;
477 olddelta->tv_usec = time_adjtime % 1000000;
478 if (olddelta->tv_usec < 0) {
479 olddelta->tv_usec += 1000000;
480 olddelta->tv_sec--;
481 }
482 mutex_spin_exit(&timecounter_lock);
483 }
484
485 if (delta) {
486 mutex_spin_enter(&timecounter_lock);
487 time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
488
489 if (time_adjtime) {
490 /* We need to save the system time during shutdown */
491 time_adjusted |= 1;
492 }
493 mutex_spin_exit(&timecounter_lock);
494 }
495 }
496
497 /*
498 * Interval timer support. Both the BSD getitimer() family and the POSIX
499 * timer_*() family of routines are supported.
500 *
501 * All timers are kept in an array pointed to by p_timers, which is
502 * allocated on demand - many processes don't use timers at all. The
503 * first three elements in this array are reserved for the BSD timers:
504 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element
505 * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be
506 * allocated by the timer_create() syscall.
507 *
508 * Realtime timers are kept in the ptimer structure as an absolute
509 * time; virtual time timers are kept as a linked list of deltas.
510 * Virtual time timers are processed in the hardclock() routine of
511 * kern_clock.c. The real time timer is processed by a callout
512 * routine, called from the softclock() routine. Since a callout may
513 * be delayed in real time due to interrupt processing in the system,
514 * it is possible for the real time timeout routine (realtimeexpire,
515 * given below), to be delayed in real time past when it is supposed
516 * to occur. It does not suffice, therefore, to reload the real timer
517 * .it_value from the real time timers .it_interval. Rather, we
518 * compute the next time in absolute time the timer should go off. */
519
520 /* Allocate a POSIX realtime timer. */
521 int
522 sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
523 register_t *retval)
524 {
525 /* {
526 syscallarg(clockid_t) clock_id;
527 syscallarg(struct sigevent *) evp;
528 syscallarg(timer_t *) timerid;
529 } */
530
531 return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
532 SCARG(uap, evp), copyin, l);
533 }
534
535 int
536 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
537 copyin_t fetch_event, struct lwp *l)
538 {
539 int error;
540 timer_t timerid;
541 struct ptimers *pts;
542 struct ptimer *pt;
543 struct proc *p;
544
545 p = l->l_proc;
546
547 if ((u_int)id > CLOCK_MONOTONIC)
548 return (EINVAL);
549
550 if ((pts = p->p_timers) == NULL)
551 pts = timers_alloc(p);
552
553 pt = pool_get(&ptimer_pool, PR_WAITOK);
554 if (evp != NULL) {
555 if (((error =
556 (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
557 ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
558 (pt->pt_ev.sigev_notify > SIGEV_SA)) ||
559 (pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
560 (pt->pt_ev.sigev_signo <= 0 ||
561 pt->pt_ev.sigev_signo >= NSIG))) {
562 pool_put(&ptimer_pool, pt);
563 return (error ? error : EINVAL);
564 }
565 }
566
567 /* Find a free timer slot, skipping those reserved for setitimer(). */
568 mutex_spin_enter(&timer_lock);
569 for (timerid = 3; timerid < TIMER_MAX; timerid++)
570 if (pts->pts_timers[timerid] == NULL)
571 break;
572 if (timerid == TIMER_MAX) {
573 mutex_spin_exit(&timer_lock);
574 pool_put(&ptimer_pool, pt);
575 return EAGAIN;
576 }
577 if (evp == NULL) {
578 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
579 switch (id) {
580 case CLOCK_REALTIME:
581 case CLOCK_MONOTONIC:
582 pt->pt_ev.sigev_signo = SIGALRM;
583 break;
584 case CLOCK_VIRTUAL:
585 pt->pt_ev.sigev_signo = SIGVTALRM;
586 break;
587 case CLOCK_PROF:
588 pt->pt_ev.sigev_signo = SIGPROF;
589 break;
590 }
591 pt->pt_ev.sigev_value.sival_int = timerid;
592 }
593 pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
594 pt->pt_info.ksi_errno = 0;
595 pt->pt_info.ksi_code = 0;
