Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.175
      1 /*	$NetBSD: kern_time.c,v 1.175 2012/10/02 01:44:28 christos Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Christopher G. Demetriou, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1982, 1986, 1989, 1993
     34  *	The Regents of the University of California.  All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. Neither the name of the University nor the names of its contributors
     45  *    may be used to endorse or promote products derived from this software
     46  *    without specific prior written permission.
     47  *
     48  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58  * SUCH DAMAGE.
     59  *
     60  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     61  */
     62 
     63 #include <sys/cdefs.h>
     64 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.175 2012/10/02 01:44:28 christos Exp $");
     65 
     66 #include <sys/param.h>
     67 #include <sys/resourcevar.h>
     68 #include <sys/kernel.h>
     69 #include <sys/systm.h>
     70 #include <sys/proc.h>
     71 #include <sys/vnode.h>
     72 #include <sys/signalvar.h>
     73 #include <sys/syslog.h>
     74 #include <sys/timetc.h>
     75 #include <sys/timex.h>
     76 #include <sys/kauth.h>
     77 #include <sys/mount.h>
     78 #include <sys/syscallargs.h>
     79 #include <sys/cpu.h>
     80 
     81 static void	timer_intr(void *);
     82 static void	itimerfire(struct ptimer *);
     83 static void	itimerfree(struct ptimers *, int);
     84 
     85 kmutex_t	timer_lock;
     86 
     87 static void	*timer_sih;
     88 static TAILQ_HEAD(, ptimer) timer_queue;
     89 
     90 struct pool ptimer_pool, ptimers_pool;
     91 
     92 #define	CLOCK_VIRTUAL_P(clockid)	\
     93 	((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)
     94 
     95 CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
     96 CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
     97 CTASSERT(ITIMER_PROF == CLOCK_PROF);
     98 CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC);
     99 
    100 /*
    101  * Initialize timekeeping.
    102  */
    103 void
    104 time_init(void)
    105 {
    106 
    107 	pool_init(&ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
    108 	    &pool_allocator_nointr, IPL_NONE);
    109 	pool_init(&ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
    110 	    &pool_allocator_nointr, IPL_NONE);
    111 }
    112 
    113 void
    114 time_init2(void)
    115 {
    116 
    117 	TAILQ_INIT(&timer_queue);
    118 	mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
    119 	timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
    120 	    timer_intr, NULL);
    121 }
    122 
    123 /* Time of day and interval timer support.
    124  *
    125  * These routines provide the kernel entry points to get and set
    126  * the time-of-day and per-process interval timers.  Subroutines
    127  * here provide support for adding and subtracting timeval structures
    128  * and decrementing interval timers, optionally reloading the interval
    129  * timers when they expire.
    130  */
    131 
    132 /* This function is used by clock_settime and settimeofday */
    133 static int
    134 settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
    135 {
    136 	struct timespec delta, now;
    137 	int s;
    138 
    139 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    140 	s = splclock();
    141 	nanotime(&now);
    142 	timespecsub(ts, &now, &delta);
    143 
    144 	if (check_kauth && kauth_authorize_system(kauth_cred_get(),
    145 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
    146 	    &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
    147 		splx(s);
    148 		return (EPERM);
    149 	}
    150 
    151 #ifdef notyet
    152 	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
    153 		splx(s);
    154 		return (EPERM);
    155 	}
    156 #endif
    157 
    158 	tc_setclock(ts);
    159 
    160 	timespecadd(&boottime, &delta, &boottime);
    161 
    162 	resettodr();
    163 	splx(s);
    164 
    165 	return (0);
    166 }
    167 
    168 int
    169 settime(struct proc *p, struct timespec *ts)
    170 {
    171 	return (settime1(p, ts, true));
    172 }
    173 
    174 /* ARGSUSED */
    175 int
    176 sys___clock_gettime50(struct lwp *l,
    177     const struct sys___clock_gettime50_args *uap, register_t *retval)
    178 {
    179 	/* {
    180 		syscallarg(clockid_t) clock_id;
    181 		syscallarg(struct timespec *) tp;
    182 	} */
    183 	int error;
    184 	struct timespec ats;
    185 
    186 	error = clock_gettime1(SCARG(uap, clock_id), &ats);
    187 	if (error != 0)
    188 		return error;
    189 
    190 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    191 }
    192 
    193 int
    194 clock_gettime1(clockid_t clock_id, struct timespec *ts)
    195 {
    196 
    197 	switch (clock_id) {
    198 	case CLOCK_REALTIME:
    199 		nanotime(ts);
    200 		break;
    201 	case CLOCK_MONOTONIC:
    202 		nanouptime(ts);
    203 		break;
    204 	default:
    205 		return EINVAL;
    206 	}
    207 
    208 	return 0;
    209 }
    210 
    211 /* ARGSUSED */
    212 int
    213 sys___clock_settime50(struct lwp *l,
    214     const struct sys___clock_settime50_args *uap, register_t *retval)
    215 {
    216 	/* {
    217 		syscallarg(clockid_t) clock_id;
    218 		syscallarg(const struct timespec *) tp;
    219 	} */
    220 	int error;
    221 	struct timespec ats;
    222 
    223 	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
    224 		return error;
    225 
    226 	return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
    227 }
    228 
    229 
    230 int
    231 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
    232     bool check_kauth)
    233 {
    234 	int error;
    235 
    236 	switch (clock_id) {
    237 	case CLOCK_REALTIME:
    238 		if ((error = settime1(p, tp, check_kauth)) != 0)
