kern_time.c revision 1.172 1 /* $NetBSD: kern_time.c,v 1.172 2012/02/19 21:06:55 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1986, 1989, 1993
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
61 */
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.172 2012/02/19 21:06:55 rmind Exp $");
65
66 #include <sys/param.h>
67 #include <sys/resourcevar.h>
68 #include <sys/kernel.h>
69 #include <sys/systm.h>
70 #include <sys/proc.h>
71 #include <sys/vnode.h>
72 #include <sys/signalvar.h>
73 #include <sys/syslog.h>
74 #include <sys/timetc.h>
75 #include <sys/timex.h>
76 #include <sys/kauth.h>
77 #include <sys/mount.h>
78 #include <sys/syscallargs.h>
79 #include <sys/cpu.h>
80
81 static void timer_intr(void *);
82 static void itimerfire(struct ptimer *);
83 static void itimerfree(struct ptimers *, int);
84
85 kmutex_t timer_lock;
86
87 static void *timer_sih;
88 static TAILQ_HEAD(, ptimer) timer_queue;
89
90 struct pool ptimer_pool, ptimers_pool;
91
92 #define CLOCK_VIRTUAL_P(clockid) \
93 ((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)
94
95 CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
96 CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
97 CTASSERT(ITIMER_PROF == CLOCK_PROF);
98 CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC);
99
100 /*
101 * Initialize timekeeping.
102 */
103 void
104 time_init(void)
105 {
106
107 pool_init(&ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
108 &pool_allocator_nointr, IPL_NONE);
109 pool_init(&ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
110 &pool_allocator_nointr, IPL_NONE);
111 }
112
113 void
114 time_init2(void)
115 {
116
117 TAILQ_INIT(&timer_queue);
118 mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
119 timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
120 timer_intr, NULL);
121 }
122
123 /* Time of day and interval timer support.
124 *
125 * These routines provide the kernel entry points to get and set
126 * the time-of-day and per-process interval timers. Subroutines
127 * here provide support for adding and subtracting timeval structures
128 * and decrementing interval timers, optionally reloading the interval
129 * timers when they expire.
130 */
131
132 /* This function is used by clock_settime and settimeofday */
133 static int
134 settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
135 {
136 struct timespec delta, now;
137 int s;
138
139 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
140 s = splclock();
141 nanotime(&now);
142 timespecsub(ts, &now, &delta);
143
144 if (check_kauth && kauth_authorize_system(kauth_cred_get(),
145 KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
146 &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
147 splx(s);
148 return (EPERM);
149 }
150
151 #ifdef notyet
152 if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
153 splx(s);
154 return (EPERM);
155 }
156 #endif
157
158 tc_setclock(ts);
159
160 timespecadd(&boottime, &delta, &boottime);
161
162 resettodr();
163 splx(s);
164
165 return (0);
166 }
167
168 int
169 settime(struct proc *p, struct timespec *ts)
170 {
171 return (settime1(p, ts, true));
172 }
173
174 /* ARGSUSED */
175 int
176 sys___clock_gettime50(struct lwp *l,
177 const struct sys___clock_gettime50_args *uap, register_t *retval)
178 {
179 /* {
180 syscallarg(clockid_t) clock_id;
181 syscallarg(struct timespec *) tp;
182 } */
183 int error;
184 struct timespec ats;
185
186 error = clock_gettime1(SCARG(uap, clock_id), &ats);
187 if (error != 0)
188 return error;
189
190 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
191 }
192
193 int
194 clock_gettime1(clockid_t clock_id, struct timespec *ts)
195 {
196
197 switch (clock_id) {
198 case CLOCK_REALTIME:
199 nanotime(ts);
200 break;
201 case CLOCK_MONOTONIC:
202 nanouptime(ts);
203 break;
204 default:
205 return EINVAL;
206 }
207
208 return 0;
209 }
210
211 /* ARGSUSED */
212 int
213 sys___clock_settime50(struct lwp *l,
214 const struct sys___clock_settime50_args *uap, register_t *retval)
215 {
216 /* {
217 syscallarg(clockid_t) clock_id;
218 syscallarg(const struct timespec *) tp;
219 } */
220 int error;
221 struct timespec ats;
222
223 if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
224 return error;
225
226 return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
227 }
228
229
230 int
231 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
232 bool check_kauth)
233 {
234 int error;
235
236 switch (clock_id) {
237 case CLOCK_REALTIME:
238 if ((error = settime1(p, tp, check_kauth)) != 0)
239 return (error);
240 break;
241 case CLOCK_MONOTONIC:
242 return (EINVAL); /* read-only clock */
243 default:
244 return (EINVAL);
245 }
246
247 return 0;
248 }
249
250 int
251 sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
252 register_t *retval)
253 {
254 /* {
255 syscallarg(clockid_t) clock_id;
256 syscallarg(struct timespec *) tp;
257 } */
258 struct timespec ts;
259 int error = 0;
260
261 if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
262 return error;
263
264 if (SCARG(uap, tp))
265 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
266
267 return error;
268 }
269
270 int
271 clock_getres1(clockid_t clock_id, struct timespec *ts)
272 {
273
274 switch (clock_id) {
275 case CLOCK_REALTIME:
276 case CLOCK_MONOTONIC:
277 ts->tv_sec = 0;
