kern_time.c revision 1.170.6.1 1 /* $NetBSD: kern_time.c,v 1.170.6.1 2012/02/18 07:35:31 mrg Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1986, 1989, 1993
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
61 */
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.170.6.1 2012/02/18 07:35:31 mrg Exp $");
65
66 #include <sys/param.h>
67 #include <sys/resourcevar.h>
68 #include <sys/kernel.h>
69 #include <sys/systm.h>
70 #include <sys/proc.h>
71 #include <sys/vnode.h>
72 #include <sys/signalvar.h>
73 #include <sys/syslog.h>
74 #include <sys/timetc.h>
75 #include <sys/timex.h>
76 #include <sys/kauth.h>
77 #include <sys/mount.h>
78 #include <sys/sa.h>
79 #include <sys/savar.h>
80 #include <sys/syscallargs.h>
81 #include <sys/cpu.h>
82
83 #include "opt_sa.h"
84
85 static void timer_intr(void *);
86 static void itimerfire(struct ptimer *);
87 static void itimerfree(struct ptimers *, int);
88
89 kmutex_t timer_lock;
90
91 static void *timer_sih;
92 static TAILQ_HEAD(, ptimer) timer_queue;
93
94 struct pool ptimer_pool, ptimers_pool;
95
96 #define CLOCK_VIRTUAL_P(clockid) \
97 ((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)
98
99 CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
100 CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
101 CTASSERT(ITIMER_PROF == CLOCK_PROF);
102 CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC);
103
104 /*
105 * Initialize timekeeping.
106 */
107 void
108 time_init(void)
109 {
110
111 pool_init(&ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
112 &pool_allocator_nointr, IPL_NONE);
113 pool_init(&ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
114 &pool_allocator_nointr, IPL_NONE);
115 }
116
117 void
118 time_init2(void)
119 {
120
121 TAILQ_INIT(&timer_queue);
122 mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
123 timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
124 timer_intr, NULL);
125 }
126
127 /* Time of day and interval timer support.
128 *
129 * These routines provide the kernel entry points to get and set
130 * the time-of-day and per-process interval timers. Subroutines
131 * here provide support for adding and subtracting timeval structures
132 * and decrementing interval timers, optionally reloading the interval
133 * timers when they expire.
134 */
135
136 /* This function is used by clock_settime and settimeofday */
137 static int
138 settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
139 {
140 struct timespec delta, now;
141 int s;
142
143 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
144 s = splclock();
145 nanotime(&now);
146 timespecsub(ts, &now, &delta);
147
148 if (check_kauth && kauth_authorize_system(kauth_cred_get(),
149 KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
150 &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
151 splx(s);
152 return (EPERM);
153 }
154
155 #ifdef notyet
156 if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
157 splx(s);
158 return (EPERM);
159 }
160 #endif
161
162 tc_setclock(ts);
163
164 timespecadd(&boottime, &delta, &boottime);
165
166 resettodr();
167 splx(s);
168
169 return (0);
170 }
171
172 int
173 settime(struct proc *p, struct timespec *ts)
174 {
175 return (settime1(p, ts, true));
176 }
177
178 /* ARGSUSED */
179 int
180 sys___clock_gettime50(struct lwp *l,
181 const struct sys___clock_gettime50_args *uap, register_t *retval)
182 {
183 /* {
184 syscallarg(clockid_t) clock_id;
185 syscallarg(struct timespec *) tp;
186 } */
187 int error;
188 struct timespec ats;
189
190 error = clock_gettime1(SCARG(uap, clock_id), &ats);
191 if (error != 0)
192 return error;
193
194 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
195 }
196
197 int
198 clock_gettime1(clockid_t clock_id, struct timespec *ts)
199 {
200
201 switch (clock_id) {
202 case CLOCK_REALTIME:
203 nanotime(ts);
204 break;
205 case CLOCK_MONOTONIC:
206 nanouptime(ts);
207 break;
208 default:
209 return EINVAL;
210 }
211
212 return 0;
213 }
214
215 /* ARGSUSED */
216 int
217 sys___clock_settime50(struct lwp *l,
218 const struct sys___clock_settime50_args *uap, register_t *retval)
219 {
220 /* {
221 syscallarg(clockid_t) clock_id;
222 syscallarg(const struct timespec *) tp;
223 } */
224 int error;
225 struct timespec ats;
226
227 if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
228 return error;
229
230 return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
231 }
232
233
234 int
235 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
236 bool check_kauth)
237 {
238 int error;
239
240 switch (clock_id) {
241 case CLOCK_REALTIME:
242 if ((error = settime1(p, tp, check_kauth)) != 0)
243 return (error);
244 break;
245 case CLOCK_MONOTONIC:
246 return (EINVAL); /* read-only clock */
247 default:
248 return (EINVAL);
249 }
250
251 return 0;
252 }
253
254 int
255 sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
256 register_t *retval)
257 {
258 /* {
259 syscallarg(clockid_t) clock_id;
260 syscallarg(struct timespec *) tp;
261 } */
262 struct timespec ts;
263 int error = 0;
264
265 if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
266 return error;
267
268 if (SCARG(uap, tp))
269 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
270
271 return error;
272 }
273
274 int
275 clock_getres1(clockid_t clock_id, struct timespec *ts)
276 {
277
278 switch (clock_id) {
279 case CLOCK_REALTIME:
280 case CLOCK_MONOTONIC:
281 ts->tv_sec = 0;
282 if (tc_getfrequency() > 1000000000)
283 ts->tv_nsec = 1;
284 else
285 ts->tv_nsec = 1000000000 / tc_getfrequency();
286 break;
287 default:
288 return EINVAL;
289 }
290
291 return 0;
292 }
293
294 /* ARGSUSED */
295 int