596 pt->pt_info.ksi_pid = p->p_pid;
597 pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
598 pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
599 pt->pt_type = id;
600 pt->pt_proc = p;
601 pt->pt_overruns = 0;
602 pt->pt_poverruns = 0;
603 pt->pt_entry = timerid;
604 pt->pt_queued = false;
605 timespecclear(&pt->pt_time.it_value);
606 if (!CLOCK_VIRTUAL_P(id))
607 callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
608 else
609 pt->pt_active = 0;
610
611 pts->pts_timers[timerid] = pt;
612 mutex_spin_exit(&timer_lock);
613
614 return copyout(&timerid, tid, sizeof(timerid));
615 }
616
617 /* Delete a POSIX realtime timer */
618 int
619 sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
620 register_t *retval)
621 {
622 /* {
623 syscallarg(timer_t) timerid;
624 } */
625 struct proc *p = l->l_proc;
626 timer_t timerid;
627 struct ptimers *pts;
628 struct ptimer *pt, *ptn;
629
630 timerid = SCARG(uap, timerid);
631 pts = p->p_timers;
632
633 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
634 return (EINVAL);
635
636 mutex_spin_enter(&timer_lock);
637 if ((pt = pts->pts_timers[timerid]) == NULL) {
638 mutex_spin_exit(&timer_lock);
639 return (EINVAL);
640 }
641 if (CLOCK_VIRTUAL_P(pt->pt_type)) {
642 if (pt->pt_active) {
643 ptn = LIST_NEXT(pt, pt_list);
644 LIST_REMOVE(pt, pt_list);
645 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
646 timespecadd(&pt->pt_time.it_value,
647 &ptn->pt_time.it_value,
648 &ptn->pt_time.it_value);
649 pt->pt_active = 0;
650 }
651 }
652 itimerfree(pts, timerid);
653
654 return (0);
655 }
656
657 /*
658 * Set up the given timer. The value in pt->pt_time.it_value is taken
659 * to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC timers and
660 * a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
661 */
662 void
663 timer_settime(struct ptimer *pt)
664 {
665 struct ptimer *ptn, *pptn;
666 struct ptlist *ptl;
667
668 KASSERT(mutex_owned(&timer_lock));
669
670 if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
671 callout_halt(&pt->pt_ch, &timer_lock);
672 if (timespecisset(&pt->pt_time.it_value)) {
673 /*
674 * Don't need to check tshzto() return value, here.
675 * callout_reset() does it for us.
676 */
677 callout_reset(&pt->pt_ch, tshzto(&pt->pt_time.it_value),
678 realtimerexpire, pt);
679 }
680 } else {
681 if (pt->pt_active) {
682 ptn = LIST_NEXT(pt, pt_list);
683 LIST_REMOVE(pt, pt_list);
684 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
685 timespecadd(&pt->pt_time.it_value,
686 &ptn->pt_time.it_value,
687 &ptn->pt_time.it_value);
688 }
689 if (timespecisset(&pt->pt_time.it_value)) {
690 if (pt->pt_type == CLOCK_VIRTUAL)
691 ptl = &pt->pt_proc->p_timers->pts_virtual;
692 else
693 ptl = &pt->pt_proc->p_timers->pts_prof;
694
695 for (ptn = LIST_FIRST(ptl), pptn = NULL;
696 ptn && timespeccmp(&pt->pt_time.it_value,
697 &ptn->pt_time.it_value, >);
698 pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
699 timespecsub(&pt->pt_time.it_value,
700 &ptn->pt_time.it_value,
701 &pt->pt_time.it_value);
702
703 if (pptn)
704 LIST_INSERT_AFTER(pptn, pt, pt_list);
705 else
706 LIST_INSERT_HEAD(ptl, pt, pt_list);
707
708 for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
709 timespecsub(&ptn->pt_time.it_value,
710 &pt->pt_time.it_value,
711 &ptn->pt_time.it_value);
712
713 pt->pt_active = 1;
714 } else
715 pt->pt_active = 0;
716 }
717 }
718
719 void
720 timer_gettime(struct ptimer *pt, struct itimerspec *aits)
721 {
722 struct timespec now;
723 struct ptimer *ptn;
724
725 KASSERT(mutex_owned(&timer_lock));
726
727 *aits = pt->pt_time;
728 if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
729 /*
730 * Convert from absolute to relative time in .it_value
731 * part of real time timer. If time for real time
732 * timer has passed return 0, else return difference
733 * between current time and time for the timer to go
734 * off.