    239 			return (error);
    240 		break;
    241 	case CLOCK_MONOTONIC:
    242 		return (EINVAL);	/* read-only clock */
    243 	default:
    244 		return (EINVAL);
    245 	}
    246 
    247 	return 0;
    248 }
    249 
    250 int
    251 sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
    252     register_t *retval)
    253 {
    254 	/* {
    255 		syscallarg(clockid_t) clock_id;
    256 		syscallarg(struct timespec *) tp;
    257 	} */
    258 	struct timespec ts;
    259 	int error = 0;
    260 
    261 	if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
    262 		return error;
    263 
    264 	if (SCARG(uap, tp))
    265 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    266 
    267 	return error;
    268 }
    269 
    270 int
    271 clock_getres1(clockid_t clock_id, struct timespec *ts)
    272 {
    273 
    274 	switch (clock_id) {
    275 	case CLOCK_REALTIME:
    276 	case CLOCK_MONOTONIC:
    277 		ts->tv_sec = 0;
    278 		if (tc_getfrequency() > 1000000000)
    279 			ts->tv_nsec = 1;
    280 		else
    281 			ts->tv_nsec = 1000000000 / tc_getfrequency();
    282 		break;
    283 	default:
    284 		return EINVAL;
    285 	}
    286 
    287 	return 0;
    288 }
    289 
    290 /* ARGSUSED */
    291 int
    292 sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
    293     register_t *retval)
    294 {
    295 	/* {
    296 		syscallarg(struct timespec *) rqtp;
    297 		syscallarg(struct timespec *) rmtp;
    298 	} */
    299 	struct timespec rmt, rqt;
    300 	int error, error1;
    301 
    302 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    303 	if (error)
    304 		return (error);
    305 
    306 	error = nanosleep1(l, CLOCK_MONOTONIC, 0, &rqt,
    307 	    SCARG(uap, rmtp) ? &rmt : NULL);
    308 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
    309 		return error;
    310 
    311 	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
    312 	return error1 ? error1 : error;
    313 }
    314 
    315 /* ARGSUSED */
    316 int
    317 sys_clock_nanosleep(struct lwp *l, const struct sys_clock_nanosleep_args *uap,
    318     register_t *retval)
    319 {
    320 	/* {
    321 		syscallarg(clockid_t) clock_id;
    322 		syscallarg(int) flags;
    323 		syscallarg(struct timespec *) rqtp;
    324 		syscallarg(struct timespec *) rmtp;
    325 	} */
    326 	struct timespec rmt, rqt;
    327 	int error, error1;
    328 
    329 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    330 	if (error)
    331 		return (error);
    332 
    333 	error = nanosleep1(l, SCARG(uap, clock_id), SCARG(uap, flags), &rqt,
    334 	    SCARG(uap, rmtp) ? &rmt : NULL);
    335 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
    336 		return error;
    337 
    338 	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
    339 	return error1 ? error1 : error;
    340 }
    341 
    342 int
    343 nanosleep1(struct lwp *l, clockid_t clock_id, int flags, struct timespec *rqt,
    344     struct timespec *rmt)
    345 {
    346 	struct timespec rmtstart;
    347 	int error, timo;
    348 
    349 	if ((error = clock_gettime1(clock_id, &rmtstart)) != 0)
    350 		return ENOTSUP;
    351 
    352 	if (flags & TIMER_ABSTIME)
    353 		timespecsub(rqt, &rmtstart, rqt);
    354 
    355 	if ((error = itimespecfix(rqt)) != 0)
    356 		return error;
    357 
    358 	timo = tstohz(rqt);
    359 	/*
    360 	 * Avoid inadvertently sleeping forever
    361 	 */
    362 	if (timo == 0)
    363 		timo = 1;
    364 again:
    365 	error = kpause("nanoslp", true, timo, NULL);
    366 	if (rmt != NULL || error == 0) {
    367 		struct timespec rmtend;
    368 		struct timespec t0;
    369 		struct timespec *t;
    370 
    371 		(void)clock_gettime1(clock_id, &rmtend);
    372 		t = (rmt != NULL) ? rmt : &t0;
    373 		timespecsub(&rmtend, &rmtstart, t);
    374 		timespecsub(rqt, t, t);
    375 		if (t->tv_sec < 0)
    376 			timespecclear(t);
    377 		if (error == 0) {
    378 			timo = tstohz(t);
    379 			if (timo > 0)
    380 				goto again;
    381 		}
    382 	}
    383 
    384 	if (error == ERESTART)
    385 		error = EINTR;
    386 	if (error == EWOULDBLOCK)
    387 		error = 0;
    388 
    389 	return error;
    390 }
    391 
    392 /* ARGSUSED */
    393 int
    394 sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
    395     register_t *retval)
    396 {
    397 	/* {
    398 		syscallarg(struct timeval *) tp;
    399 		syscallarg(void *) tzp;		really "struct timezone *";
    400 	} */
    401 	struct timeval atv;
    402 	int error = 0;
    403 	struct timezone tzfake;
    404 
    405 	if (SCARG(uap, tp)) {
    406 		microtime(&atv);
    407 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    408 		if (error)
    409 			return (error);
    410 	}
    411 	if (SCARG(uap, tzp)) {
    412 		/*
    413 		 * NetBSD has no kernel notion of time zone, so we just
    414 		 * fake up a timezone struct and return it if demanded.
    415 		 */
    416 		tzfake.tz_minuteswest = 0;
    417 		tzfake.tz_dsttime = 0;
    418 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    419 	}
    420 	return (error);
    421 }
    422 
    423 /* ARGSUSED */
    424 int
    425 sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
    426     register_t *retval)
    427 {
    428 	/* {
    429 		syscallarg(const struct timeval *) tv;
    430 		syscallarg(const void *) tzp; really "const struct timezone *";
    431 	} */
    432 
    433 	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
    434 }
    435 
    436 int
    437 settimeofday1(const struct timeval *utv, bool userspace,
    438     const void *utzp, struct lwp *l, bool check_kauth)
    439 {
    440 	struct timeval atv;
    441 	struct timespec ts;
    442 	int error;
    443 
    444 	/* Verify all parameters before changing time. */
    445 
    446 	/*
    447 	 * NetBSD has no kernel notion of time zone, and only an
    448 	 * obsolete program would try to set it, so we log a warning.
