kern_time.c revision 1.175 1 /* $NetBSD: kern_time.c,v 1.175 2012/10/02 01:44:28 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1986, 1989, 1993
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
61 */
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.175 2012/10/02 01:44:28 christos Exp $");
65
66 #include <sys/param.h>
67 #include <sys/resourcevar.h>
68 #include <sys/kernel.h>
69 #include <sys/systm.h>
70 #include <sys/proc.h>
71 #include <sys/vnode.h>
72 #include <sys/signalvar.h>
73 #include <sys/syslog.h>
74 #include <sys/timetc.h>
75 #include <sys/timex.h>
76 #include <sys/kauth.h>
77 #include <sys/mount.h>
78 #include <sys/syscallargs.h>
79 #include <sys/cpu.h>
80
81 static void timer_intr(void *);
82 static void itimerfire(struct ptimer *);
83 static void itimerfree(struct ptimers *, int);
84
85 kmutex_t timer_lock;
86
87 static void *timer_sih;
88 static TAILQ_HEAD(, ptimer) timer_queue;
89
90 struct pool ptimer_pool, ptimers_pool;
91
92 #define CLOCK_VIRTUAL_P(clockid) \
93 ((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)
94
95 CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
96 CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
97 CTASSERT(ITIMER_PROF == CLOCK_PROF);
98 CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC);
99
100 /*
101 * Initialize timekeeping.
102 */
103 void
104 time_init(void)
105 {
106
107 pool_init(&ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
108 &pool_allocator_nointr, IPL_NONE);
109 pool_init(&ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
110 &pool_allocator_nointr, IPL_NONE);
111 }
112
113 void
114 time_init2(void)
115 {
116
117 TAILQ_INIT(&timer_queue);
118 mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
119 timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
120 timer_intr, NULL);
121 }
122
123 /* Time of day and interval timer support.
124 *
125 * These routines provide the kernel entry points to get and set
126 * the time-of-day and per-process interval timers. Subroutines
127 * here provide support for adding and subtracting timeval structures
128 * and decrementing interval timers, optionally reloading the interval
129 * timers when they expire.
130 */
131
132 /* This function is used by clock_settime and settimeofday */
133 static int
134 settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
135 {
136 struct timespec delta, now;
137 int s;
138
139 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
140 s = splclock();
141 nanotime(&now);
142 timespecsub(ts, &now, &delta);
143
144 if (check_kauth && kauth_authorize_system(kauth_cred_get(),
145 KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
146 &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
147 splx(s);
148 return (EPERM);
149 }
150
151 #ifdef notyet
152 if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
153 splx(s);
154 return (EPERM);
155 }
156 #endif
157
158 tc_setclock(ts);
159
160 timespecadd(&boottime, &delta, &boottime);
161
162 resettodr();
163 splx(s);
164
165 return (0);
166 }
167
168 int
169 settime(struct proc *p, struct timespec *ts)
170 {
171 return (settime1(p, ts, true));
172 }
173
174 /* ARGSUSED */
175 int
176 sys___clock_gettime50(struct lwp *l,
177 const struct sys___clock_gettime50_args *uap, register_t *retval)
178 {
179 /* {
180 syscallarg(clockid_t) clock_id;
181 syscallarg(struct timespec *) tp;
182 } */
183 int error;
184 struct timespec ats;
185
186 error = clock_gettime1(SCARG(uap, clock_id), &ats);
187 if (error != 0)
188 return error;
189
190 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
191 }
192
193 int
194 clock_gettime1(clockid_t clock_id, struct timespec *ts)
195 {
196
197 switch (clock_id) {
198 case CLOCK_REALTIME:
199 nanotime(ts);
200 break;
201 case CLOCK_MONOTONIC:
202 nanouptime(ts);
203 break;
204 default:
205 return EINVAL;
206 }
207
208 return 0;
209 }
210
211 /* ARGSUSED */
212 int
213 sys___clock_settime50(struct lwp *l,
214 const struct sys___clock_settime50_args *uap, register_t *retval)
215 {
216 /* {
217 syscallarg(clockid_t) clock_id;
218 syscallarg(const struct timespec *) tp;
219 } */
220 int error;
221 struct timespec ats;
222
223 if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
224 return error;
225
226 return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