296 sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
297 register_t *retval)
298 {
299 /* {
300 syscallarg(struct timespec *) rqtp;
301 syscallarg(struct timespec *) rmtp;
302 } */
303 struct timespec rmt, rqt;
304 int error, error1;
305
306 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
307 if (error)
308 return (error);
309
310 error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
311 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
312 return error;
313
314 error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
315 return error1 ? error1 : error;
316 }
317
318 int
319 nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
320 {
321 struct timespec rmtstart;
322 int error, timo;
323
324 if ((error = itimespecfix(rqt)) != 0)
325 return error;
326
327 timo = tstohz(rqt);
328 /*
329 * Avoid inadvertantly sleeping forever
330 */
331 if (timo == 0)
332 timo = 1;
333 getnanouptime(&rmtstart);
334 again:
335 error = kpause("nanoslp", true, timo, NULL);
336 if (rmt != NULL || error == 0) {
337 struct timespec rmtend;
338 struct timespec t0;
339 struct timespec *t;
340
341 getnanouptime(&rmtend);
342 t = (rmt != NULL) ? rmt : &t0;
343 timespecsub(&rmtend, &rmtstart, t);
344 timespecsub(rqt, t, t);
345 if (t->tv_sec < 0)
346 timespecclear(t);
347 if (error == 0) {
348 timo = tstohz(t);
349 if (timo > 0)
350 goto again;
351 }
352 }
353
354 if (error == ERESTART)
355 error = EINTR;
356 if (error == EWOULDBLOCK)
357 error = 0;
358
359 return error;
360 }
361
362 /* ARGSUSED */
363 int
364 sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
365 register_t *retval)
366 {
367 /* {
368 syscallarg(struct timeval *) tp;
369 syscallarg(void *) tzp; really "struct timezone *";
370 } */
371 struct timeval atv;
372 int error = 0;
373 struct timezone tzfake;
374
375 if (SCARG(uap, tp)) {
376 microtime(&atv);
377 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
378 if (error)
379 return (error);
380 }
381 if (SCARG(uap, tzp)) {
382 /*
383 * NetBSD has no kernel notion of time zone, so we just
384 * fake up a timezone struct and return it if demanded.
385 */
386 tzfake.tz_minuteswest = 0;
387 tzfake.tz_dsttime = 0;
388 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
389 }
390 return (error);
391 }
392
393 /* ARGSUSED */
394 int
395 sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
396 register_t *retval)
397 {
398 /* {
399 syscallarg(const struct timeval *) tv;
400 syscallarg(const void *) tzp; really "const struct timezone *";
401 } */
402
403 return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
404 }
405
406 int
407 settimeofday1(const struct timeval *utv, bool userspace,
408 const void *utzp, struct lwp *l, bool check_kauth)
409 {
410 struct timeval atv;
411 struct timespec ts;
412 int error;
413
414 /* Verify all parameters before changing time. */
415
416 /*
417 * NetBSD has no kernel notion of time zone, and only an
418 * obsolete program would try to set it, so we log a warning.
419 */
420 if (utzp)
421 log(LOG_WARNING, "pid %d attempted to set the "
422 "(obsolete) kernel time zone\n", l->l_proc->p_pid);
423
424 if (utv == NULL)
425 return 0;
426
427 if (userspace) {
428 if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
429 return error;
430 utv = &atv;
431 }
432
433 TIMEVAL_TO_TIMESPEC(utv, &ts);
434 return settime1(l->l_proc, &ts, check_kauth);
435 }
436
437 int time_adjusted; /* set if an adjustment is made */
438
439 /* ARGSUSED */
440 int
441 sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
442 register_t *retval)
443 {
444 /* {
445 syscallarg(const struct timeval *) delta;
446 syscallarg(struct timeval *) olddelta;
447 } */
448 int error = 0;
449 struct timeval atv, oldatv;
450
451 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
452 KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
453 return error;
454
455 if (SCARG(uap, delta)) {
456 error = copyin(SCARG(uap, delta), &atv,
457 sizeof(*SCARG(uap, delta)));
458 if (error)
459 return (error);
460 }
461 adjtime1(SCARG(uap, delta) ? &atv : NULL,
462 SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
463 if (SCARG(uap, olddelta))
464 error = copyout(&oldatv, SCARG(uap, olddelta),
465 sizeof(*SCARG(uap, olddelta)));
466 return error;
467 }
468
469 void
470 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
471 {
472 extern int64_t time_adjtime; /* in kern_ntptime.c */
473
474 if (olddelta) {
475 mutex_spin_enter(&timecounter_lock);
476 olddelta->tv_sec = time_adjtime / 1000000;
477 olddelta->tv_usec = time_adjtime % 1000000;
478 if (olddelta->tv_usec < 0) {
479 olddelta->tv_usec += 1000000;
480 olddelta->tv_sec--;
481 }
482 mutex_spin_exit(&timecounter_lock);
483 }
484
485 if (delta) {
486 mutex_spin_enter(&timecounter_lock);
487 time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
488
489 if (time_adjtime) {
490 /* We need to save the system time during shutdown */
491 time_adjusted |= 1;
492 }
493 mutex_spin_exit(&timecounter_lock);
494 }
495 }
496
497 /*
498 * Interval timer support. Both the BSD getitimer() family and the POSIX
499 * timer_*() family of routines are supported.
500 *
501 * All timers are kept in an array pointed to by p_timers, which is
502 * allocated on demand - many processes don't use timers at all. The
503 * first three elements in this array are reserved for the BSD timers:
504 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element
505 * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be
506 * allocated by the timer_create() syscall.
507 *
508 * Realtime timers are kept in the ptimer structure as an absolute
509 * time; virtual time timers are kept as a linked list of deltas.