278 if (tc_getfrequency() > 1000000000)
279 ts->tv_nsec = 1;
280 else
281 ts->tv_nsec = 1000000000 / tc_getfrequency();
282 break;
283 default:
284 return EINVAL;
285 }
286
287 return 0;
288 }
289
290 /* ARGSUSED */
291 int
292 sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
293 register_t *retval)
294 {
295 /* {
296 syscallarg(struct timespec *) rqtp;
297 syscallarg(struct timespec *) rmtp;
298 } */
299 struct timespec rmt, rqt;
300 int error, error1;
301
302 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
303 if (error)
304 return (error);
305
306 error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
307 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
308 return error;
309
310 error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
311 return error1 ? error1 : error;
312 }
313
314 int
315 nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
316 {
317 struct timespec rmtstart;
318 int error, timo;
319
320 if ((error = itimespecfix(rqt)) != 0)
321 return error;
322
323 timo = tstohz(rqt);
324 /*
325 * Avoid inadvertantly sleeping forever
326 */
327 if (timo == 0)
328 timo = 1;
329 getnanouptime(&rmtstart);
330 again:
331 error = kpause("nanoslp", true, timo, NULL);
332 if (rmt != NULL || error == 0) {
333 struct timespec rmtend;
334 struct timespec t0;
335 struct timespec *t;
336
337 getnanouptime(&rmtend);
338 t = (rmt != NULL) ? rmt : &t0;
339 timespecsub(&rmtend, &rmtstart, t);
340 timespecsub(rqt, t, t);
341 if (t->tv_sec < 0)
342 timespecclear(t);
343 if (error == 0) {
344 timo = tstohz(t);
345 if (timo > 0)
346 goto again;
347 }
348 }
349
350 if (error == ERESTART)
351 error = EINTR;
352 if (error == EWOULDBLOCK)
353 error = 0;
354
355 return error;
356 }
357
358 /* ARGSUSED */
359 int
360 sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
361 register_t *retval)
362 {
363 /* {
364 syscallarg(struct timeval *) tp;
365 syscallarg(void *) tzp; really "struct timezone *";
366 } */
367 struct timeval atv;
368 int error = 0;
369 struct timezone tzfake;
370
371 if (SCARG(uap, tp)) {
372 microtime(&atv);
373 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
374 if (error)
375 return (error);
376 }
377 if (SCARG(uap, tzp)) {
378 /*
379 * NetBSD has no kernel notion of time zone, so we just
380 * fake up a timezone struct and return it if demanded.
381 */
382 tzfake.tz_minuteswest = 0;
383 tzfake.tz_dsttime = 0;
384 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
385 }
386 return (error);
387 }
388
389 /* ARGSUSED */
390 int
391 sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
392 register_t *retval)
393 {
394 /* {
395 syscallarg(const struct timeval *) tv;
396 syscallarg(const void *) tzp; really "const struct timezone *";
397 } */
398
399 return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
400 }
401
402 int
403 settimeofday1(const struct timeval *utv, bool userspace,
404 const void *utzp, struct lwp *l, bool check_kauth)
405 {
406 struct timeval atv;
407 struct timespec ts;
408 int error;
409
410 /* Verify all parameters before changing time. */
411
412 /*
413 * NetBSD has no kernel notion of time zone, and only an
414 * obsolete program would try to set it, so we log a warning.
415 */
416 if (utzp)
417 log(LOG_WARNING, "pid %d attempted to set the "
418 "(obsolete) kernel time zone\n", l->l_proc->p_pid);
419
420 if (utv == NULL)
421 return 0;
422
423 if (userspace) {
424 if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
425 return error;
426 utv = &atv;
427 }
428
429 TIMEVAL_TO_TIMESPEC(utv, &ts);
430 return settime1(l->l_proc, &ts, check_kauth);
431 }
432
433 int time_adjusted; /* set if an adjustment is made */
434
435 /* ARGSUSED */
436 int
437 sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
438 register_t *retval)
439 {
440 /* {
441 syscallarg(const struct timeval *) delta;
442 syscallarg(struct timeval *) olddelta;
443 } */
444 int error = 0;
445 struct timeval atv, oldatv;
446
447 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
448 KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
449 return error;
450
451 if (SCARG(uap, delta)) {
452 error = copyin(SCARG(uap, delta), &atv,
453 sizeof(*SCARG(uap, delta)));
454 if (error)
455 return (error);
456 }
457 adjtime1(SCARG(uap, delta) ? &atv : NULL,
458 SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
459 if (SCARG(uap, olddelta))
460 error = copyout(&oldatv, SCARG(uap, olddelta),
461 sizeof(*SCARG(uap, olddelta)));
462 return error;
463 }
464
465 void
466 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
467 {
468 extern int64_t time_adjtime; /* in kern_ntptime.c */
469
470 if (olddelta) {
471 mutex_spin_enter(&timecounter_lock);
472 olddelta->tv_sec = time_adjtime / 1000000;
473 olddelta->tv_usec = time_adjtime % 1000000;
474 if (olddelta->tv_usec < 0) {
475 olddelta->tv_usec += 1000000;
476 olddelta->tv_sec--;
477 }
478 mutex_spin_exit(&timecounter_lock);
479 }
480
481 if (delta) {
482 mutex_spin_enter(&timecounter_lock);
483 time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
484
485 if (time_adjtime) {
486 /* We need to save the system time during shutdown */
487 time_adjusted |= 1;
488 }
489 mutex_spin_exit(&timecounter_lock);
490 }
491 }
492
493 /*
494 * Interval timer support. Both the BSD getitimer() family and the POSIX
495 * timer_*() family of routines are supported.