227 }
228
229
230 int
231 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
232 bool check_kauth)
233 {
234 int error;
235
236 switch (clock_id) {
237 case CLOCK_REALTIME:
238 if ((error = settime1(p, tp, check_kauth)) != 0)
239 return (error);
240 break;
241 case CLOCK_MONOTONIC:
242 return (EINVAL); /* read-only clock */
243 default:
244 return (EINVAL);
245 }
246
247 return 0;
248 }
249
250 int
251 sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
252 register_t *retval)
253 {
254 /* {
255 syscallarg(clockid_t) clock_id;
256 syscallarg(struct timespec *) tp;
257 } */
258 struct timespec ts;
259 int error = 0;
260
261 if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
262 return error;
263
264 if (SCARG(uap, tp))
265 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
266
267 return error;
268 }
269
270 int
271 clock_getres1(clockid_t clock_id, struct timespec *ts)
272 {
273
274 switch (clock_id) {
275 case CLOCK_REALTIME:
276 case CLOCK_MONOTONIC:
277 ts->tv_sec = 0;
278 if (tc_getfrequency() > 1000000000)
279 ts->tv_nsec = 1;
280 else
281 ts->tv_nsec = 1000000000 / tc_getfrequency();
282 break;
283 default:
284 return EINVAL;
285 }
286
287 return 0;
288 }
289
290 /* ARGSUSED */
291 int
292 sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
293 register_t *retval)
294 {
295 /* {
296 syscallarg(struct timespec *) rqtp;
297 syscallarg(struct timespec *) rmtp;
298 } */
299 struct timespec rmt, rqt;
300 int error, error1;
301
302 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
303 if (error)
304 return (error);
305
306 error = nanosleep1(l, CLOCK_MONOTONIC, 0, &rqt,
307 SCARG(uap, rmtp) ? &rmt : NULL);
308 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
309 return error;
310
311 error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
312 return error1 ? error1 : error;
313 }
314
315 /* ARGSUSED */
316 int
317 sys_clock_nanosleep(struct lwp *l, const struct sys_clock_nanosleep_args *uap,
318 register_t *retval)
319 {
320 /* {
321 syscallarg(clockid_t) clock_id;
322 syscallarg(int) flags;
323 syscallarg(struct timespec *) rqtp;
324 syscallarg(struct timespec *) rmtp;
325 } */
326 struct timespec rmt, rqt;
327 int error, error1;
328
329 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
330 if (error)
331 return (error);
332
333 error = nanosleep1(l, SCARG(uap, clock_id), SCARG(uap, flags), &rqt,
334 SCARG(uap, rmtp) ? &rmt : NULL);
335 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
336 return error;
337
338 error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
339 return error1 ? error1 : error;
340 }
341
342 int
343 nanosleep1(struct lwp *l, clockid_t clock_id, int flags, struct timespec *rqt,
344 struct timespec *rmt)
345 {
346 struct timespec rmtstart;
347 int error, timo;
348
349 if ((error = clock_gettime1(clock_id, &rmtstart)) != 0)
350 return ENOTSUP;
351
352 if (flags & TIMER_ABSTIME)
353 timespecsub(rqt, &rmtstart, rqt);
354
355 if ((error = itimespecfix(rqt)) != 0)
356 return error;
357
358 timo = tstohz(rqt);
359 /*
360 * Avoid inadvertently sleeping forever
361 */
362 if (timo == 0)
363 timo = 1;
364 again:
365 error = kpause("nanoslp", true, timo, NULL);
366 if (rmt != NULL || error == 0) {
367 struct timespec rmtend;
368 struct timespec t0;
369 struct timespec *t;
370
371 (void)clock_gettime1(clock_id, &rmtend);
372 t = (rmt != NULL) ? rmt : &t0;
373 timespecsub(&rmtend, &rmtstart, t);
374 timespecsub(rqt, t, t);
375 if (t->tv_sec < 0)
376 timespecclear(t);
377 if (error == 0) {
378 timo = tstohz(t);
379 if (timo > 0)
380 goto again;
381 }
382 }
383
384 if (error == ERESTART)
385 error = EINTR;
386 if (error == EWOULDBLOCK)
387 error = 0;
388
389 return error;
390 }
391
392 /* ARGSUSED */
393 int
394 sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
395 register_t *retval)
396 {
397 /* {
398 syscallarg(struct timeval *) tp;
399 syscallarg(void *) tzp; really "struct timezone *";
400 } */
401 struct timeval atv;
402 int error = 0;
403 struct timezone tzfake;
404
405 if (SCARG(uap, tp)) {
406 microtime(&atv);
407 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
408 if (error)
409 return (error);
410 }
411 if (SCARG(uap, tzp)) {
412 /*
413 * NetBSD has no kernel notion of time zone, so we just
414 * fake up a timezone struct and return it if demanded.