510 * Virtual time timers are processed in the hardclock() routine of
511 * kern_clock.c. The real time timer is processed by a callout
512 * routine, called from the softclock() routine. Since a callout may
513 * be delayed in real time due to interrupt processing in the system,
514 * it is possible for the real time timeout routine (realtimeexpire,
515 * given below), to be delayed in real time past when it is supposed
516 * to occur. It does not suffice, therefore, to reload the real timer
517 * .it_value from the real time timers .it_interval. Rather, we
518 * compute the next time in absolute time the timer should go off. */
519
520 /* Allocate a POSIX realtime timer. */
521 int
522 sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
523 register_t *retval)
524 {
525 /* {
526 syscallarg(clockid_t) clock_id;
527 syscallarg(struct sigevent *) evp;
528 syscallarg(timer_t *) timerid;
529 } */
530
531 return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
532 SCARG(uap, evp), copyin, l);
533 }
534
535 int
536 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
537 copyin_t fetch_event, struct lwp *l)
538 {
539 int error;
540 timer_t timerid;
541 struct ptimers *pts;
542 struct ptimer *pt;
543 struct proc *p;
544
545 p = l->l_proc;
546
547 if ((u_int)id > CLOCK_MONOTONIC)
548 return (EINVAL);
549
550 if ((pts = p->p_timers) == NULL)
551 pts = timers_alloc(p);
552
553 pt = pool_get(&ptimer_pool, PR_WAITOK);
554 if (evp != NULL) {
555 if (((error =
556 (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
557 ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
558 (pt->pt_ev.sigev_notify > SIGEV_SA)) ||
559 (pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
560 (pt->pt_ev.sigev_signo <= 0 ||
561 pt->pt_ev.sigev_signo >= NSIG))) {
562 pool_put(&ptimer_pool, pt);
563 return (error ? error : EINVAL);
564 }
565 }
566
567 /* Find a free timer slot, skipping those reserved for setitimer(). */
568 mutex_spin_enter(&timer_lock);
569 for (timerid = 3; timerid < TIMER_MAX; timerid++)
570 if (pts->pts_timers[timerid] == NULL)
571 break;
572 if (timerid == TIMER_MAX) {
573 mutex_spin_exit(&timer_lock);
574 pool_put(&ptimer_pool, pt);
575 return EAGAIN;
576 }
577 if (evp == NULL) {
578 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
579 switch (id) {
580 case CLOCK_REALTIME:
581 case CLOCK_MONOTONIC:
582 pt->pt_ev.sigev_signo = SIGALRM;
583 break;
584 case CLOCK_VIRTUAL:
585 pt->pt_ev.sigev_signo = SIGVTALRM;
586 break;
587 case CLOCK_PROF:
588 pt->pt_ev.sigev_signo = SIGPROF;
589 break;
590 }
591 pt->pt_ev.sigev_value.sival_int = timerid;
592 }
593 pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
594 pt->pt_info.ksi_errno = 0;
595 pt->pt_info.ksi_code = 0;
596 pt->pt_info.ksi_pid = p->p_pid;
597 pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
598 pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
599 pt->pt_type = id;
600 pt->pt_proc = p;
601 pt->pt_overruns = 0;
602 pt->pt_poverruns = 0;
603 pt->pt_entry = timerid;
604 pt->pt_queued = false;
605 timespecclear(&pt->pt_time.it_value);
606 if (!CLOCK_VIRTUAL_P(id))
607 callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
608 else
609 pt->pt_active = 0;
610
611 pts->pts_timers[timerid] = pt;
612 mutex_spin_exit(&timer_lock);
613
614 return copyout(&timerid, tid, sizeof(timerid));
615 }
616
617 /* Delete a POSIX realtime timer */
618 int
619 sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
620 register_t *retval)
621 {
622 /* {
623 syscallarg(timer_t) timerid;
624 } */
625 struct proc *p = l->l_proc;
626 timer_t timerid;
627 struct ptimers *pts;
628 struct ptimer *pt, *ptn;
629
630 timerid = SCARG(uap, timerid);
631 pts = p->p_timers;
632
633 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
634 return (EINVAL);
635
636 mutex_spin_enter(&timer_lock);
637 if ((pt = pts->pts_timers[timerid]) == NULL) {
638 mutex_spin_exit(&timer_lock);
639 return (EINVAL);
640 }
641 if (CLOCK_VIRTUAL_P(pt->pt_type)) {
642 if (pt->pt_active) {
643 ptn = LIST_NEXT(pt, pt_list);
644 LIST_REMOVE(pt, pt_list);
645 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
646 timespecadd(&pt->pt_time.it_value,
647 &ptn->pt_time.it_value,
648 &ptn->pt_time.it_value);
649 pt->pt_active = 0;
650 }
651 }
652 itimerfree(pts, timerid);
653
654 return (0);
655 }
656
657 /*
658 * Set up the given timer. The value in pt->pt_time.it_value is taken
659 * to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC timers and
660 * a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
661 */
662 void
663 timer_settime(struct ptimer *pt)
664 {
665 struct ptimer *ptn, *pptn;
666 struct ptlist *ptl;
667
668 KASSERT(mutex_owned(&timer_lock));
669
670 if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
671 callout_halt(&pt->pt_ch, &timer_lock);
672 if (timespecisset(&pt->pt_time.it_value)) {
673 /*
674 * Don't need to check tshzto() return value, here.
675 * callout_reset() does it for us.
676 */
677 callout_reset(&pt->pt_ch,
678 pt->pt_type == CLOCK_MONOTONIC ?