496 *
497 * All timers are kept in an array pointed to by p_timers, which is
498 * allocated on demand - many processes don't use timers at all. The
499 * first three elements in this array are reserved for the BSD timers:
500 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element
501 * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be
502 * allocated by the timer_create() syscall.
503 *
504 * Realtime timers are kept in the ptimer structure as an absolute
505 * time; virtual time timers are kept as a linked list of deltas.
506 * Virtual time timers are processed in the hardclock() routine of
507 * kern_clock.c. The real time timer is processed by a callout
508 * routine, called from the softclock() routine. Since a callout may
509 * be delayed in real time due to interrupt processing in the system,
510 * it is possible for the real time timeout routine (realtimeexpire,
511 * given below), to be delayed in real time past when it is supposed
512 * to occur. It does not suffice, therefore, to reload the real timer
513 * .it_value from the real time timers .it_interval. Rather, we
514 * compute the next time in absolute time the timer should go off. */
515
516 /* Allocate a POSIX realtime timer. */
517 int
518 sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
519 register_t *retval)
520 {
521 /* {
522 syscallarg(clockid_t) clock_id;
523 syscallarg(struct sigevent *) evp;
524 syscallarg(timer_t *) timerid;
525 } */
526
527 return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
528 SCARG(uap, evp), copyin, l);
529 }
530
531 int
532 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
533 copyin_t fetch_event, struct lwp *l)
534 {
535 int error;
536 timer_t timerid;
537 struct ptimers *pts;
538 struct ptimer *pt;
539 struct proc *p;
540
541 p = l->l_proc;
542
543 if ((u_int)id > CLOCK_MONOTONIC)
544 return (EINVAL);
545
546 if ((pts = p->p_timers) == NULL)
547 pts = timers_alloc(p);
548
549 pt = pool_get(&ptimer_pool, PR_WAITOK);
550 if (evp != NULL) {
551 if (((error =
552 (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
553 ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
554 (pt->pt_ev.sigev_notify > SIGEV_SA)) ||
555 (pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
556 (pt->pt_ev.sigev_signo <= 0 ||
557 pt->pt_ev.sigev_signo >= NSIG))) {
558 pool_put(&ptimer_pool, pt);
559 return (error ? error : EINVAL);
560 }
561 }
562
563 /* Find a free timer slot, skipping those reserved for setitimer(). */
564 mutex_spin_enter(&timer_lock);
565 for (timerid = 3; timerid < TIMER_MAX; timerid++)
566 if (pts->pts_timers[timerid] == NULL)
567 break;
568 if (timerid == TIMER_MAX) {
569 mutex_spin_exit(&timer_lock);
570 pool_put(&ptimer_pool, pt);
571 return EAGAIN;
572 }
573 if (evp == NULL) {
574 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
575 switch (id) {
576 case CLOCK_REALTIME:
577 case CLOCK_MONOTONIC:
578 pt->pt_ev.sigev_signo = SIGALRM;
579 break;
580 case CLOCK_VIRTUAL:
581 pt->pt_ev.sigev_signo = SIGVTALRM;
582 break;
583 case CLOCK_PROF:
584 pt->pt_ev.sigev_signo = SIGPROF;
585 break;
586 }
587 pt->pt_ev.sigev_value.sival_int = timerid;
588 }
589 pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
590 pt->pt_info.ksi_errno = 0;
591 pt->pt_info.ksi_code = 0;
592 pt->pt_info.ksi_pid = p->p_pid;
593 pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
594 pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
595 pt->pt_type = id;
596 pt->pt_proc = p;
597 pt->pt_overruns = 0;
598 pt->pt_poverruns = 0;
599 pt->pt_entry = timerid;
600 pt->pt_queued = false;
601 timespecclear(&pt->pt_time.it_value);
602 if (!CLOCK_VIRTUAL_P(id))
603 callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
604 else
605 pt->pt_active = 0;
606
607 pts->pts_timers[timerid] = pt;
608 mutex_spin_exit(&timer_lock);
609
610 return copyout(&timerid, tid, sizeof(timerid));
611 }
612
613 /* Delete a POSIX realtime timer */
614 int
615 sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
616 register_t *retval)
617 {
618 /* {
619 syscallarg(timer_t) timerid;
620 } */
621 struct proc *p = l->l_proc;
622 timer_t timerid;
623 struct ptimers *pts;
624 struct ptimer *pt, *ptn;
625
626 timerid = SCARG(uap, timerid);
627 pts = p->p_timers;
628
629 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
630 return (EINVAL);
631
632 mutex_spin_enter(&timer_lock);
633 if ((pt = pts->pts_timers[timerid]) == NULL) {
634 mutex_spin_exit(&timer_lock);
635 return (EINVAL);
636 }
637 if (CLOCK_VIRTUAL_P(pt->pt_type)) {
638 if (pt->pt_active) {
639 ptn = LIST_NEXT(pt, pt_list);
640 LIST_REMOVE(pt, pt_list);
641 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
642 timespecadd(&pt->pt_time.it_value,
643 &ptn->pt_time.it_value,
644 &ptn->pt_time.it_value);
645 pt->pt_active = 0;
646 }
647 }
648 itimerfree(pts, timerid);
649
650 return (0);
651 }
652
653 /*
654 * Set up the given timer. The value in pt->pt_time.it_value is taken
655 * to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC timers and
656 * a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
657 */
658 void
659 timer_settime(struct ptimer *pt)
660 {
661 struct ptimer *ptn, *pptn;
662 struct ptlist *ptl;
663
664 KASSERT(mutex_owned(&timer_lock));
665
666 if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
667 callout_halt(&pt->pt_ch, &timer_lock);
668 if (timespecisset(&pt->pt_time.it_value)) {
669 /*
670 * Don't need to check tshzto() return value, here.