    449 	 */
    450 	if (utzp)
    451 		log(LOG_WARNING, "pid %d attempted to set the "
    452 		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
    453 
    454 	if (utv == NULL)
    455 		return 0;
    456 
    457 	if (userspace) {
    458 		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
    459 			return error;
    460 		utv = &atv;
    461 	}
    462 
    463 	TIMEVAL_TO_TIMESPEC(utv, &ts);
    464 	return settime1(l->l_proc, &ts, check_kauth);
    465 }
    466 
    467 int	time_adjusted;			/* set if an adjustment is made */
    468 
    469 /* ARGSUSED */
    470 int
    471 sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
    472     register_t *retval)
    473 {
    474 	/* {
    475 		syscallarg(const struct timeval *) delta;
    476 		syscallarg(struct timeval *) olddelta;
    477 	} */
    478 	int error = 0;
    479 	struct timeval atv, oldatv;
    480 
    481 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
    482 	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
    483 		return error;
    484 
    485 	if (SCARG(uap, delta)) {
    486 		error = copyin(SCARG(uap, delta), &atv,
    487 		    sizeof(*SCARG(uap, delta)));
    488 		if (error)
    489 			return (error);
    490 	}
    491 	adjtime1(SCARG(uap, delta) ? &atv : NULL,
    492 	    SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
    493 	if (SCARG(uap, olddelta))
    494 		error = copyout(&oldatv, SCARG(uap, olddelta),
    495 		    sizeof(*SCARG(uap, olddelta)));
    496 	return error;
    497 }
    498 
    499 void
    500 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
    501 {
    502 	extern int64_t time_adjtime;  /* in kern_ntptime.c */
    503 
    504 	if (olddelta) {
    505 		mutex_spin_enter(&timecounter_lock);
    506 		olddelta->tv_sec = time_adjtime / 1000000;
    507 		olddelta->tv_usec = time_adjtime % 1000000;
    508 		if (olddelta->tv_usec < 0) {
    509 			olddelta->tv_usec += 1000000;
    510 			olddelta->tv_sec--;
    511 		}
    512 		mutex_spin_exit(&timecounter_lock);
    513 	}
    514 
    515 	if (delta) {
    516 		mutex_spin_enter(&timecounter_lock);
    517 		time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
    518 
    519 		if (time_adjtime) {
    520 			/* We need to save the system time during shutdown */
    521 			time_adjusted |= 1;
    522 		}
    523 		mutex_spin_exit(&timecounter_lock);
    524 	}
    525 }
    526 
    527 /*
    528  * Interval timer support. Both the BSD getitimer() family and the POSIX
    529  * timer_*() family of routines are supported.
    530  *
    531  * All timers are kept in an array pointed to by p_timers, which is
    532  * allocated on demand - many processes don't use timers at all. The
    533  * first three elements in this array are reserved for the BSD timers:
    534  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element
    535  * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be
    536  * allocated by the timer_create() syscall.
    537  *
    538  * Realtime timers are kept in the ptimer structure as an absolute
    539  * time; virtual time timers are kept as a linked list of deltas.
    540  * Virtual time timers are processed in the hardclock() routine of
    541  * kern_clock.c.  The real time timer is processed by a callout
    542  * routine, called from the softclock() routine.  Since a callout may
    543  * be delayed in real time due to interrupt processing in the system,
    544  * it is possible for the real time timeout routine (realtimeexpire,
    545  * given below), to be delayed in real time past when it is supposed
    546  * to occur.  It does not suffice, therefore, to reload the real timer
    547  * .it_value from the real time timers .it_interval.  Rather, we
    548  * compute the next time in absolute time the timer should go off.  */
    549 
    550 /* Allocate a POSIX realtime timer. */
    551 int
    552 sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
    553     register_t *retval)
    554 {
    555 	/* {
    556 		syscallarg(clockid_t) clock_id;
    557 		syscallarg(struct sigevent *) evp;
    558 		syscallarg(timer_t *) timerid;
    559 	} */
    560 
    561 	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
    562 	    SCARG(uap, evp), copyin, l);
    563 }
    564 
    565 int
    566 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
    567     copyin_t fetch_event, struct lwp *l)
    568 {
    569 	int error;
    570 	timer_t timerid;
    571 	struct ptimers *pts;
    572 	struct ptimer *pt;
    573 	struct proc *p;
    574 
    575 	p = l->l_proc;
    576 
    577 	if ((u_int)id > CLOCK_MONOTONIC)
    578 		return (EINVAL);
    579 
    580 	if ((pts = p->p_timers) == NULL)
    581 		pts = timers_alloc(p);
    582 
    583 	pt = pool_get(&ptimer_pool, PR_WAITOK);
    584 	if (evp != NULL) {
    585 		if (((error =
    586 		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
    587 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
    588 			(pt->pt_ev.sigev_notify > SIGEV_SA)) ||
    589 			(pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
    590 			 (pt->pt_ev.sigev_signo <= 0 ||
    591 			  pt->pt_ev.sigev_signo >= NSIG))) {
    592 			pool_put(&ptimer_pool, pt);
    593 			return (error ? error : EINVAL);
    594 		}
    595 	}
    596 
    597 	/* Find a free timer slot, skipping those reserved for setitimer(). */
    598 	mutex_spin_enter(&timer_lock);
    599 	for (timerid = 3; timerid < TIMER_MAX; timerid++)
    600 		if (pts->pts_timers[timerid] == NULL)
    601 			break;