679 tshztoup(&pt->pt_time.it_value) :
680 tshzto(&pt->pt_time.it_value),
681 realtimerexpire, pt);
682 }
683 } else {
684 if (pt->pt_active) {
685 ptn = LIST_NEXT(pt, pt_list);
686 LIST_REMOVE(pt, pt_list);
687 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
688 timespecadd(&pt->pt_time.it_value,
689 &ptn->pt_time.it_value,
690 &ptn->pt_time.it_value);
691 }
692 if (timespecisset(&pt->pt_time.it_value)) {
693 if (pt->pt_type == CLOCK_VIRTUAL)
694 ptl = &pt->pt_proc->p_timers->pts_virtual;
695 else
696 ptl = &pt->pt_proc->p_timers->pts_prof;
697
698 for (ptn = LIST_FIRST(ptl), pptn = NULL;
699 ptn && timespeccmp(&pt->pt_time.it_value,
700 &ptn->pt_time.it_value, >);
701 pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
702 timespecsub(&pt->pt_time.it_value,
703 &ptn->pt_time.it_value,
704 &pt->pt_time.it_value);
705
706 if (pptn)
707 LIST_INSERT_AFTER(pptn, pt, pt_list);
708 else
709 LIST_INSERT_HEAD(ptl, pt, pt_list);
710
711 for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
712 timespecsub(&ptn->pt_time.it_value,
713 &pt->pt_time.it_value,
714 &ptn->pt_time.it_value);
715
716 pt->pt_active = 1;
717 } else
718 pt->pt_active = 0;
719 }
720 }
721
722 void
723 timer_gettime(struct ptimer *pt, struct itimerspec *aits)
724 {
725 struct timespec now;
726 struct ptimer *ptn;
727
728 KASSERT(mutex_owned(&timer_lock));
729
730 *aits = pt->pt_time;
731 if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
732 /*
733 * Convert from absolute to relative time in .it_value
734 * part of real time timer. If time for real time
735 * timer has passed return 0, else return difference
736 * between current time and time for the timer to go
737 * off.
738 */
739 if (timespecisset(&aits->it_value)) {
740 if (pt->pt_type == CLOCK_REALTIME) {
741 getnanotime(&now);
742 } else { /* CLOCK_MONOTONIC */
743 getnanouptime(&now);
744 }
745 if (timespeccmp(&aits->it_value, &now, <))
746 timespecclear(&aits->it_value);
747 else
748 timespecsub(&aits->it_value, &now,
749 &aits->it_value);
750 }
751 } else if (pt->pt_active) {
752 if (pt->pt_type == CLOCK_VIRTUAL)
753 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
754 else
755 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
756 for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
757 timespecadd(&aits->it_value,
758 &ptn->pt_time.it_value, &aits->it_value);
759 KASSERT(ptn != NULL); /* pt should be findable on the list */
760 } else
761 timespecclear(&aits->it_value);
762 }
763
764
765
766 /* Set and arm a POSIX realtime timer */
767 int
768 sys___timer_settime50(struct lwp *l,
769 const struct sys___timer_settime50_args *uap,
770 register_t *retval)
771 {
772 /* {
773 syscallarg(timer_t) timerid;
774 syscallarg(int) flags;
775 syscallarg(const struct itimerspec *) value;
776 syscallarg(struct itimerspec *) ovalue;
777 } */
778 int error;
779 struct itimerspec value, ovalue, *ovp = NULL;
780
781 if ((error = copyin(SCARG(uap, value), &value,
782 sizeof(struct itimerspec))) != 0)
783 return (error);
784
785 if (SCARG(uap, ovalue))
786 ovp = &ovalue;
787
788 if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
789 SCARG(uap, flags), l->l_proc)) != 0)
790 return error;
791
792 if (ovp)
793 return copyout(&ovalue, SCARG(uap, ovalue),
794 sizeof(struct itimerspec));
795 return 0;
796 }
797
798 int
799 dotimer_settime(int timerid, struct itimerspec *value,
800 struct itimerspec *ovalue, int flags, struct proc *p)
801 {
802 struct timespec now;
803 struct itimerspec val, oval;
804 struct ptimers *pts;
805 struct ptimer *pt;
806 int error;
807
808 pts = p->p_timers;
809
810 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
811 return EINVAL;
812 val = *value;
813 if ((error = itimespecfix(&val.it_value)) != 0 ||
814 (error = itimespecfix(&val.it_interval)) != 0)
815 return error;
816
817 mutex_spin_enter(&timer_lock);
818 if ((pt = pts->pts_timers[timerid]) == NULL) {
819 mutex_spin_exit(&timer_lock);
820 return EINVAL;
821 }
822
823 oval = pt->pt_time;
824 pt->pt_time = val;
825
826 /*
827 * If we've been passed a relative time for a realtime timer,
828 * convert it to absolute; if an absolute time for a virtual
829 * timer, convert it to relative and make sure we don't set it
830 * to zero, which would cancel the timer, or let it go
831 * negative, which would confuse the comparison tests.