671 * callout_reset() does it for us.
672 */
673 callout_reset(&pt->pt_ch,
674 pt->pt_type == CLOCK_MONOTONIC ?
675 tshztoup(&pt->pt_time.it_value) :
676 tshzto(&pt->pt_time.it_value),
677 realtimerexpire, pt);
678 }
679 } else {
680 if (pt->pt_active) {
681 ptn = LIST_NEXT(pt, pt_list);
682 LIST_REMOVE(pt, pt_list);
683 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
684 timespecadd(&pt->pt_time.it_value,
685 &ptn->pt_time.it_value,
686 &ptn->pt_time.it_value);
687 }
688 if (timespecisset(&pt->pt_time.it_value)) {
689 if (pt->pt_type == CLOCK_VIRTUAL)
690 ptl = &pt->pt_proc->p_timers->pts_virtual;
691 else
692 ptl = &pt->pt_proc->p_timers->pts_prof;
693
694 for (ptn = LIST_FIRST(ptl), pptn = NULL;
695 ptn && timespeccmp(&pt->pt_time.it_value,
696 &ptn->pt_time.it_value, >);
697 pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
698 timespecsub(&pt->pt_time.it_value,
699 &ptn->pt_time.it_value,
700 &pt->pt_time.it_value);
701
702 if (pptn)
703 LIST_INSERT_AFTER(pptn, pt, pt_list);
704 else
705 LIST_INSERT_HEAD(ptl, pt, pt_list);
706
707 for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
708 timespecsub(&ptn->pt_time.it_value,
709 &pt->pt_time.it_value,
710 &ptn->pt_time.it_value);
711
712 pt->pt_active = 1;
713 } else
714 pt->pt_active = 0;
715 }
716 }
717
718 void
719 timer_gettime(struct ptimer *pt, struct itimerspec *aits)
720 {
721 struct timespec now;
722 struct ptimer *ptn;
723
724 KASSERT(mutex_owned(&timer_lock));
725
726 *aits = pt->pt_time;
727 if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
728 /*
729 * Convert from absolute to relative time in .it_value
730 * part of real time timer. If time for real time
731 * timer has passed return 0, else return difference
732 * between current time and time for the timer to go
733 * off.
734 */
735 if (timespecisset(&aits->it_value)) {
736 if (pt->pt_type == CLOCK_REALTIME) {
737 getnanotime(&now);
738 } else { /* CLOCK_MONOTONIC */
739 getnanouptime(&now);
740 }
741 if (timespeccmp(&aits->it_value, &now, <))
742 timespecclear(&aits->it_value);
743 else
744 timespecsub(&aits->it_value, &now,
745 &aits->it_value);
746 }
747 } else if (pt->pt_active) {
748 if (pt->pt_type == CLOCK_VIRTUAL)
749 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
750 else
751 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
752 for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
753 timespecadd(&aits->it_value,
754 &ptn->pt_time.it_value, &aits->it_value);
755 KASSERT(ptn != NULL); /* pt should be findable on the list */
756 } else
757 timespecclear(&aits->it_value);
758 }
759
760
761
762 /* Set and arm a POSIX realtime timer */
763 int
764 sys___timer_settime50(struct lwp *l,
765 const struct sys___timer_settime50_args *uap,
766 register_t *retval)
767 {
768 /* {
769 syscallarg(timer_t) timerid;
770 syscallarg(int) flags;
771 syscallarg(const struct itimerspec *) value;
772 syscallarg(struct itimerspec *) ovalue;
773 } */
774 int error;
775 struct itimerspec value, ovalue, *ovp = NULL;
776
777 if ((error = copyin(SCARG(uap, value), &value,
778 sizeof(struct itimerspec))) != 0)
779 return (error);
780
781 if (SCARG(uap, ovalue))
782 ovp = &ovalue;
783
784 if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
785 SCARG(uap, flags), l->l_proc)) != 0)
786 return error;
787
788 if (ovp)
789 return copyout(&ovalue, SCARG(uap, ovalue),
790 sizeof(struct itimerspec));
791 return 0;
792 }
793
794 int
795 dotimer_settime(int timerid, struct itimerspec *value,
796 struct itimerspec *ovalue, int flags, struct proc *p)
797 {
798 struct timespec now;
799 struct itimerspec val, oval;
800 struct ptimers *pts;
801 struct ptimer *pt;
802 int error;
803
804 pts = p->p_timers;
805
806 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
807 return EINVAL;
808 val = *value;
809 if ((error = itimespecfix(&val.it_value)) != 0 ||
810 (error = itimespecfix(&val.it_interval)) != 0)
811 return error;
812
813 mutex_spin_enter(&timer_lock);
814 if ((pt = pts->pts_timers[timerid]) == NULL) {
815 mutex_spin_exit(&timer_lock);
816 return EINVAL;
817 }
818
819 oval = pt->pt_time;
820 pt->pt_time = val;
821
822 /*
823 * If we've been passed a relative time for a realtime timer,
824 * convert it to absolute; if an absolute time for a virtual
825 * timer, convert it to relative and make sure we don't set it
826 * to zero, which would cancel the timer, or let it go
827 * negative, which would confuse the comparison tests.