    602 	if (timerid == TIMER_MAX) {
    603 		mutex_spin_exit(&timer_lock);
    604 		pool_put(&ptimer_pool, pt);
    605 		return EAGAIN;
    606 	}
    607 	if (evp == NULL) {
    608 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    609 		switch (id) {
    610 		case CLOCK_REALTIME:
    611 		case CLOCK_MONOTONIC:
    612 			pt->pt_ev.sigev_signo = SIGALRM;
    613 			break;
    614 		case CLOCK_VIRTUAL:
    615 			pt->pt_ev.sigev_signo = SIGVTALRM;
    616 			break;
    617 		case CLOCK_PROF:
    618 			pt->pt_ev.sigev_signo = SIGPROF;
    619 			break;
    620 		}
    621 		pt->pt_ev.sigev_value.sival_int = timerid;
    622 	}
    623 	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
    624 	pt->pt_info.ksi_errno = 0;
    625 	pt->pt_info.ksi_code = 0;
    626 	pt->pt_info.ksi_pid = p->p_pid;
    627 	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
    628 	pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
    629 	pt->pt_type = id;
    630 	pt->pt_proc = p;
    631 	pt->pt_overruns = 0;
    632 	pt->pt_poverruns = 0;
    633 	pt->pt_entry = timerid;
    634 	pt->pt_queued = false;
    635 	timespecclear(&pt->pt_time.it_value);
    636 	if (!CLOCK_VIRTUAL_P(id))
    637 		callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
    638 	else
    639 		pt->pt_active = 0;
    640 
    641 	pts->pts_timers[timerid] = pt;
    642 	mutex_spin_exit(&timer_lock);
    643 
    644 	return copyout(&timerid, tid, sizeof(timerid));
    645 }
    646 
    647 /* Delete a POSIX realtime timer */
    648 int
    649 sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
    650     register_t *retval)
    651 {
    652 	/* {
    653 		syscallarg(timer_t) timerid;
    654 	} */
    655 	struct proc *p = l->l_proc;
    656 	timer_t timerid;
    657 	struct ptimers *pts;
    658 	struct ptimer *pt, *ptn;
    659 
    660 	timerid = SCARG(uap, timerid);
    661 	pts = p->p_timers;
    662 
    663 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    664 		return (EINVAL);
    665 
    666 	mutex_spin_enter(&timer_lock);
    667 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    668 		mutex_spin_exit(&timer_lock);
    669 		return (EINVAL);
    670 	}
    671 	if (CLOCK_VIRTUAL_P(pt->pt_type)) {
    672 		if (pt->pt_active) {
    673 			ptn = LIST_NEXT(pt, pt_list);
    674 			LIST_REMOVE(pt, pt_list);
    675 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    676 				timespecadd(&pt->pt_time.it_value,
    677 				    &ptn->pt_time.it_value,
    678 				    &ptn->pt_time.it_value);
    679 			pt->pt_active = 0;
    680 		}
    681 	}
    682 	itimerfree(pts, timerid);
    683 
    684 	return (0);
    685 }
    686 
    687 /*
    688  * Set up the given timer. The value in pt->pt_time.it_value is taken
    689  * to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC timers and
    690  * a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
    691  */
    692 void
    693 timer_settime(struct ptimer *pt)
    694 {
    695 	struct ptimer *ptn, *pptn;
    696 	struct ptlist *ptl;
    697 
    698 	KASSERT(mutex_owned(&timer_lock));
    699 
    700 	if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
    701 		callout_halt(&pt->pt_ch, &timer_lock);
    702 		if (timespecisset(&pt->pt_time.it_value)) {
    703 			/*
    704 			 * Don't need to check tshzto() return value, here.
    705 			 * callout_reset() does it for us.
    706 			 */
    707 			callout_reset(&pt->pt_ch,
    708 			    pt->pt_type == CLOCK_MONOTONIC ?
    709 			    tshztoup(&pt->pt_time.it_value) :
    710 			    tshzto(&pt->pt_time.it_value),
    711 			    realtimerexpire, pt);
    712 		}
    713 	} else {
    714 		if (pt->pt_active) {
    715 			ptn = LIST_NEXT(pt, pt_list);
    716 			LIST_REMOVE(pt, pt_list);
    717 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    718 				timespecadd(&pt->pt_time.it_value,
    719 				    &ptn->pt_time.it_value,
    720 				    &ptn->pt_time.it_value);
    721 		}
    722 		if (timespecisset(&pt->pt_time.it_value)) {
    723 			if (pt->pt_type == CLOCK_VIRTUAL)
    724 				ptl = &pt->pt_proc->p_timers->pts_virtual;
    725 			else
    726 				ptl = &pt->pt_proc->p_timers->pts_prof;
    727 
    728 			for (ptn = LIST_FIRST(ptl), pptn = NULL;
    729 			     ptn && timespeccmp(&pt->pt_time.it_value,
    730 				 &ptn->pt_time.it_value, >);
    731 			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
    732 				timespecsub(&pt->pt_time.it_value,
    733 				    &ptn->pt_time.it_value,
    734 				    &pt->pt_time.it_value);
    735 
    736 			if (pptn)
    737 				LIST_INSERT_AFTER(pptn, pt, pt_list);
    738 			else
    739 				LIST_INSERT_HEAD(ptl, pt, pt_list);
    740 
    741 			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
    742 				timespecsub(&ptn->pt_time.it_value,
    743 				    &pt->pt_time.it_value,
    744 				    &ptn->pt_time.it_value);
    745 
    746 			pt->pt_active = 1;
    747 		} else
    748 			pt->pt_active = 0;
    749 	}
    750 }
    751 
    752 void
    753 timer_gettime(struct ptimer *pt, struct itimerspec *aits)
    754 {
    755 	struct timespec now;
    756 	struct ptimer *ptn;
    757 
    758 	KASSERT(mutex_owned(&timer_lock));
    759 
    760 	*aits = pt->pt_time;
    761 	if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
    762 		/*
    763 		 * Convert from absolute to relative time in .it_value
    764 		 * part of real time timer.  If time for real time
    765 		 * timer has passed return 0, else return difference
    766 		 * between current time and time for the timer to go
    767 		 * off.