832 */
833 if (timespecisset(&pt->pt_time.it_value)) {
834 if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
835 if ((flags & TIMER_ABSTIME) == 0) {
836 if (pt->pt_type == CLOCK_REALTIME) {
837 getnanotime(&now);
838 } else { /* CLOCK_MONOTONIC */
839 getnanouptime(&now);
840 }
841 timespecadd(&pt->pt_time.it_value, &now,
842 &pt->pt_time.it_value);
843 }
844 } else {
845 if ((flags & TIMER_ABSTIME) != 0) {
846 getnanotime(&now);
847 timespecsub(&pt->pt_time.it_value, &now,
848 &pt->pt_time.it_value);
849 if (!timespecisset(&pt->pt_time.it_value) ||
850 pt->pt_time.it_value.tv_sec < 0) {
851 pt->pt_time.it_value.tv_sec = 0;
852 pt->pt_time.it_value.tv_nsec = 1;
853 }
854 }
855 }
856 }
857
858 timer_settime(pt);
859 mutex_spin_exit(&timer_lock);
860
861 if (ovalue)
862 *ovalue = oval;
863
864 return (0);
865 }
866
867 /* Return the time remaining until a POSIX timer fires. */
868 int
869 sys___timer_gettime50(struct lwp *l,
870 const struct sys___timer_gettime50_args *uap, register_t *retval)
871 {
872 /* {
873 syscallarg(timer_t) timerid;
874 syscallarg(struct itimerspec *) value;
875 } */
876 struct itimerspec its;
877 int error;
878
879 if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
880 &its)) != 0)
881 return error;
882
883 return copyout(&its, SCARG(uap, value), sizeof(its));
884 }
885
886 int
887 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
888 {
889 struct ptimer *pt;
890 struct ptimers *pts;
891
892 pts = p->p_timers;
893 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
894 return (EINVAL);
895 mutex_spin_enter(&timer_lock);
896 if ((pt = pts->pts_timers[timerid]) == NULL) {
897 mutex_spin_exit(&timer_lock);
898 return (EINVAL);
899 }
900 timer_gettime(pt, its);
901 mutex_spin_exit(&timer_lock);
902
903 return 0;
904 }
905
906 /*
907 * Return the count of the number of times a periodic timer expired
908 * while a notification was already pending. The counter is reset when
909 * a timer expires and a notification can be posted.
910 */
911 int
912 sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
913 register_t *retval)
914 {
915 /* {
916 syscallarg(timer_t) timerid;
917 } */
918 struct proc *p = l->l_proc;
919 struct ptimers *pts;
920 int timerid;
921 struct ptimer *pt;
922
923 timerid = SCARG(uap, timerid);
924
925 pts = p->p_timers;
926 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
927 return (EINVAL);
928 mutex_spin_enter(&timer_lock);
929 if ((pt = pts->pts_timers[timerid]) == NULL) {
930 mutex_spin_exit(&timer_lock);
931 return (EINVAL);
932 }
933 *retval = pt->pt_poverruns;
934 mutex_spin_exit(&timer_lock);
935
936 return (0);
937 }
938
939 #ifdef KERN_SA
940 /* Glue function that triggers an upcall; called from userret(). */
941 void
942 timerupcall(struct lwp *l)
943 {
944 struct ptimers *pt = l->l_proc->p_timers;
945 struct proc *p = l->l_proc;
946 unsigned int i, fired, done;
947
948 KDASSERT(l->l_proc->p_sa);
949 /* Bail out if we do not own the virtual processor */
950 if (l->l_savp->savp_lwp != l)
951 return ;
952
953 mutex_enter(p->p_lock);
954
955 fired = pt->pts_fired;
956 done = 0;
957 while ((i = ffs(fired)) != 0) {
958 siginfo_t *si;
959 int mask = 1 << --i;
960 int f;
961
962 f = ~l->l_pflag & LP_SA_NOBLOCK;
963 l->l_pflag |= LP_SA_NOBLOCK;
964 si = siginfo_alloc(PR_WAITOK);
965 si->_info = pt->pts_timers[i]->pt_info.ksi_info;
966 if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
967 sizeof(*si), si, siginfo_free) != 0) {
968 siginfo_free(si);
969 /* XXX What do we do here?? */
970 } else
971 done |= mask;
972 fired &= ~mask;
973 l->l_pflag ^= f;
974 }
975 pt->pts_fired &= ~done;
976 if (pt->pts_fired == 0)
977 l->l_proc->p_timerpend = 0;
978
979 mutex_exit(p->p_lock);
980 }
981 #endif /* KERN_SA */
982
983 /*
984 * Real interval timer expired:
985 * send process whose timer expired an alarm signal.
986 * If time is not set up to reload, then just return.
987 * Else compute next time timer should go off which is > current time.
988 * This is where delay in processing this timeout causes multiple
989 * SIGALRM calls to be compressed into one.
990 */
991 void
992 realtimerexpire(void *arg)
993 {
994 uint64_t last_val, next_val, interval, now_ns;
995 struct timespec now, next;
996 struct ptimer *pt;
997 int backwards;
998
999 pt = arg;
1000
1001 mutex_spin_enter(&timer_lock);
1002 itimerfire(pt);
1003
1004 if (!timespecisset(&pt->pt_time.it_interval)) {
1005 timespecclear(&pt->pt_time.it_value);
1006 mutex_spin_exit(&timer_lock);
1007 return;
1008 }
1009
1010 if (pt->pt_type == CLOCK_MONOTONIC) {
1011 getnanouptime(&now);
1012 } else {
1013 getnanotime(&now);
1014 }
1015 backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
1016 timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
1017 /* Handle the easy case of non-overflown timers first. */
1018 if (!backwards && timespeccmp(&next, &now, >)) {
1019 pt->pt_time.it_value = next;
1020 } else {
1021 now_ns = timespec2ns(&now);
1022 last_val = timespec2ns(&pt->pt_time.it_value);
1023 interval = timespec2ns(&pt->pt_time.it_interval);
1024
1025 next_val = now_ns +
1026 (now_ns - last_val + interval - 1) % interval;
1027
1028 if (backwards)
1029 next_val += interval;
1030 else
1031 pt->pt_overruns += (now_ns - last_val) / interval;
1032
1033 pt->pt_time.it_value.tv_sec = next_val / 1000000000;
1034 pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
1035 }
1036
1037 /*
1038 * Don't need to check tshzto() return value, here.
1039 * callout_reset() does it for us.
1040 */
1041 callout_reset(&pt->pt_ch, pt->pt_type == CLOCK_MONOTONIC ?