828 */
829 if (timespecisset(&pt->pt_time.it_value)) {
830 if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
831 if ((flags & TIMER_ABSTIME) == 0) {
832 if (pt->pt_type == CLOCK_REALTIME) {
833 getnanotime(&now);
834 } else { /* CLOCK_MONOTONIC */
835 getnanouptime(&now);
836 }
837 timespecadd(&pt->pt_time.it_value, &now,
838 &pt->pt_time.it_value);
839 }
840 } else {
841 if ((flags & TIMER_ABSTIME) != 0) {
842 getnanotime(&now);
843 timespecsub(&pt->pt_time.it_value, &now,
844 &pt->pt_time.it_value);
845 if (!timespecisset(&pt->pt_time.it_value) ||
846 pt->pt_time.it_value.tv_sec < 0) {
847 pt->pt_time.it_value.tv_sec = 0;
848 pt->pt_time.it_value.tv_nsec = 1;
849 }
850 }
851 }
852 }
853
854 timer_settime(pt);
855 mutex_spin_exit(&timer_lock);
856
857 if (ovalue)
858 *ovalue = oval;
859
860 return (0);
861 }
862
863 /* Return the time remaining until a POSIX timer fires. */
864 int
865 sys___timer_gettime50(struct lwp *l,
866 const struct sys___timer_gettime50_args *uap, register_t *retval)
867 {
868 /* {
869 syscallarg(timer_t) timerid;
870 syscallarg(struct itimerspec *) value;
871 } */
872 struct itimerspec its;
873 int error;
874
875 if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
876 &its)) != 0)
877 return error;
878
879 return copyout(&its, SCARG(uap, value), sizeof(its));
880 }
881
882 int
883 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
884 {
885 struct ptimer *pt;
886 struct ptimers *pts;
887
888 pts = p->p_timers;
889 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
890 return (EINVAL);
891 mutex_spin_enter(&timer_lock);
892 if ((pt = pts->pts_timers[timerid]) == NULL) {
893 mutex_spin_exit(&timer_lock);
894 return (EINVAL);
895 }
896 timer_gettime(pt, its);
897 mutex_spin_exit(&timer_lock);
898
899 return 0;
900 }
901
902 /*
903 * Return the count of the number of times a periodic timer expired
904 * while a notification was already pending. The counter is reset when
905 * a timer expires and a notification can be posted.
906 */
907 int
908 sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
909 register_t *retval)
910 {
911 /* {
912 syscallarg(timer_t) timerid;
913 } */
914 struct proc *p = l->l_proc;
915 struct ptimers *pts;
916 int timerid;
917 struct ptimer *pt;
918
919 timerid = SCARG(uap, timerid);
920
921 pts = p->p_timers;
922 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
923 return (EINVAL);
924 mutex_spin_enter(&timer_lock);
925 if ((pt = pts->pts_timers[timerid]) == NULL) {
926 mutex_spin_exit(&timer_lock);
927 return (EINVAL);
928 }
929 *retval = pt->pt_poverruns;
930 mutex_spin_exit(&timer_lock);
931
932 return (0);
933 }
934
935 /*
936 * Real interval timer expired:
937 * send process whose timer expired an alarm signal.
938 * If time is not set up to reload, then just return.
939 * Else compute next time timer should go off which is > current time.
940 * This is where delay in processing this timeout causes multiple
941 * SIGALRM calls to be compressed into one.
942 */
943 void
944 realtimerexpire(void *arg)
945 {
946 uint64_t last_val, next_val, interval, now_ns;
947 struct timespec now, next;
948 struct ptimer *pt;
949 int backwards;
950
951 pt = arg;
952
953 mutex_spin_enter(&timer_lock);
954 itimerfire(pt);
955
956 if (!timespecisset(&pt->pt_time.it_interval)) {
957 timespecclear(&pt->pt_time.it_value);
958 mutex_spin_exit(&timer_lock);
959 return;
960 }
961
962 if (pt->pt_type == CLOCK_MONOTONIC) {
963 getnanouptime(&now);
964 } else {
965 getnanotime(&now);
966 }
967 backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
968 timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
969 /* Handle the easy case of non-overflown timers first. */
970 if (!backwards && timespeccmp(&next, &now, >)) {
971 pt->pt_time.it_value = next;
972 } else {
973 now_ns = timespec2ns(&now);
974 last_val = timespec2ns(&pt->pt_time.it_value);
975 interval = timespec2ns(&pt->pt_time.it_interval);
976
977 next_val = now_ns +
978 (now_ns - last_val + interval - 1) % interval;
979
980 if (backwards)
981 next_val += interval;
982 else
983 pt->pt_overruns += (now_ns - last_val) / interval;
984
985 pt->pt_time.it_value.tv_sec = next_val / 1000000000;
986 pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
987 }
988
989 /*
990 * Don't need to check tshzto() return value, here.