735 */
736 if (timespecisset(&aits->it_value)) {
737 if (pt->pt_type == CLOCK_REALTIME) {
738 getnanotime(&now);
739 } else { /* CLOCK_MONOTONIC */
740 getnanouptime(&now);
741 }
742 if (timespeccmp(&aits->it_value, &now, <))
743 timespecclear(&aits->it_value);
744 else
745 timespecsub(&aits->it_value, &now,
746 &aits->it_value);
747 }
748 } else if (pt->pt_active) {
749 if (pt->pt_type == CLOCK_VIRTUAL)
750 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
751 else
752 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
753 for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
754 timespecadd(&aits->it_value,
755 &ptn->pt_time.it_value, &aits->it_value);
756 KASSERT(ptn != NULL); /* pt should be findable on the list */
757 } else
758 timespecclear(&aits->it_value);
759 }
760
761
762
763 /* Set and arm a POSIX realtime timer */
764 int
765 sys___timer_settime50(struct lwp *l,
766 const struct sys___timer_settime50_args *uap,
767 register_t *retval)
768 {
769 /* {
770 syscallarg(timer_t) timerid;
771 syscallarg(int) flags;
772 syscallarg(const struct itimerspec *) value;
773 syscallarg(struct itimerspec *) ovalue;
774 } */
775 int error;
776 struct itimerspec value, ovalue, *ovp = NULL;
777
778 if ((error = copyin(SCARG(uap, value), &value,
779 sizeof(struct itimerspec))) != 0)
780 return (error);
781
782 if (SCARG(uap, ovalue))
783 ovp = &ovalue;
784
785 if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
786 SCARG(uap, flags), l->l_proc)) != 0)
787 return error;
788
789 if (ovp)
790 return copyout(&ovalue, SCARG(uap, ovalue),
791 sizeof(struct itimerspec));
792 return 0;
793 }
794
795 int
796 dotimer_settime(int timerid, struct itimerspec *value,
797 struct itimerspec *ovalue, int flags, struct proc *p)
798 {
799 struct timespec now;
800 struct itimerspec val, oval;
801 struct ptimers *pts;
802 struct ptimer *pt;
803 int error;
804
805 pts = p->p_timers;
806
807 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
808 return EINVAL;
809 val = *value;
810 if ((error = itimespecfix(&val.it_value)) != 0 ||
811 (error = itimespecfix(&val.it_interval)) != 0)
812 return error;
813
814 mutex_spin_enter(&timer_lock);
815 if ((pt = pts->pts_timers[timerid]) == NULL) {
816 mutex_spin_exit(&timer_lock);
817 return EINVAL;
818 }
819
820 oval = pt->pt_time;
821 pt->pt_time = val;
822
823 /*
824 * If we've been passed a relative time for a realtime timer,
825 * convert it to absolute; if an absolute time for a virtual
826 * timer, convert it to relative and make sure we don't set it
827 * to zero, which would cancel the timer, or let it go
828 * negative, which would confuse the comparison tests.
829 */
830 if (timespecisset(&pt->pt_time.it_value)) {
831 if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
832 if ((flags & TIMER_ABSTIME) == 0) {
833 if (pt->pt_type == CLOCK_REALTIME) {
834 getnanotime(&now);
835 } else { /* CLOCK_MONOTONIC */
836 getnanouptime(&now);
837 }
838 timespecadd(&pt->pt_time.it_value, &now,
839 &pt->pt_time.it_value);
840 }
841 } else {
842 if ((flags & TIMER_ABSTIME) != 0) {
843 getnanotime(&now);
844 timespecsub(&pt->pt_time.it_value, &now,
845 &pt->pt_time.it_value);
846 if (!timespecisset(&pt->pt_time.it_value) ||
847 pt->pt_time.it_value.tv_sec < 0) {
848 pt->pt_time.it_value.tv_sec = 0;
849 pt->pt_time.it_value.tv_nsec = 1;
850 }
851 }
852 }
853 }
854
855 timer_settime(pt);
856 mutex_spin_exit(&timer_lock);
857
858 if (ovalue)
859 *ovalue = oval;
860
861 return (0);
862 }
863
864 /* Return the time remaining until a POSIX timer fires. */
865 int
866 sys___timer_gettime50(struct lwp *l,
867 const struct sys___timer_gettime50_args *uap, register_t *retval)
868 {
869 /* {
870 syscallarg(timer_t) timerid;
871 syscallarg(struct itimerspec *) value;
872 } */
873 struct itimerspec its;
874 int error;
875
876 if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
877 &its)) != 0)
878 return error;
879
880 return copyout(&its, SCARG(uap, value), sizeof(its));
881 }
882
883 int
884 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
885 {
886 struct ptimer *pt;
887 struct ptimers *pts;
888
889 pts = p->p_timers;
890 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
891 return (EINVAL);
892 mutex_spin_enter(&timer_lock);
893 if ((pt = pts->pts_timers[timerid]) == NULL) {
894 mutex_spin_exit(&timer_lock);
895 return (EINVAL);
896 }
897 timer_gettime(pt, its);
898 mutex_spin_exit(&timer_lock);
899
900 return 0;
901 }
902
903 /*
904 * Return the count of the number of times a periodic timer expired
905 * while a notification was already pending. The counter is reset when
906 * a timer expires and a notification can be posted.