1042 tshztoup(&pt->pt_time.it_value) : tshzto(&pt->pt_time.it_value),
1043 realtimerexpire, pt);
1044 mutex_spin_exit(&timer_lock);
1045 }
1046
1047 /* BSD routine to get the value of an interval timer. */
1048 /* ARGSUSED */
1049 int
1050 sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
1051 register_t *retval)
1052 {
1053 /* {
1054 syscallarg(int) which;
1055 syscallarg(struct itimerval *) itv;
1056 } */
1057 struct proc *p = l->l_proc;
1058 struct itimerval aitv;
1059 int error;
1060
1061 error = dogetitimer(p, SCARG(uap, which), &aitv);
1062 if (error)
1063 return error;
1064 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1065 }
1066
1067 int
1068 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1069 {
1070 struct ptimers *pts;
1071 struct ptimer *pt;
1072 struct itimerspec its;
1073
1074 if ((u_int)which > ITIMER_MONOTONIC)
1075 return (EINVAL);
1076
1077 mutex_spin_enter(&timer_lock);
1078 pts = p->p_timers;
1079 if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
1080 timerclear(&itvp->it_value);
1081 timerclear(&itvp->it_interval);
1082 } else {
1083 timer_gettime(pt, &its);
1084 TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
1085 TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
1086 }
1087 mutex_spin_exit(&timer_lock);
1088
1089 return 0;
1090 }
1091
1092 /* BSD routine to set/arm an interval timer. */
1093 /* ARGSUSED */
1094 int
1095 sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
1096 register_t *retval)
1097 {
1098 /* {
1099 syscallarg(int) which;
1100 syscallarg(const struct itimerval *) itv;
1101 syscallarg(struct itimerval *) oitv;
1102 } */
1103 struct proc *p = l->l_proc;
1104 int which = SCARG(uap, which);
1105 struct sys___getitimer50_args getargs;
1106 const struct itimerval *itvp;
1107 struct itimerval aitv;
1108 int error;
1109
1110 if ((u_int)which > ITIMER_MONOTONIC)
1111 return (EINVAL);
1112 itvp = SCARG(uap, itv);
1113 if (itvp &&
1114 (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
1115 return (error);
1116 if (SCARG(uap, oitv) != NULL) {
1117 SCARG(&getargs, which) = which;
1118 SCARG(&getargs, itv) = SCARG(uap, oitv);
1119 if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
1120 return (error);
1121 }
1122 if (itvp == 0)
1123 return (0);
1124
1125 return dosetitimer(p, which, &aitv);
1126 }
1127
1128 int
1129 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1130 {
1131 struct timespec now;
1132 struct ptimers *pts;
1133 struct ptimer *pt, *spare;
1134
1135 KASSERT((u_int)which <= CLOCK_MONOTONIC);
1136 if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1137 return (EINVAL);
1138
1139 /*
1140 * Don't bother allocating data structures if the process just
1141 * wants to clear the timer.
1142 */
1143 spare = NULL;
1144 pts = p->p_timers;
1145 retry:
1146 if (!timerisset(&itvp->it_value) && (pts == NULL ||
1147 pts->pts_timers[which] == NULL))
1148 return (0);
1149 if (pts == NULL)
1150 pts = timers_alloc(p);
1151 mutex_spin_enter(&timer_lock);
1152 pt = pts->pts_timers[which];
1153 if (pt == NULL) {
1154 if (spare == NULL) {
1155 mutex_spin_exit(&timer_lock);
1156 spare = pool_get(&ptimer_pool, PR_WAITOK);
1157 goto retry;
1158 }
1159 pt = spare;
1160 spare = NULL;
1161 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1162 pt->pt_ev.sigev_value.sival_int = which;
1163 pt->pt_overruns = 0;
1164 pt->pt_proc = p;
1165 pt->pt_type = which;
1166 pt->pt_entry = which;
1167 pt->pt_queued = false;
1168 if (pt->pt_type == CLOCK_REALTIME)
1169 callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
1170 else
1171 pt->pt_active = 0;
1172
1173 switch (which) {
1174 case ITIMER_REAL:
1175 case ITIMER_MONOTONIC:
1176 pt->pt_ev.sigev_signo = SIGALRM;
1177 break;
1178 case ITIMER_VIRTUAL:
1179 pt->pt_ev.sigev_signo = SIGVTALRM;
1180 break;
1181 case ITIMER_PROF:
1182 pt->pt_ev.sigev_signo = SIGPROF;
1183 break;
1184 }
1185 pts->pts_timers[which] = pt;
1186 }
1187
1188 TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
1189 TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
1190
1191 if (timespecisset(&pt->pt_time.it_value)) {
1192 /* Convert to absolute time */
1193 /* XXX need to wrap in splclock for timecounters case? */
1194 switch (which) {
1195 case ITIMER_REAL:
1196 getnanotime(&now);
1197 timespecadd(&pt->pt_time.it_value, &now,
1198 &pt->pt_time.it_value);
1199 break;
1200 case ITIMER_MONOTONIC:
1201 getnanouptime(&now);
1202 timespecadd(&pt->pt_time.it_value, &now,
1203 &pt->pt_time.it_value);
1204 break;
1205 default:
1206 break;
1207 }
1208 }
1209 timer_settime(pt);
1210 mutex_spin_exit(&timer_lock);
1211 if (spare != NULL)
1212 pool_put(&ptimer_pool, spare);
1213
1214 return (0);
1215 }
1216
1217 /* Utility routines to manage the array of pointers to timers. */
1218 struct ptimers *
1219 timers_alloc(struct proc *p)
1220 {
1221 struct ptimers *pts;
1222 int i;
1223
1224 pts = pool_get(&ptimers_pool, PR_WAITOK);
1225 LIST_INIT(&pts->pts_virtual);
1226 LIST_INIT(&pts->pts_prof);
1227 for (i = 0; i < TIMER_MAX; i++)
1228 pts->pts_timers[i] = NULL;
1229 pts->pts_fired = 0;
1230 mutex_spin_enter(&timer_lock);
1231 if (p->p_timers == NULL) {
1232 p->p_timers = pts;
1233 mutex_spin_exit(&timer_lock);
1234 return pts;
1235 }
1236 mutex_spin_exit(&timer_lock);
1237 pool_put(&ptimers_pool, pts);
1238 return p->p_timers;
1239 }
1240
1241 /*
1242 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1243 * then clean up all timers and free all the data structures. If
1244 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1245 * by timer_create(), not the BSD setitimer() timers, and only free the
1246 * structure if none of those remain.