991 * callout_reset() does it for us.
992 */
993 callout_reset(&pt->pt_ch, pt->pt_type == CLOCK_MONOTONIC ?
994 tshztoup(&pt->pt_time.it_value) : tshzto(&pt->pt_time.it_value),
995 realtimerexpire, pt);
996 mutex_spin_exit(&timer_lock);
997 }
998
999 /* BSD routine to get the value of an interval timer. */
1000 /* ARGSUSED */
1001 int
1002 sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
1003 register_t *retval)
1004 {
1005 /* {
1006 syscallarg(int) which;
1007 syscallarg(struct itimerval *) itv;
1008 } */
1009 struct proc *p = l->l_proc;
1010 struct itimerval aitv;
1011 int error;
1012
1013 error = dogetitimer(p, SCARG(uap, which), &aitv);
1014 if (error)
1015 return error;
1016 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1017 }
1018
1019 int
1020 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1021 {
1022 struct ptimers *pts;
1023 struct ptimer *pt;
1024 struct itimerspec its;
1025
1026 if ((u_int)which > ITIMER_MONOTONIC)
1027 return (EINVAL);
1028
1029 mutex_spin_enter(&timer_lock);
1030 pts = p->p_timers;
1031 if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
1032 timerclear(&itvp->it_value);
1033 timerclear(&itvp->it_interval);
1034 } else {
1035 timer_gettime(pt, &its);
1036 TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
1037 TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
1038 }
1039 mutex_spin_exit(&timer_lock);
1040
1041 return 0;
1042 }
1043
1044 /* BSD routine to set/arm an interval timer. */
1045 /* ARGSUSED */
1046 int
1047 sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
1048 register_t *retval)
1049 {
1050 /* {
1051 syscallarg(int) which;
1052 syscallarg(const struct itimerval *) itv;
1053 syscallarg(struct itimerval *) oitv;
1054 } */
1055 struct proc *p = l->l_proc;
1056 int which = SCARG(uap, which);
1057 struct sys___getitimer50_args getargs;
1058 const struct itimerval *itvp;
1059 struct itimerval aitv;
1060 int error;
1061
1062 if ((u_int)which > ITIMER_MONOTONIC)
1063 return (EINVAL);
1064 itvp = SCARG(uap, itv);
1065 if (itvp &&
1066 (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
1067 return (error);
1068 if (SCARG(uap, oitv) != NULL) {
1069 SCARG(&getargs, which) = which;
1070 SCARG(&getargs, itv) = SCARG(uap, oitv);
1071 if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
1072 return (error);
1073 }
1074 if (itvp == 0)
1075 return (0);
1076
1077 return dosetitimer(p, which, &aitv);
1078 }
1079
1080 int
1081 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1082 {
1083 struct timespec now;
1084 struct ptimers *pts;
1085 struct ptimer *pt, *spare;
1086
1087 KASSERT((u_int)which <= CLOCK_MONOTONIC);
1088 if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1089 return (EINVAL);
1090
1091 /*
1092 * Don't bother allocating data structures if the process just
1093 * wants to clear the timer.