907 */
908 int
909 sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
910 register_t *retval)
911 {
912 /* {
913 syscallarg(timer_t) timerid;
914 } */
915 struct proc *p = l->l_proc;
916 struct ptimers *pts;
917 int timerid;
918 struct ptimer *pt;
919
920 timerid = SCARG(uap, timerid);
921
922 pts = p->p_timers;
923 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
924 return (EINVAL);
925 mutex_spin_enter(&timer_lock);
926 if ((pt = pts->pts_timers[timerid]) == NULL) {
927 mutex_spin_exit(&timer_lock);
928 return (EINVAL);
929 }
930 *retval = pt->pt_poverruns;
931 mutex_spin_exit(&timer_lock);
932
933 return (0);
934 }
935
936 #ifdef KERN_SA
937 /* Glue function that triggers an upcall; called from userret(). */
938 void
939 timerupcall(struct lwp *l)
940 {
941 struct ptimers *pt = l->l_proc->p_timers;
942 struct proc *p = l->l_proc;
943 unsigned int i, fired, done;
944
945 KDASSERT(l->l_proc->p_sa);
946 /* Bail out if we do not own the virtual processor */
947 if (l->l_savp->savp_lwp != l)
948 return ;
949
950 mutex_enter(p->p_lock);
951
952 fired = pt->pts_fired;
953 done = 0;
954 while ((i = ffs(fired)) != 0) {
955 siginfo_t *si;
956 int mask = 1 << --i;
957 int f;
958
959 f = ~l->l_pflag & LP_SA_NOBLOCK;
960 l->l_pflag |= LP_SA_NOBLOCK;
961 si = siginfo_alloc(PR_WAITOK);
962 si->_info = pt->pts_timers[i]->pt_info.ksi_info;
963 if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
964 sizeof(*si), si, siginfo_free) != 0) {
965 siginfo_free(si);
966 /* XXX What do we do here?? */
967 } else
968 done |= mask;
969 fired &= ~mask;
970 l->l_pflag ^= f;
971 }
972 pt->pts_fired &= ~done;
973 if (pt->pts_fired == 0)
974 l->l_proc->p_timerpend = 0;
975
976 mutex_exit(p->p_lock);
977 }
978 #endif /* KERN_SA */
979
980 /*
981 * Real interval timer expired:
982 * send process whose timer expired an alarm signal.
983 * If time is not set up to reload, then just return.
984 * Else compute next time timer should go off which is > current time.
985 * This is where delay in processing this timeout causes multiple
986 * SIGALRM calls to be compressed into one.
987 */
988 void
989 realtimerexpire(void *arg)
990 {
991 uint64_t last_val, next_val, interval, now_ns;
992 struct timespec now, next;
993 struct ptimer *pt;
994 int backwards;
995
996 pt = arg;
997
998 mutex_spin_enter(&timer_lock);
999 itimerfire(pt);
1000
1001 if (!timespecisset(&pt->pt_time.it_interval)) {
1002 timespecclear(&pt->pt_time.it_value);
1003 mutex_spin_exit(&timer_lock);
1004 return;
1005 }
1006
1007 getnanotime(&now);
1008 backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
1009 timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
1010 /* Handle the easy case of non-overflown timers first. */
1011 if (!backwards && timespeccmp(&next, &now, >)) {
1012 pt->pt_time.it_value = next;
1013 } else {
1014 now_ns = timespec2ns(&now);
1015 last_val = timespec2ns(&pt->pt_time.it_value);
1016 interval = timespec2ns(&pt->pt_time.it_interval);
1017
1018 next_val = now_ns +
1019 (now_ns - last_val + interval - 1) % interval;
1020
1021 if (backwards)
1022 next_val += interval;
1023 else
1024 pt->pt_overruns += (now_ns - last_val) / interval;
1025
1026 pt->pt_time.it_value.tv_sec = next_val / 1000000000;
1027 pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
1028 }
1029
1030 /*
1031 * Don't need to check tshzto() return value, here.