1247 */
1248 void
1249 timers_free(struct proc *p, int which)
1250 {
1251 struct ptimers *pts;
1252 struct ptimer *ptn;
1253 struct timespec ts;
1254 int i;
1255
1256 if (p->p_timers == NULL)
1257 return;
1258
1259 pts = p->p_timers;
1260 mutex_spin_enter(&timer_lock);
1261 if (which == TIMERS_ALL) {
1262 p->p_timers = NULL;
1263 i = 0;
1264 } else {
1265 timespecclear(&ts);
1266 for (ptn = LIST_FIRST(&pts->pts_virtual);
1267 ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1268 ptn = LIST_NEXT(ptn, pt_list)) {
1269 KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1270 timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1271 }
1272 LIST_FIRST(&pts->pts_virtual) = NULL;
1273 if (ptn) {
1274 KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1275 timespecadd(&ts, &ptn->pt_time.it_value,
1276 &ptn->pt_time.it_value);
1277 LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
1278 }
1279 timespecclear(&ts);
1280 for (ptn = LIST_FIRST(&pts->pts_prof);
1281 ptn && ptn != pts->pts_timers[ITIMER_PROF];
1282 ptn = LIST_NEXT(ptn, pt_list)) {
1283 KASSERT(ptn->pt_type == CLOCK_PROF);
1284 timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1285 }
1286 LIST_FIRST(&pts->pts_prof) = NULL;
1287 if (ptn) {
1288 KASSERT(ptn->pt_type == CLOCK_PROF);
1289 timespecadd(&ts, &ptn->pt_time.it_value,
1290 &ptn->pt_time.it_value);
1291 LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
1292 }
1293 i = 3;
1294 }
1295 for ( ; i < TIMER_MAX; i++) {
1296 if (pts->pts_timers[i] != NULL) {
1297 itimerfree(pts, i);
1298 mutex_spin_enter(&timer_lock);
1299 }
1300 }
1301 if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
1302 pts->pts_timers[2] == NULL) {
1303 p->p_timers = NULL;
1304 mutex_spin_exit(&timer_lock);
1305 pool_put(&ptimers_pool, pts);
1306 } else
1307 mutex_spin_exit(&timer_lock);
1308 }
1309
1310 static void
1311 itimerfree(struct ptimers *pts, int index)
1312 {
1313 struct ptimer *pt;
1314
1315 KASSERT(mutex_owned(&timer_lock));
1316
1317 pt = pts->pts_timers[index];
1318 pts->pts_timers[index] = NULL;
1319 if (!CLOCK_VIRTUAL_P(pt->pt_type))
1320 callout_halt(&pt->pt_ch, &timer_lock);
1321 if (pt->pt_queued)
1322 TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1323 mutex_spin_exit(&timer_lock);
1324 if (!CLOCK_VIRTUAL_P(pt->pt_type))
1325 callout_destroy(&pt->pt_ch);
1326 pool_put(&ptimer_pool, pt);
1327 }
1328
1329 /*
1330 * Decrement an interval timer by a specified number
1331 * of nanoseconds, which must be less than a second,
1332 * i.e. < 1000000000. If the timer expires, then reload
1333 * it. In this case, carry over (nsec - old value) to
1334 * reduce the value reloaded into the timer so that
1335 * the timer does not drift. This routine assumes
1336 * that it is called in a context where the timers
1337 * on which it is operating cannot change in value.
1338 */
1339 static int
1340 itimerdecr(struct ptimer *pt, int nsec)
1341 {
1342 struct itimerspec *itp;
1343
1344 KASSERT(mutex_owned(&timer_lock));
1345 KASSERT(CLOCK_VIRTUAL_P(pt->pt_type));
1346
1347 itp = &pt->pt_time;
1348 if (itp->it_value.tv_nsec < nsec) {
1349 if (itp->it_value.tv_sec == 0) {
1350 /* expired, and already in next interval */
1351 nsec -= itp->it_value.tv_nsec;
1352 goto expire;
1353 }
1354 itp->it_value.tv_nsec += 1000000000;
1355 itp->it_value.tv_sec--;
1356 }
1357 itp->it_value.tv_nsec -= nsec;
1358 nsec = 0;
1359 if (timespecisset(&itp->it_value))
1360 return (1);
1361 /* expired, exactly at end of interval */
1362 expire:
1363 if (timespecisset(&itp->it_interval)) {
1364 itp->it_value = itp->it_interval;
1365 itp->it_value.tv_nsec -= nsec;
1366 if (itp->it_value.tv_nsec < 0) {
1367 itp->it_value.tv_nsec += 1000000000;
1368 itp->it_value.tv_sec--;
1369 }
1370 timer_settime(pt);
1371 } else
1372 itp->it_value.tv_nsec = 0; /* sec is already 0 */
1373 return (0);
1374 }
1375
1376 static void
1377 itimerfire(struct ptimer *pt)
1378 {
1379
1380 KASSERT(mutex_owned(&timer_lock));
1381
1382 /*
1383 * XXX Can overrun, but we don't do signal queueing yet, anyway.
1384 * XXX Relying on the clock interrupt is stupid.