1094 */
1095 spare = NULL;
1096 pts = p->p_timers;
1097 retry:
1098 if (!timerisset(&itvp->it_value) && (pts == NULL ||
1099 pts->pts_timers[which] == NULL))
1100 return (0);
1101 if (pts == NULL)
1102 pts = timers_alloc(p);
1103 mutex_spin_enter(&timer_lock);
1104 pt = pts->pts_timers[which];
1105 if (pt == NULL) {
1106 if (spare == NULL) {
1107 mutex_spin_exit(&timer_lock);
1108 spare = pool_get(&ptimer_pool, PR_WAITOK);
1109 goto retry;
1110 }
1111 pt = spare;
1112 spare = NULL;
1113 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1114 pt->pt_ev.sigev_value.sival_int = which;
1115 pt->pt_overruns = 0;
1116 pt->pt_proc = p;
1117 pt->pt_type = which;
1118 pt->pt_entry = which;
1119 pt->pt_queued = false;
1120 if (pt->pt_type == CLOCK_REALTIME)
1121 callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
1122 else
1123 pt->pt_active = 0;
1124
1125 switch (which) {
1126 case ITIMER_REAL:
1127 case ITIMER_MONOTONIC:
1128 pt->pt_ev.sigev_signo = SIGALRM;
1129 break;
1130 case ITIMER_VIRTUAL:
1131 pt->pt_ev.sigev_signo = SIGVTALRM;
1132 break;
1133 case ITIMER_PROF:
1134 pt->pt_ev.sigev_signo = SIGPROF;
1135 break;
1136 }
1137 pts->pts_timers[which] = pt;
1138 }
1139
1140 TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
1141 TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
1142
1143 if (timespecisset(&pt->pt_time.it_value)) {
1144 /* Convert to absolute time */
1145 /* XXX need to wrap in splclock for timecounters case? */
1146 switch (which) {
1147 case ITIMER_REAL:
1148 getnanotime(&now);
1149 timespecadd(&pt->pt_time.it_value, &now,
1150 &pt->pt_time.it_value);
1151 break;
1152 case ITIMER_MONOTONIC:
1153 getnanouptime(&now);
1154 timespecadd(&pt->pt_time.it_value, &now,
1155 &pt->pt_time.it_value);
1156 break;
1157 default:
1158 break;
1159 }
1160 }
1161 timer_settime(pt);
1162 mutex_spin_exit(&timer_lock);
1163 if (spare != NULL)
1164 pool_put(&ptimer_pool, spare);
1165
1166 return (0);
1167 }
1168
1169 /* Utility routines to manage the array of pointers to timers. */
1170 struct ptimers *
1171 timers_alloc(struct proc *p)
1172 {
1173 struct ptimers *pts;
1174 int i;
1175
1176 pts = pool_get(&ptimers_pool, PR_WAITOK);
1177 LIST_INIT(&pts->pts_virtual);
1178 LIST_INIT(&pts->pts_prof);
1179 for (i = 0; i < TIMER_MAX; i++)
1180 pts->pts_timers[i] = NULL;
1181 pts->pts_fired = 0;
1182 mutex_spin_enter(&timer_lock);
1183 if (p->p_timers == NULL) {
1184 p->p_timers = pts;
1185 mutex_spin_exit(&timer_lock);
1186 return pts;
1187 }
1188 mutex_spin_exit(&timer_lock);
1189 pool_put(&ptimers_pool, pts);
1190 return p->p_timers;
1191 }
1192
1193 /*
1194 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1195 * then clean up all timers and free all the data structures. If
1196 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1197 * by timer_create(), not the BSD setitimer() timers, and only free the
1198 * structure if none of those remain.
1199 */
1200 void
1201 timers_free(struct proc *p, int which)
1202 {
1203 struct ptimers *pts;
1204 struct ptimer *ptn;
1205 struct timespec ts;
1206 int i;
1207
1208 if (p->p_timers == NULL)
1209 return;
1210
1211 pts = p->p_timers;
1212 mutex_spin_enter(&timer_lock);
1213 if (which == TIMERS_ALL) {
1214 p->p_timers = NULL;
1215 i = 0;
1216 } else {
1217 timespecclear(&ts);
1218 for (ptn = LIST_FIRST(&pts->pts_virtual);
1219 ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1220 ptn = LIST_NEXT(ptn, pt_list)) {
1221 KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1222 timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1223 }
1224 LIST_FIRST(&pts->pts_virtual) = NULL;
1225 if (ptn) {
1226 KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1227 timespecadd(&ts, &ptn->pt_time.it_value,
1228 &ptn->pt_time.it_value);
1229 LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
1230 }
1231 timespecclear(&ts);
1232 for (ptn = LIST_FIRST(&pts->pts_prof);
1233 ptn && ptn != pts->pts_timers[ITIMER_PROF];
1234 ptn = LIST_NEXT(ptn, pt_list)) {
1235 KASSERT(ptn->pt_type == CLOCK_PROF);
1236 timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1237 }
1238 LIST_FIRST(&pts->pts_prof) = NULL;
1239 if (ptn) {
1240 KASSERT(ptn->pt_type == CLOCK_PROF);
1241 timespecadd(&ts, &ptn->pt_time.it_value,
1242 &ptn->pt_time.it_value);
1243 LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
1244 }
1245 i = 3;
1246 }
1247 for ( ; i < TIMER_MAX; i++) {
1248 if (pts->pts_timers[i] != NULL) {
1249 itimerfree(pts, i);
1250 mutex_spin_enter(&timer_lock);
1251 }
1252 }
1253 if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
1254 pts->pts_timers[2] == NULL) {
1255 p->p_timers = NULL;
1256 mutex_spin_exit(&timer_lock);
1257 pool_put(&ptimers_pool, pts);
1258 } else
1259 mutex_spin_exit(&timer_lock);
1260 }
1261
1262 static void
1263 itimerfree(struct ptimers *pts, int index)
1264 {
1265 struct ptimer *pt;
1266
1267 KASSERT(mutex_owned(&timer_lock));
1268
1269 pt = pts->pts_timers[index];
1270 pts->pts_timers[index] = NULL;
1271 if (!CLOCK_VIRTUAL_P(pt->pt_type))
1272 callout_halt(&pt->pt_ch, &timer_lock);
1273 if (pt->pt_queued)
1274 TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1275 mutex_spin_exit(&timer_lock);
1276 if (!CLOCK_VIRTUAL_P(pt->pt_type))
1277 callout_destroy(&pt->pt_ch);
1278 pool_put(&ptimer_pool, pt);
1279 }
1280
1281 /*
1282 * Decrement an interval timer by a specified number
1283 * of nanoseconds, which must be less than a second,
1284 * i.e. < 1000000000. If the timer expires, then reload
1285 * it. In this case, carry over (nsec - old value) to
1286 * reduce the value reloaded into the timer so that
1287 * the timer does not drift. This routine assumes
1288 * that it is called in a context where the timers
1289 * on which it is operating cannot change in value.