1032 * callout_reset() does it for us.
1033 */
1034 callout_reset(&pt->pt_ch, tshzto(&pt->pt_time.it_value),
1035 realtimerexpire, pt);
1036 mutex_spin_exit(&timer_lock);
1037 }
1038
1039 /* BSD routine to get the value of an interval timer. */
1040 /* ARGSUSED */
1041 int
1042 sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
1043 register_t *retval)
1044 {
1045 /* {
1046 syscallarg(int) which;
1047 syscallarg(struct itimerval *) itv;
1048 } */
1049 struct proc *p = l->l_proc;
1050 struct itimerval aitv;
1051 int error;
1052
1053 error = dogetitimer(p, SCARG(uap, which), &aitv);
1054 if (error)
1055 return error;
1056 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1057 }
1058
1059 int
1060 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1061 {
1062 struct ptimers *pts;
1063 struct ptimer *pt;
1064 struct itimerspec its;
1065
1066 if ((u_int)which > ITIMER_MONOTONIC)
1067 return (EINVAL);
1068
1069 mutex_spin_enter(&timer_lock);
1070 pts = p->p_timers;
1071 if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
1072 timerclear(&itvp->it_value);
1073 timerclear(&itvp->it_interval);
1074 } else {
1075 timer_gettime(pt, &its);
1076 TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
1077 TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
1078 }
1079 mutex_spin_exit(&timer_lock);
1080
1081 return 0;
1082 }
1083
1084 /* BSD routine to set/arm an interval timer. */
1085 /* ARGSUSED */
1086 int
1087 sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
1088 register_t *retval)
1089 {
1090 /* {
1091 syscallarg(int) which;
1092 syscallarg(const struct itimerval *) itv;
1093 syscallarg(struct itimerval *) oitv;
1094 } */
1095 struct proc *p = l->l_proc;
1096 int which = SCARG(uap, which);
1097 struct sys___getitimer50_args getargs;
1098 const struct itimerval *itvp;
1099 struct itimerval aitv;
1100 int error;
1101
1102 if ((u_int)which > ITIMER_MONOTONIC)
1103 return (EINVAL);
1104 itvp = SCARG(uap, itv);
1105 if (itvp &&
1106 (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
1107 return (error);
1108 if (SCARG(uap, oitv) != NULL) {
1109 SCARG(&getargs, which) = which;
1110 SCARG(&getargs, itv) = SCARG(uap, oitv);
1111 if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
1112 return (error);
1113 }
1114 if (itvp == 0)
1115 return (0);
1116
1117 return dosetitimer(p, which, &aitv);
1118 }
1119
1120 int
1121 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1122 {
1123 struct timespec now;
1124 struct ptimers *pts;
1125 struct ptimer *pt, *spare;
1126
1127 KASSERT((u_int)which <= CLOCK_MONOTONIC);
1128 if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1129 return (EINVAL);
1130
1131 /*
1132 * Don't bother allocating data structures if the process just
1133 * wants to clear the timer.
1134 */
1135 spare = NULL;
1136 pts = p->p_timers;
1137 retry:
1138 if (!timerisset(&itvp->it_value) && (pts == NULL ||
1139 pts->pts_timers[which] == NULL))
1140 return (0);
1141 if (pts == NULL)
1142 pts = timers_alloc(p);
1143 mutex_spin_enter(&timer_lock);
1144 pt = pts->pts_timers[which];
1145 if (pt == NULL) {
1146 if (spare == NULL) {
1147 mutex_spin_exit(&timer_lock);
1148 spare = pool_get(&ptimer_pool, PR_WAITOK);
1149 goto retry;
1150 }
1151 pt = spare;
1152 spare = NULL;
1153 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1154 pt->pt_ev.sigev_value.sival_int = which;
1155 pt->pt_overruns = 0;
1156 pt->pt_proc = p;
1157 pt->pt_type = which;
1158 pt->pt_entry = which;
1159 pt->pt_queued = false;
1160 if (pt->pt_type == CLOCK_REALTIME)
1161 callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
1162 else
1163 pt->pt_active = 0;
1164
1165 switch (which) {
1166 case ITIMER_REAL:
1167 case ITIMER_MONOTONIC:
1168 pt->pt_ev.sigev_signo = SIGALRM;
1169 break;
1170 case ITIMER_VIRTUAL:
1171 pt->pt_ev.sigev_signo = SIGVTALRM;
1172 break;
1173 case ITIMER_PROF:
1174 pt->pt_ev.sigev_signo = SIGPROF;
1175 break;
1176 }
1177 pts->pts_timers[which] = pt;
1178 }
1179
1180 TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
1181 TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
1182
1183 if (timespecisset(&pt->pt_time.it_value)) {
1184 /* Convert to absolute time */
1185 /* XXX need to wrap in splclock for timecounters case? */
1186 switch (which) {