    768 		 */
    769 		if (timespecisset(&aits->it_value)) {
    770 			if (pt->pt_type == CLOCK_REALTIME) {
    771 				getnanotime(&now);
    772 			} else { /* CLOCK_MONOTONIC */
    773 				getnanouptime(&now);
    774 			}
    775 			if (timespeccmp(&aits->it_value, &now, <))
    776 				timespecclear(&aits->it_value);
    777 			else
    778 				timespecsub(&aits->it_value, &now,
    779 				    &aits->it_value);
    780 		}
    781 	} else if (pt->pt_active) {
    782 		if (pt->pt_type == CLOCK_VIRTUAL)
    783 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
    784 		else
    785 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
    786 		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
    787 			timespecadd(&aits->it_value,
    788 			    &ptn->pt_time.it_value, &aits->it_value);
    789 		KASSERT(ptn != NULL); /* pt should be findable on the list */
    790 	} else
    791 		timespecclear(&aits->it_value);
    792 }
    793 
    794 
    795 
    796 /* Set and arm a POSIX realtime timer */
    797 int
    798 sys___timer_settime50(struct lwp *l,
    799     const struct sys___timer_settime50_args *uap,
    800     register_t *retval)
    801 {
    802 	/* {
    803 		syscallarg(timer_t) timerid;
    804 		syscallarg(int) flags;
    805 		syscallarg(const struct itimerspec *) value;
    806 		syscallarg(struct itimerspec *) ovalue;
    807 	} */
    808 	int error;
    809 	struct itimerspec value, ovalue, *ovp = NULL;
    810 
    811 	if ((error = copyin(SCARG(uap, value), &value,
    812 	    sizeof(struct itimerspec))) != 0)
    813 		return (error);
    814 
    815 	if (SCARG(uap, ovalue))
    816 		ovp = &ovalue;
    817 
    818 	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
    819 	    SCARG(uap, flags), l->l_proc)) != 0)
    820 		return error;
    821 
    822 	if (ovp)
    823 		return copyout(&ovalue, SCARG(uap, ovalue),
    824 		    sizeof(struct itimerspec));
    825 	return 0;
    826 }
    827 
    828 int
    829 dotimer_settime(int timerid, struct itimerspec *value,
    830     struct itimerspec *ovalue, int flags, struct proc *p)
    831 {
    832 	struct timespec now;
    833 	struct itimerspec val, oval;
    834 	struct ptimers *pts;
    835 	struct ptimer *pt;
    836 	int error;
    837 
    838 	pts = p->p_timers;
    839 
    840 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    841 		return EINVAL;
    842 	val = *value;
    843 	if ((error = itimespecfix(&val.it_value)) != 0 ||
    844 	    (error = itimespecfix(&val.it_interval)) != 0)
    845 		return error;
    846 
    847 	mutex_spin_enter(&timer_lock);
    848 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    849 		mutex_spin_exit(&timer_lock);
    850 		return EINVAL;
    851 	}
    852 
    853 	oval = pt->pt_time;
    854 	pt->pt_time = val;
    855 
    856 	/*
    857 	 * If we've been passed a relative time for a realtime timer,
    858 	 * convert it to absolute; if an absolute time for a virtual
    859 	 * timer, convert it to relative and make sure we don't set it
    860 	 * to zero, which would cancel the timer, or let it go
    861 	 * negative, which would confuse the comparison tests.
    862 	 */
    863 	if (timespecisset(&pt->pt_time.it_value)) {
    864 		if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
    865 			if ((flags & TIMER_ABSTIME) == 0) {
    866 				if (pt->pt_type == CLOCK_REALTIME) {
    867 					getnanotime(&now);
    868 				} else { /* CLOCK_MONOTONIC */
    869 					getnanouptime(&now);
    870 				}
    871 				timespecadd(&pt->pt_time.it_value, &now,
    872 				    &pt->pt_time.it_value);
    873 			}
    874 		} else {
    875 			if ((flags & TIMER_ABSTIME) != 0) {
    876 				getnanotime(&now);
    877 				timespecsub(&pt->pt_time.it_value, &now,
    878 				    &pt->pt_time.it_value);
    879 				if (!timespecisset(&pt->pt_time.it_value) ||
    880 				    pt->pt_time.it_value.tv_sec < 0) {
    881 					pt->pt_time.it_value.tv_sec = 0;
    882 					pt->pt_time.it_value.tv_nsec = 1;
    883 				}
    884 			}
    885 		}
    886 	}
    887 
    888 	timer_settime(pt);
    889 	mutex_spin_exit(&timer_lock);
    890 
    891 	if (ovalue)
    892 		*ovalue = oval;
    893 
    894 	return (0);
    895 }
    896 
    897 /* Return the time remaining until a POSIX timer fires. */
    898 int
    899 sys___timer_gettime50(struct lwp *l,
    900     const struct sys___timer_gettime50_args *uap, register_t *retval)
    901 {
    902 	/* {
    903 		syscallarg(timer_t) timerid;
    904 		syscallarg(struct itimerspec *) value;
    905 	} */
    906 	struct itimerspec its;
    907 	int error;
    908 
    909 	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
    910 	    &its)) != 0)
    911 		return error;
    912 
    913 	return copyout(&its, SCARG(uap, value), sizeof(its));
    914 }
    915 
    916 int
    917 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
    918 {
    919 	struct ptimer *pt;
    920 	struct ptimers *pts;
    921 
    922 	pts = p->p_timers;
    923 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    924 		return (EINVAL);
    925 	mutex_spin_enter(&timer_lock);
    926 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    927 		mutex_spin_exit(&timer_lock);
    928 		return (EINVAL);
    929 	}
    930 	timer_gettime(pt, its);
    931 	mutex_spin_exit(&timer_lock);
    932 
    933 	return 0;
    934 }
    935 
    936 /*
    937  * Return the count of the number of times a periodic timer expired
    938  * while a notification was already pending. The counter is reset when
    939  * a timer expires and a notification can be posted.
    940  */
    941 int
    942 sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
    943     register_t *retval)
    944 {
    945 	/* {
    946 		syscallarg(timer_t) timerid;
    947 	} */
    948 	struct proc *p = l->l_proc;
    949 	struct ptimers *pts;
    950 	int timerid;
    951 	struct ptimer *pt;
    952 
    953 	timerid = SCARG(uap, timerid);
    954 
    955 	pts = p->p_timers;
    956 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    957 		return (EINVAL);
    958 	mutex_spin_enter(&timer_lock);
    959 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    960 		mutex_spin_exit(&timer_lock);
    961 		return (EINVAL);
    962 	}
    963 	*retval = pt->pt_poverruns;
    964 	mutex_spin_exit(&timer_lock);
    965 
    966 	return (0);
    967 }
    968 
    969 /*
    970  * Real interval timer expired:
    971  * send process whose timer expired an alarm signal.
    972  * If time is not set up to reload, then just return.
    973  * Else compute next time timer should go off which is > current time.
    974  * This is where delay in processing this timeout causes multiple
    975  * SIGALRM calls to be compressed into one.