1290 */
1291 static int
1292 itimerdecr(struct ptimer *pt, int nsec)
1293 {
1294 struct itimerspec *itp;
1295
1296 KASSERT(mutex_owned(&timer_lock));
1297 KASSERT(CLOCK_VIRTUAL_P(pt->pt_type));
1298
1299 itp = &pt->pt_time;
1300 if (itp->it_value.tv_nsec < nsec) {
1301 if (itp->it_value.tv_sec == 0) {
1302 /* expired, and already in next interval */
1303 nsec -= itp->it_value.tv_nsec;
1304 goto expire;
1305 }
1306 itp->it_value.tv_nsec += 1000000000;
1307 itp->it_value.tv_sec--;
1308 }
1309 itp->it_value.tv_nsec -= nsec;
1310 nsec = 0;
1311 if (timespecisset(&itp->it_value))
1312 return (1);
1313 /* expired, exactly at end of interval */
1314 expire:
1315 if (timespecisset(&itp->it_interval)) {
1316 itp->it_value = itp->it_interval;
1317 itp->it_value.tv_nsec -= nsec;
1318 if (itp->it_value.tv_nsec < 0) {
1319 itp->it_value.tv_nsec += 1000000000;
1320 itp->it_value.tv_sec--;
1321 }
1322 timer_settime(pt);
1323 } else
1324 itp->it_value.tv_nsec = 0; /* sec is already 0 */
1325 return (0);
1326 }
1327
1328 static void
1329 itimerfire(struct ptimer *pt)
1330 {
1331
1332 KASSERT(mutex_owned(&timer_lock));
1333
1334 /*
1335 * XXX Can overrun, but we don't do signal queueing yet, anyway.
1336 * XXX Relying on the clock interrupt is stupid.
1337 */
1338 if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
1339 return;
1340 }
1341 TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
1342 pt->pt_queued = true;
1343 softint_schedule(timer_sih);
1344 }
1345
1346 void
1347 timer_tick(lwp_t *l, bool user)
1348 {
1349 struct ptimers *pts;
1350 struct ptimer *pt;
1351 proc_t *p;
1352
1353 p = l->l_proc;
1354 if (p->p_timers == NULL)
1355 return;
1356
1357 mutex_spin_enter(&timer_lock);
1358 if ((pts = l->l_proc->p_timers) != NULL) {
1359 /*
1360 * Run current process's virtual and profile time, as needed.
1361 */
1362 if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
1363 if (itimerdecr(pt, tick * 1000) == 0)
1364 itimerfire(pt);
1365 if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
1366 if (itimerdecr(pt, tick * 1000) == 0)
1367 itimerfire(pt);
1368 }
1369 mutex_spin_exit(&timer_lock);
1370 }
1371
1372 static void
1373 timer_intr(void *cookie)
1374 {
1375 ksiginfo_t ksi;
1376 struct ptimer *pt;
1377 proc_t *p;
1378
1379 mutex_enter(proc_lock);
1380 mutex_spin_enter(&timer_lock);
1381 while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
1382 TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1383 KASSERT(pt->pt_queued);
1384 pt->pt_queued = false;
1385
1386 if (pt->pt_proc->p_timers == NULL) {
1387 /* Process is dying. */
1388 continue;
1389 }
1390 p = pt->pt_proc;
1391 if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
1392 continue;
1393 }
1394 if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
1395 pt->pt_overruns++;
1396 continue;
1397 }
1398
1399 KSI_INIT(&ksi);
1400 ksi.ksi_signo = pt->pt_ev.sigev_signo;
1401 ksi.ksi_code = SI_TIMER;
1402 ksi.ksi_value = pt->pt_ev.sigev_value;
1403 pt->pt_poverruns = pt->pt_overruns;
1404 pt->pt_overruns = 0;
1405 mutex_spin_exit(&timer_lock);
1406 kpsignal(p, &ksi, NULL);
1407 mutex_spin_enter(&timer_lock);
1408 }
1409 mutex_spin_exit(&timer_lock);
1410 mutex_exit(proc_lock);
1411 }
1412
1413 /*
1414 * Check if the time will wrap if set to ts.
1415 *
1416 * ts - timespec describing the new time
1417 * delta - the delta between the current time and ts
1418 */
1419 bool
1420 time_wraps(struct timespec *ts, struct timespec *delta)
1421 {
1422
1423 /*
1424 * Don't allow the time to be set forward so far it
1425 * will wrap and become negative, thus allowing an
1426 * attacker to bypass the next check below. The
1427 * cutoff is 1 year before rollover occurs, so even
1428 * if the attacker uses adjtime(2) to move the time
1429 * past the cutoff, it will take a very long time
1430 * to get to the wrap point.
1431 */
1432 if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
1433 (delta->tv_sec < 0 || delta->tv_nsec < 0))
1434 return true;
1435
1436 return false;
1437 }
1438