1187 case ITIMER_REAL:
1188 getnanotime(&now);
1189 timespecadd(&pt->pt_time.it_value, &now,
1190 &pt->pt_time.it_value);
1191 break;
1192 case ITIMER_MONOTONIC:
1193 getnanouptime(&now);
1194 timespecadd(&pt->pt_time.it_value, &now,
1195 &pt->pt_time.it_value);
1196 break;
1197 default:
1198 break;
1199 }
1200 }
1201 timer_settime(pt);
1202 mutex_spin_exit(&timer_lock);
1203 if (spare != NULL)
1204 pool_put(&ptimer_pool, spare);
1205
1206 return (0);
1207 }
1208
1209 /* Utility routines to manage the array of pointers to timers. */
1210 struct ptimers *
1211 timers_alloc(struct proc *p)
1212 {
1213 struct ptimers *pts;
1214 int i;
1215
1216 pts = pool_get(&ptimers_pool, PR_WAITOK);
1217 LIST_INIT(&pts->pts_virtual);
1218 LIST_INIT(&pts->pts_prof);
1219 for (i = 0; i < TIMER_MAX; i++)
1220 pts->pts_timers[i] = NULL;
1221 pts->pts_fired = 0;
1222 mutex_spin_enter(&timer_lock);
1223 if (p->p_timers == NULL) {
1224 p->p_timers = pts;
1225 mutex_spin_exit(&timer_lock);
1226 return pts;
1227 }
1228 mutex_spin_exit(&timer_lock);
1229 pool_put(&ptimers_pool, pts);
1230 return p->p_timers;
1231 }
1232
1233 /*
1234 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1235 * then clean up all timers and free all the data structures. If
1236 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1237 * by timer_create(), not the BSD setitimer() timers, and only free the
1238 * structure if none of those remain.
1239 */
1240 void
1241 timers_free(struct proc *p, int which)
1242 {
1243 struct ptimers *pts;
1244 struct ptimer *ptn;
1245 struct timespec ts;
1246 int i;
1247
1248 if (p->p_timers == NULL)
1249 return;
1250
1251 pts = p->p_timers;
1252 mutex_spin_enter(&timer_lock);
1253 if (which == TIMERS_ALL) {
1254 p->p_timers = NULL;
1255 i = 0;
1256 } else {
1257 timespecclear(&ts);
1258 for (ptn = LIST_FIRST(&pts->pts_virtual);
1259 ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1260 ptn = LIST_NEXT(ptn, pt_list)) {
1261 KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1262 timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1263 }
1264 LIST_FIRST(&pts->pts_virtual) = NULL;
1265 if (ptn) {
1266 KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1267 timespecadd(&ts, &ptn->pt_time.it_value,
1268 &ptn->pt_time.it_value);
1269 LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
1270 }
1271 timespecclear(&ts);
1272 for (ptn = LIST_FIRST(&pts->pts_prof);
1273 ptn && ptn != pts->pts_timers[ITIMER_PROF];
1274 ptn = LIST_NEXT(ptn, pt_list)) {
1275 KASSERT(ptn->pt_type == CLOCK_PROF);
1276 timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1277 }
1278 LIST_FIRST(&pts->pts_prof) = NULL;
1279 if (ptn) {
1280 KASSERT(ptn->pt_type == CLOCK_PROF);
1281 timespecadd(&ts, &ptn->pt_time.it_value,
1282 &ptn->pt_time.it_value);
1283 LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
1284 }
1285 i = 3;
1286 }
1287 for ( ; i < TIMER_MAX; i++) {
1288 if (pts->pts_timers[i] != NULL) {
1289 itimerfree(pts, i);
1290 mutex_spin_enter(&timer_lock);
1291 }
1292 }
1293 if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
1294 pts->pts_timers[2] == NULL) {
1295 p->p_timers = NULL;
1296 mutex_spin_exit(&timer_lock);
1297 pool_put(&ptimers_pool, pts);
1298 } else
1299 mutex_spin_exit(&timer_lock);
1300 }
1301
1302 static void
1303 itimerfree(struct ptimers *pts, int index)
1304 {
1305 struct ptimer *pt;
1306
1307 KASSERT(mutex_owned(&timer_lock));
1308
1309 pt = pts->pts_timers[index];
1310 pts->pts_timers[index] = NULL;
1311 if (!CLOCK_VIRTUAL_P(pt->pt_type))
1312 callout_halt(&pt->pt_ch, &timer_lock);
1313 if (pt->pt_queued)
1314 TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1315 mutex_spin_exit(&timer_lock);
1316 if (!CLOCK_VIRTUAL_P(pt->pt_type))
1317 callout_destroy(&pt->pt_ch);
1318 pool_put(&ptimer_pool, pt);
1319 }
1320
1321 /*
1322 * Decrement an interval timer by a specified number
1323 * of nanoseconds, which must be less than a second,
1324 * i.e. < 1000000000. If the timer expires, then reload
1325 * it. In this case, carry over (nsec - old value) to
1326 * reduce the value reloaded into the timer so that
1327 * the timer does not drift. This routine assumes
1328 * that it is called in a context where the timers
1329 * on which it is operating cannot change in value.