    976  */
    977 void
    978 realtimerexpire(void *arg)
    979 {
    980 	uint64_t last_val, next_val, interval, now_ns;
    981 	struct timespec now, next;
    982 	struct ptimer *pt;
    983 	int backwards;
    984 
    985 	pt = arg;
    986 
    987 	mutex_spin_enter(&timer_lock);
    988 	itimerfire(pt);
    989 
    990 	if (!timespecisset(&pt->pt_time.it_interval)) {
    991 		timespecclear(&pt->pt_time.it_value);
    992 		mutex_spin_exit(&timer_lock);
    993 		return;
    994 	}
    995 
    996 	if (pt->pt_type == CLOCK_MONOTONIC) {
    997 		getnanouptime(&now);
    998 	} else {
    999 		getnanotime(&now);
   1000 	}
   1001 	backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
   1002 	timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
   1003 	/* Handle the easy case of non-overflown timers first. */
   1004 	if (!backwards && timespeccmp(&next, &now, >)) {
   1005 		pt->pt_time.it_value = next;
   1006 	} else {
   1007 		now_ns = timespec2ns(&now);
   1008 		last_val = timespec2ns(&pt->pt_time.it_value);
   1009 		interval = timespec2ns(&pt->pt_time.it_interval);
   1010 
   1011 		next_val = now_ns +
   1012 		    (now_ns - last_val + interval - 1) % interval;
   1013 
   1014 		if (backwards)
   1015 			next_val += interval;
   1016 		else
   1017 			pt->pt_overruns += (now_ns - last_val) / interval;
   1018 
   1019 		pt->pt_time.it_value.tv_sec = next_val / 1000000000;
   1020 		pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
   1021 	}
   1022 
   1023 	/*
   1024 	 * Don't need to check tshzto() return value, here.
   1025 	 * callout_reset() does it for us.
   1026 	 */
   1027 	callout_reset(&pt->pt_ch, pt->pt_type == CLOCK_MONOTONIC ?
   1028 	    tshztoup(&pt->pt_time.it_value) : tshzto(&pt->pt_time.it_value),
   1029 	    realtimerexpire, pt);
   1030 	mutex_spin_exit(&timer_lock);
   1031 }
   1032 
   1033 /* BSD routine to get the value of an interval timer. */
   1034 /* ARGSUSED */
   1035 int
   1036 sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
   1037     register_t *retval)
   1038 {
   1039 	/* {
   1040 		syscallarg(int) which;
   1041 		syscallarg(struct itimerval *) itv;
   1042 	} */
   1043 	struct proc *p = l->l_proc;
   1044 	struct itimerval aitv;
   1045 	int error;
   1046 
   1047 	error = dogetitimer(p, SCARG(uap, which), &aitv);
   1048 	if (error)
   1049 		return error;
   1050 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
   1051 }
   1052 
   1053 int
   1054 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
   1055 {
   1056 	struct ptimers *pts;
   1057 	struct ptimer *pt;
   1058 	struct itimerspec its;
   1059 
   1060 	if ((u_int)which > ITIMER_MONOTONIC)
   1061 		return (EINVAL);
   1062 
   1063 	mutex_spin_enter(&timer_lock);
   1064 	pts = p->p_timers;
   1065 	if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
   1066 		timerclear(&itvp->it_value);
   1067 		timerclear(&itvp->it_interval);
   1068 	} else {
   1069 		timer_gettime(pt, &its);
   1070 		TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
   1071 		TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
   1072 	}
   1073 	mutex_spin_exit(&timer_lock);
   1074 
   1075 	return 0;
   1076 }
   1077 
   1078 /* BSD routine to set/arm an interval timer. */
   1079 /* ARGSUSED */
   1080 int
   1081 sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
   1082     register_t *retval)
   1083 {
   1084 	/* {
   1085 		syscallarg(int) which;
   1086 		syscallarg(const struct itimerval *) itv;
   1087 		syscallarg(struct itimerval *) oitv;
   1088 	} */
   1089 	struct proc *p = l->l_proc;
   1090 	int which = SCARG(uap, which);
   1091 	struct sys___getitimer50_args getargs;
   1092 	const struct itimerval *itvp;
   1093 	struct itimerval aitv;
   1094 	int error;
   1095 
   1096 	if ((u_int)which > ITIMER_MONOTONIC)
   1097 		return (EINVAL);
   1098 	itvp = SCARG(uap, itv);
   1099 	if (itvp &&
   1100 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval))) != 0)
   1101 		return (error);
   1102 	if (SCARG(uap, oitv) != NULL) {
   1103 		SCARG(&getargs, which) = which;
   1104 		SCARG(&getargs, itv) = SCARG(uap, oitv);
   1105 		if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
   1106 			return (error);
   1107 	}
   1108 	if (itvp == 0)
   1109 		return (0);
   1110 
   1111 	return dosetitimer(p, which, &aitv);
   1112 }
   1113 
   1114 int
   1115 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
   1116 {
   1117 	struct timespec now;
   1118 	struct ptimers *pts;
   1119 	struct ptimer *pt, *spare;
   1120 
   1121 	KASSERT((u_int)which <= CLOCK_MONOTONIC);
   1122 	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
   1123 		return (EINVAL);
   1124 
   1125 	/*
   1126 	 * Don't bother allocating data structures if the process just
   1127 	 * wants to clear the timer.