1385 */
1386 if ((pt->pt_ev.sigev_notify == SIGEV_SA && pt->pt_proc->p_sa == NULL) ||
1387 (pt->pt_ev.sigev_notify != SIGEV_SIGNAL &&
1388 pt->pt_ev.sigev_notify != SIGEV_SA) || pt->pt_queued)
1389 return;
1390 TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
1391 pt->pt_queued = true;
1392 softint_schedule(timer_sih);
1393 }
1394
1395 void
1396 timer_tick(lwp_t *l, bool user)
1397 {
1398 struct ptimers *pts;
1399 struct ptimer *pt;
1400 proc_t *p;
1401
1402 p = l->l_proc;
1403 if (p->p_timers == NULL)
1404 return;
1405
1406 mutex_spin_enter(&timer_lock);
1407 if ((pts = l->l_proc->p_timers) != NULL) {
1408 /*
1409 * Run current process's virtual and profile time, as needed.
1410 */
1411 if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
1412 if (itimerdecr(pt, tick * 1000) == 0)
1413 itimerfire(pt);
1414 if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
1415 if (itimerdecr(pt, tick * 1000) == 0)
1416 itimerfire(pt);
1417 }
1418 mutex_spin_exit(&timer_lock);
1419 }
1420
1421 #ifdef KERN_SA
1422 /*
1423 * timer_sa_intr:
1424 *
1425 * SIGEV_SA handling for timer_intr(). We are called (and return)
1426 * with the timer lock held. We know that the process had SA enabled
1427 * when this timer was enqueued. As timer_intr() is a soft interrupt
1428 * handler, SA should still be enabled by the time we get here.
1429 */
1430 static void
1431 timer_sa_intr(struct ptimer *pt, proc_t *p)
1432 {
1433 unsigned int i;
1434 struct sadata *sa;
1435 struct sadata_vp *vp;
1436
1437 /* Cause the process to generate an upcall when it returns. */
1438 if (!p->p_timerpend) {
1439 /*
1440 * XXX stop signals can be processed inside tsleep,
1441 * which can be inside sa_yield's inner loop, which
1442 * makes testing for sa_idle alone insuffucent to
1443 * determine if we really should call setrunnable.
1444 */
1445 pt->pt_poverruns = pt->pt_overruns;
1446 pt->pt_overruns = 0;
1447 i = 1 << pt->pt_entry;
1448 p->p_timers->pts_fired = i;
1449 p->p_timerpend = 1;
1450
1451 sa = p->p_sa;
1452 mutex_enter(&sa->sa_mutex);
1453 SLIST_FOREACH(vp, &sa->sa_vps, savp_next) {
1454 struct lwp *vp_lwp = vp->savp_lwp;
1455 lwp_lock(vp_lwp);
1456 lwp_need_userret(vp_lwp);
1457 if (vp_lwp->l_flag & LW_SA_IDLE) {
1458 vp_lwp->l_flag &= ~LW_SA_IDLE;
1459 lwp_unsleep(vp_lwp, true);
1460 break;
1461 }
1462 lwp_unlock(vp_lwp);
1463 }
1464 mutex_exit(&sa->sa_mutex);
1465 } else {
1466 i = 1 << pt->pt_entry;
1467 if ((p->p_timers->pts_fired & i) == 0) {
1468 pt->pt_poverruns = pt->pt_overruns;
1469 pt->pt_overruns = 0;
1470 p->p_timers->pts_fired |= i;
1471 } else
1472 pt->pt_overruns++;
1473 }
1474 }
1475 #endif /* KERN_SA */
1476
1477 static void
1478 timer_intr(void *cookie)
1479 {
1480 ksiginfo_t ksi;
1481 struct ptimer *pt;
1482 proc_t *p;
1483
1484 mutex_enter(proc_lock);
1485 mutex_spin_enter(&timer_lock);
1486 while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
1487 TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1488 KASSERT(pt->pt_queued);
1489 pt->pt_queued = false;
1490
1491 if (pt->pt_proc->p_timers == NULL) {
1492 /* Process is dying. */
1493 continue;
1494 }
1495 p = pt->pt_proc;
1496 #ifdef KERN_SA
1497 if (pt->pt_ev.sigev_notify == SIGEV_SA) {
1498 timer_sa_intr(pt, p);
1499 continue;
1500 }
1501 #endif /* KERN_SA */
1502 if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL)
1503 continue;
1504 if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
1505 pt->pt_overruns++;
1506 continue;
1507 }
1508
1509 KSI_INIT(&ksi);
1510 ksi.ksi_signo = pt->pt_ev.sigev_signo;
1511 ksi.ksi_code = SI_TIMER;
1512 ksi.ksi_value = pt->pt_ev.sigev_value;
1513 pt->pt_poverruns = pt->pt_overruns;
1514 pt->pt_overruns = 0;
1515 mutex_spin_exit(&timer_lock);
1516 kpsignal(p, &ksi, NULL);
1517 mutex_spin_enter(&timer_lock);
1518 }
1519 mutex_spin_exit(&timer_lock);
1520 mutex_exit(proc_lock);
1521 }
1522
1523 /*
1524 * Check if the time will wrap if set to ts.
1525 *
1526 * ts - timespec describing the new time
1527 * delta - the delta between the current time and ts
1528 */
1529 bool
1530 time_wraps(struct timespec *ts, struct timespec *delta)
1531 {
1532
1533 /*
1534 * Don't allow the time to be set forward so far it
1535 * will wrap and become negative, thus allowing an
1536 * attacker to bypass the next check below. The
1537 * cutoff is 1 year before rollover occurs, so even
1538 * if the attacker uses adjtime(2) to move the time
1539 * past the cutoff, it will take a very long time
1540 * to get to the wrap point.
1541 */
1542 if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
1543 (delta->tv_sec < 0 || delta->tv_nsec < 0))
1544 return true;
1545
1546 return false;
1547 }
1548