1330 */
1331 static int
1332 itimerdecr(struct ptimer *pt, int nsec)
1333 {
1334 struct itimerspec *itp;
1335
1336 KASSERT(mutex_owned(&timer_lock));
1337 KASSERT(CLOCK_VIRTUAL_P(pt->pt_type));
1338
1339 itp = &pt->pt_time;
1340 if (itp->it_value.tv_nsec < nsec) {
1341 if (itp->it_value.tv_sec == 0) {
1342 /* expired, and already in next interval */
1343 nsec -= itp->it_value.tv_nsec;
1344 goto expire;
1345 }
1346 itp->it_value.tv_nsec += 1000000000;
1347 itp->it_value.tv_sec--;
1348 }
1349 itp->it_value.tv_nsec -= nsec;
1350 nsec = 0;
1351 if (timespecisset(&itp->it_value))
1352 return (1);
1353 /* expired, exactly at end of interval */
1354 expire:
1355 if (timespecisset(&itp->it_interval)) {
1356 itp->it_value = itp->it_interval;
1357 itp->it_value.tv_nsec -= nsec;
1358 if (itp->it_value.tv_nsec < 0) {
1359 itp->it_value.tv_nsec += 1000000000;
1360 itp->it_value.tv_sec--;
1361 }
1362 timer_settime(pt);
1363 } else
1364 itp->it_value.tv_nsec = 0; /* sec is already 0 */
1365 return (0);
1366 }
1367
1368 static void
1369 itimerfire(struct ptimer *pt)
1370 {
1371
1372 KASSERT(mutex_owned(&timer_lock));
1373
1374 /*
1375 * XXX Can overrun, but we don't do signal queueing yet, anyway.
1376 * XXX Relying on the clock interrupt is stupid.
1377 */
1378 if ((pt->pt_ev.sigev_notify == SIGEV_SA && pt->pt_proc->p_sa == NULL) ||
1379 (pt->pt_ev.sigev_notify != SIGEV_SIGNAL &&
1380 pt->pt_ev.sigev_notify != SIGEV_SA) || pt->pt_queued)
1381 return;
1382 TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
1383 pt->pt_queued = true;
1384 softint_schedule(timer_sih);
1385 }
1386
1387 void
1388 timer_tick(lwp_t *l, bool user)
1389 {
1390 struct ptimers *pts;
1391 struct ptimer *pt;
1392 proc_t *p;
1393
1394 p = l->l_proc;
1395 if (p->p_timers == NULL)
1396 return;
1397
1398 mutex_spin_enter(&timer_lock);
1399 if ((pts = l->l_proc->p_timers) != NULL) {
1400 /*
1401 * Run current process's virtual and profile time, as needed.
1402 */
1403 if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
1404 if (itimerdecr(pt, tick * 1000) == 0)
1405 itimerfire(pt);
1406 if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
1407 if (itimerdecr(pt, tick * 1000) == 0)
1408 itimerfire(pt);
1409 }
1410 mutex_spin_exit(&timer_lock);
1411 }
1412
1413 #ifdef KERN_SA
1414 /*
1415 * timer_sa_intr:
1416 *
1417 * SIGEV_SA handling for timer_intr(). We are called (and return)
1418 * with the timer lock held. We know that the process had SA enabled
1419 * when this timer was enqueued. As timer_intr() is a soft interrupt
1420 * handler, SA should still be enabled by the time we get here.