   1128 	 */
   1129 	spare = NULL;
   1130 	pts = p->p_timers;
   1131  retry:
   1132 	if (!timerisset(&itvp->it_value) && (pts == NULL ||
   1133 	    pts->pts_timers[which] == NULL))
   1134 		return (0);
   1135 	if (pts == NULL)
   1136 		pts = timers_alloc(p);
   1137 	mutex_spin_enter(&timer_lock);
   1138 	pt = pts->pts_timers[which];
   1139 	if (pt == NULL) {
   1140 		if (spare == NULL) {
   1141 			mutex_spin_exit(&timer_lock);
   1142 			spare = pool_get(&ptimer_pool, PR_WAITOK);
   1143 			goto retry;
   1144 		}
   1145 		pt = spare;
   1146 		spare = NULL;
   1147 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
   1148 		pt->pt_ev.sigev_value.sival_int = which;
   1149 		pt->pt_overruns = 0;
   1150 		pt->pt_proc = p;
   1151 		pt->pt_type = which;
   1152 		pt->pt_entry = which;
   1153 		pt->pt_queued = false;
   1154 		if (pt->pt_type == CLOCK_REALTIME)
   1155 			callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
   1156 		else
   1157 			pt->pt_active = 0;
   1158 
   1159 		switch (which) {
   1160 		case ITIMER_REAL:
   1161 		case ITIMER_MONOTONIC:
   1162 			pt->pt_ev.sigev_signo = SIGALRM;
   1163 			break;
   1164 		case ITIMER_VIRTUAL:
   1165 			pt->pt_ev.sigev_signo = SIGVTALRM;
   1166 			break;
   1167 		case ITIMER_PROF:
   1168 			pt->pt_ev.sigev_signo = SIGPROF;
   1169 			break;
   1170 		}
   1171 		pts->pts_timers[which] = pt;
   1172 	}
   1173 
   1174 	TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
   1175 	TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
   1176 
   1177 	if (timespecisset(&pt->pt_time.it_value)) {
   1178 		/* Convert to absolute time */
   1179 		/* XXX need to wrap in splclock for timecounters case? */
   1180 		switch (which) {
   1181 		case ITIMER_REAL:
   1182 			getnanotime(&now);
   1183 			timespecadd(&pt->pt_time.it_value, &now,
   1184 			    &pt->pt_time.it_value);
   1185 			break;
   1186 		case ITIMER_MONOTONIC:
   1187 			getnanouptime(&now);
   1188 			timespecadd(&pt->pt_time.it_value, &now,
   1189 			    &pt->pt_time.it_value);
   1190 			break;
   1191 		default:
   1192 			break;
   1193 		}
   1194 	}
   1195 	timer_settime(pt);
   1196 	mutex_spin_exit(&timer_lock);
   1197 	if (spare != NULL)
   1198 		pool_put(&ptimer_pool, spare);
   1199 
   1200 	return (0);
   1201 }
   1202 
   1203 /* Utility routines to manage the array of pointers to timers. */
   1204 struct ptimers *
   1205 timers_alloc(struct proc *p)
   1206 {
   1207 	struct ptimers *pts;
   1208 	int i;
   1209 
   1210 	pts = pool_get(&ptimers_pool, PR_WAITOK);
   1211 	LIST_INIT(&pts->pts_virtual);
   1212 	LIST_INIT(&pts->pts_prof);
   1213 	for (i = 0; i < TIMER_MAX; i++)
   1214 		pts->pts_timers[i] = NULL;
   1215 	pts->pts_fired = 0;
   1216 	mutex_spin_enter(&timer_lock);
   1217 	if (p->p_timers == NULL) {
   1218 		p->p_timers = pts;
   1219 		mutex_spin_exit(&timer_lock);
   1220 		return pts;
   1221 	}
   1222 	mutex_spin_exit(&timer_lock);
   1223 	pool_put(&ptimers_pool, pts);
   1224 	return p->p_timers;
   1225 }
   1226 
   1227 /*
   1228  * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
   1229  * then clean up all timers and free all the data structures. If
   1230  * "which" is set to TIMERS_POSIX, only clean up the timers allocated
   1231  * by timer_create(), not the BSD setitimer() timers, and only free the
   1232  * structure if none of those remain.
   1233  */
   1234 void
   1235 timers_free(struct proc *p, int which)
   1236 {
   1237 	struct ptimers *pts;
   1238 	struct ptimer *ptn;
   1239 	struct timespec ts;
   1240 	int i;
   1241 
   1242 	if (p->p_timers == NULL)
   1243 		return;
   1244 
   1245 	pts = p->p_timers;
   1246 	mutex_spin_enter(&timer_lock);
   1247 	if (which == TIMERS_ALL) {
   1248 		p->p_timers = NULL;
   1249 		i = 0;
   1250 	} else {
   1251 		timespecclear(&ts);
   1252 		for (ptn = LIST_FIRST(&pts->pts_virtual);
   1253 		     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
   1254 		     ptn = LIST_NEXT(ptn, pt_list)) {
   1255 			KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
   1256 			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
   1257 		}
   1258 		LIST_FIRST(&pts->pts_virtual) = NULL;
   1259 		if (ptn) {
   1260 			KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
   1261 			timespecadd(&ts, &ptn->pt_time.it_value,
   1262 			    &ptn->pt_time.it_value);
   1263 			LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
   1264 		}
   1265 		timespecclear(&ts);
   1266 		for (ptn = LIST_FIRST(&pts->pts_prof);
   1267 		     ptn && ptn != pts->pts_timers[ITIMER_PROF];
   1268 		     ptn = LIST_NEXT(ptn, pt_list)) {
   1269 			KASSERT(ptn->pt_type == CLOCK_PROF);
   1270 			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
   1271 		}
   1272 		LIST_FIRST(&pts->pts_prof) = NULL;
   1273 		if (ptn) {
   1274 			KASSERT(ptn->pt_type == CLOCK_PROF);
   1275 			timespecadd(&ts, &ptn->pt_time.it_value,
   1276 			    &ptn->pt_time.it_value);
   1277 			LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
   1278 		}
   1279 		i = 3;
   1280 	}
   1281 	for ( ; i < TIMER_MAX; i++) {
   1282 		if (pts->pts_timers[i] != NULL) {
   1283 			itimerfree(pts, i);
   1284 			mutex_spin_enter(&timer_lock);
   1285 		}
   1286 	}
   1287 	if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
   1288 	    pts->pts_timers[2] == NULL) {
   1289 		p->p_timers = NULL;
   1290 		mutex_spin_exit(&timer_lock);
   1291 		pool_put(&ptimers_pool, pts);
   1292 	} else
   1293 		mutex_spin_exit(&timer_lock);
   1294 }
   1295 
   1296 static void
   1297 itimerfree(struct ptimers *pts, int index)
   1298 {
   1299 	struct ptimer *pt;
   1300 
   1301 	KASSERT(mutex_owned(&timer_lock));
   1302 
   1303 	pt = pts->pts_timers[index];
   1304 	pts->pts_timers[index] = NULL;
   1305 	if (!CLOCK_VIRTUAL_P(pt->pt_type))
   1306 		callout_halt(&pt->pt_ch, &timer_lock);
   1307 	if (pt->pt_queued)
   1308 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
   1309 	mutex_spin_exit(&timer_lock);
   1310 	if (!CLOCK_VIRTUAL_P(pt->pt_type))
   1311 		callout_destroy(&pt->pt_ch);
   1312 	pool_put(&ptimer_pool, pt);
   1313 }
   1314 
   1315 /*
   1316  * Decrement an interval timer by a specified number
   1317  * of nanoseconds, which must be less than a second,
   1318  * i.e. < 1000000000.  If the timer expires, then reload
   1319  * it.  In this case, carry over (nsec - old value) to
   1320  * reduce the value reloaded into the timer so that
   1321  * the timer does not drift.  This routine assumes
   1322  * that it is called in a context where the timers
   1323  * on which it is operating cannot change in value.
   1324  */
   1325 static int
   1326 itimerdecr(struct ptimer *pt, int nsec)
   1327 {
   1328 	struct itimerspec *itp;
   1329 
   1330 	KASSERT(mutex_owned(&timer_lock));
   1331 	KASSERT(CLOCK_VIRTUAL_P(pt->pt_type));
   1332 
   1333 	itp = &pt->pt_time;
   1334 	if (itp->it_value.tv_nsec < nsec) {
   1335 		if (itp->it_value.tv_sec == 0) {
   1336 			/* expired, and already in next interval */
   1337 			nsec -= itp->it_value.tv_nsec;
   1338 			goto expire;
   1339 		}
   1340 		itp->it_value.tv_nsec += 1000000000;
   1341 		itp->it_value.tv_sec--;
   1342 	}
   1343 	itp->it_value.tv_nsec -= nsec;
   1344 	nsec = 0;
   1345 	if (timespecisset(&itp->it_value))
   1346 		return (1);
   1347 	/* expired, exactly at end of interval */
   1348 expire:
   1349 	if (timespecisset(&itp->it_interval)) {
   1350 		itp->it_value = itp->it_interval;
   1351 		itp->it_value.tv_nsec -= nsec;
   1352 		if (itp->it_value.tv_nsec < 0) {
   1353 			itp->it_value.tv_nsec += 1000000000;
   1354 			itp->it_value.tv_sec--;
   1355 		}
   1356 		timer_settime(pt);
   1357 	} else
   1358 		itp->it_value.tv_nsec = 0;		/* sec is already 0 */
   1359 	return (0);
   1360 }
   1361 
   1362 static void
   1363 itimerfire(struct ptimer *pt)
   1364 {
   1365 
   1366 	KASSERT(mutex_owned(&timer_lock));
   1367 
   1368 	/*
   1369 	 * XXX Can overrun, but we don't do signal queueing yet, anyway.
   1370 	 * XXX Relying on the clock interrupt is stupid.
   1371 	 */
   1372 	if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL || pt->pt_queued) {
   1373 		return;
   1374 	}
   1375 	TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
   1376 	pt->pt_queued = true;
   1377 	softint_schedule(timer_sih);
   1378 }
   1379 
   1380 void
   1381 timer_tick(lwp_t *l, bool user)
   1382 {
   1383 	struct ptimers *pts;
   1384 	struct ptimer *pt;
   1385 	proc_t *p;
   1386 
   1387 	p = l->l_proc;
   1388 	if (p->p_timers == NULL)
   1389 		return;
   1390 
   1391 	mutex_spin_enter(&timer_lock);
   1392 	if ((pts = l->l_proc->p_timers) != NULL) {
   1393 		/*
   1394 		 * Run current process's virtual and profile time, as needed.
   1395 		 */
   1396 		if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
   1397 			if (itimerdecr(pt, tick * 1000) == 0)
   1398 				itimerfire(pt);
   1399 		if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
   1400 			if (itimerdecr(pt, tick * 1000) == 0)
   1401 				itimerfire(pt);
   1402 	}
   1403 	mutex_spin_exit(&timer_lock);
   1404 }
   1405 
   1406 static void
   1407 timer_intr(void *cookie)
   1408 {
   1409 	ksiginfo_t ksi;
   1410 	struct ptimer *pt;
   1411 	proc_t *p;
   1412 
   1413 	mutex_enter(proc_lock);
   1414 	mutex_spin_enter(&timer_lock);
   1415 	while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
   1416 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
   1417 		KASSERT(pt->pt_queued);
   1418 		pt->pt_queued = false;
   1419 
   1420 		if (pt->pt_proc->p_timers == NULL) {
   1421 			/* Process is dying. */
   1422 			continue;
   1423 		}
   1424 		p = pt->pt_proc;
   1425 		if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
   1426 			continue;
   1427 		}
   1428 		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
   1429 			pt->pt_overruns++;
   1430 			continue;
   1431 		}
   1432 
   1433 		KSI_INIT(&ksi);
   1434 		ksi.ksi_signo = pt->pt_ev.sigev_signo;
   1435 		ksi.ksi_code = SI_TIMER;
   1436 		ksi.ksi_value = pt->pt_ev.sigev_value;
   1437 		pt->pt_poverruns = pt->pt_overruns;
   1438 		pt->pt_overruns = 0;
   1439 		mutex_spin_exit(&timer_lock);
   1440 		kpsignal(p, &ksi, NULL);
   1441 		mutex_spin_enter(&timer_lock);
   1442 	}
   1443 	mutex_spin_exit(&timer_lock);
   1444 	mutex_exit(proc_lock);
   1445 }
   1446 
   1447 /*
   1448  * Check if the time will wrap if set to ts.
   1449  *
   1450  * ts - timespec describing the new time
   1451  * delta - the delta between the current time and ts
   1452  */
   1453 bool
   1454 time_wraps(struct timespec *ts, struct timespec *delta)
   1455 {
   1456 
   1457 	/*
   1458 	 * Don't allow the time to be set forward so far it
   1459 	 * will wrap and become negative, thus allowing an
   1460 	 * attacker to bypass the next check below.  The
   1461 	 * cutoff is 1 year before rollover occurs, so even
   1462 	 * if the attacker uses adjtime(2) to move the time
   1463 	 * past the cutoff, it will take a very long time
   1464 	 * to get to the wrap point.
   1465 	 */
   1466 	if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
   1467 	    (delta->tv_sec < 0 || delta->tv_nsec < 0))
   1468 		return true;
   1469 
   1470 	return false;
   1471 }
   1472