1421 */
1422 static void
1423 timer_sa_intr(struct ptimer *pt, proc_t *p)
1424 {
1425 unsigned int i;
1426 struct sadata *sa;
1427 struct sadata_vp *vp;
1428
1429 /* Cause the process to generate an upcall when it returns. */
1430 if (!p->p_timerpend) {
1431 /*
1432 * XXX stop signals can be processed inside tsleep,
1433 * which can be inside sa_yield's inner loop, which
1434 * makes testing for sa_idle alone insuffucent to
1435 * determine if we really should call setrunnable.
1436 */
1437 pt->pt_poverruns = pt->pt_overruns;
1438 pt->pt_overruns = 0;
1439 i = 1 << pt->pt_entry;
1440 p->p_timers->pts_fired = i;
1441 p->p_timerpend = 1;
1442
1443 sa = p->p_sa;
1444 mutex_enter(&sa->sa_mutex);
1445 SLIST_FOREACH(vp, &sa->sa_vps, savp_next) {
1446 struct lwp *vp_lwp = vp->savp_lwp;
1447 lwp_lock(vp_lwp);
1448 lwp_need_userret(vp_lwp);
1449 if (vp_lwp->l_flag & LW_SA_IDLE) {
1450 vp_lwp->l_flag &= ~LW_SA_IDLE;
1451 lwp_unsleep(vp_lwp, true);
1452 break;
1453 }
1454 lwp_unlock(vp_lwp);
1455 }
1456 mutex_exit(&sa->sa_mutex);
1457 } else {
1458 i = 1 << pt->pt_entry;
1459 if ((p->p_timers->pts_fired & i) == 0) {
1460 pt->pt_poverruns = pt->pt_overruns;
1461 pt->pt_overruns = 0;
1462 p->p_timers->pts_fired |= i;
1463 } else
1464 pt->pt_overruns++;
1465 }
1466 }
1467 #endif /* KERN_SA */
1468
1469 static void
1470 timer_intr(void *cookie)
1471 {
1472 ksiginfo_t ksi;
1473 struct ptimer *pt;
1474 proc_t *p;
1475
1476 mutex_enter(proc_lock);
1477 mutex_spin_enter(&timer_lock);
1478 while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
1479 TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1480 KASSERT(pt->pt_queued);
1481 pt->pt_queued = false;
1482
1483 if (pt->pt_proc->p_timers == NULL) {
1484 /* Process is dying. */
1485 continue;
1486 }
1487 p = pt->pt_proc;
1488 #ifdef KERN_SA
1489 if (pt->pt_ev.sigev_notify == SIGEV_SA) {
1490 timer_sa_intr(pt, p);
1491 continue;
1492 }
1493 #endif /* KERN_SA */
1494 if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL)
1495 continue;
1496 if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
1497 pt->pt_overruns++;
1498 continue;
1499 }
1500
1501 KSI_INIT(&ksi);
1502 ksi.ksi_signo = pt->pt_ev.sigev_signo;
1503 ksi.ksi_code = SI_TIMER;
1504 ksi.ksi_value = pt->pt_ev.sigev_value;
1505 pt->pt_poverruns = pt->pt_overruns;
1506 pt->pt_overruns = 0;
1507 mutex_spin_exit(&timer_lock);
1508 kpsignal(p, &ksi, NULL);
1509 mutex_spin_enter(&timer_lock);
1510 }
1511 mutex_spin_exit(&timer_lock);
1512 mutex_exit(proc_lock);
1513 }
1514
1515 /*
1516 * Check if the time will wrap if set to ts.
1517 *
1518 * ts - timespec describing the new time
1519 * delta - the delta between the current time and ts
1520 */
1521 bool
1522 time_wraps(struct timespec *ts, struct timespec *delta)
1523 {
1524
1525 /*
1526 * Don't allow the time to be set forward so far it
1527 * will wrap and become negative, thus allowing an
1528 * attacker to bypass the next check below. The
1529 * cutoff is 1 year before rollover occurs, so even
1530 * if the attacker uses adjtime(2) to move the time
1531 * past the cutoff, it will take a very long time
1532 * to get to the wrap point.
1533 */
1534 if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
1535 (delta->tv_sec < 0 || delta->tv_nsec < 0))
1536 return true;
1537
1538 return false;
1539 }
1540