415 */
416 tzfake.tz_minuteswest = 0;
417 tzfake.tz_dsttime = 0;
418 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
419 }
420 return (error);
421 }
422
423 /* ARGSUSED */
424 int
425 sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
426 register_t *retval)
427 {
428 /* {
429 syscallarg(const struct timeval *) tv;
430 syscallarg(const void *) tzp; really "const struct timezone *";
431 } */
432
433 return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
434 }
435
436 int
437 settimeofday1(const struct timeval *utv, bool userspace,
438 const void *utzp, struct lwp *l, bool check_kauth)
439 {
440 struct timeval atv;
441 struct timespec ts;
442 int error;
443
444 /* Verify all parameters before changing time. */
445
446 /*
447 * NetBSD has no kernel notion of time zone, and only an
448 * obsolete program would try to set it, so we log a warning.
449 */
450 if (utzp)
451 log(LOG_WARNING, "pid %d attempted to set the "
452 "(obsolete) kernel time zone\n", l->l_proc->p_pid);
453
454 if (utv == NULL)
455 return 0;
456
457 if (userspace) {
458 if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
459 return error;
460 utv = &atv;
461 }
462
463 TIMEVAL_TO_TIMESPEC(utv, &ts);
464 return settime1(l->l_proc, &ts, check_kauth);
465 }
466
467 int time_adjusted; /* set if an adjustment is made */
468
469 /* ARGSUSED */
470 int
471 sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
472 register_t *retval)
473 {
474 /* {
475 syscallarg(const struct timeval *) delta;
476 syscallarg(struct timeval *) olddelta;
477 } */
478 int error = 0;
479 struct timeval atv, oldatv;
480
481 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
482 KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
483 return error;
484
485 if (SCARG(uap, delta)) {
486 error = copyin(SCARG(uap, delta), &atv,
487 sizeof(*SCARG(uap, delta)));
488 if (error)
489 return (error);
490 }
491 adjtime1(SCARG(uap, delta) ? &atv : NULL,
492 SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
493 if (SCARG(uap, olddelta))
494 error = copyout(&oldatv, SCARG(uap, olddelta),
495 sizeof(*SCARG(uap, olddelta)));
496 return error;
497 }
498
499 void
500 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
501 {
502 extern int64_t time_adjtime; /* in kern_ntptime.c */
503
504 if (olddelta) {
505 mutex_spin_enter(&timecounter_lock);
506 olddelta->tv_sec = time_adjtime / 1000000;
507 olddelta->tv_usec = time_adjtime % 1000000;
508 if (olddelta->tv_usec < 0) {
509 olddelta->tv_usec += 1000000;
510 olddelta->tv_sec--;
511 }
512 mutex_spin_exit(&timecounter_lock);
513 }
514
515 if (delta) {
516 mutex_spin_enter(&timecounter_lock);
517 time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
518
519 if (time_adjtime) {
520 /* We need to save the system time during shutdown */
521 time_adjusted |= 1;
522 }
523 mutex_spin_exit(&timecounter_lock);
524 }
525 }
526
527 /*
528 * Interval timer support. Both the BSD getitimer() family and the POSIX
529 * timer_*() family of routines are supported.
530 *
531 * All timers are kept in an array pointed to by p_timers, which is
532 * allocated on demand - many processes don't use timers at all. The
533 * first three elements in this array are reserved for the BSD timers:
534 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element
535 * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be
536 * allocated by the timer_create() syscall.
537 *
538 * Realtime timers are kept in the ptimer structure as an absolute
539 * time; virtual time timers are kept as a linked list of deltas.
540 * Virtual time timers are processed in the hardclock() routine of
541 * kern_clock.c. The real time timer is processed by a callout
542 * routine, called from the softclock() routine. Since a callout may
543 * be delayed in real time due to interrupt processing in the system,
544 * it is possible for the real time timeout routine (realtimeexpire,
545 * given below), to be delayed in real time past when it is supposed
546 * to occur. It does not suffice, therefore, to reload the real timer
547 * .it_value from the real time timers .it_interval. Rather, we
548 * compute the next time in absolute time the timer should go off. */
549
550 /* Allocate a POSIX realtime timer. */
551 int
552 sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
553 register_t *retval)
554 {
555 /* {
556 syscallarg(clockid_t) clock_id;
557 syscallarg(struct sigevent *) evp;
558 syscallarg(timer_t *) timerid;
559 } */
560
561 return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
562 SCARG(uap, evp), copyin, l);
563 }
564
565 int
566 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
567 copyin_t fetch_event, struct lwp *l)
568 {
569 int error;
570 timer_t timerid;
571 struct ptimers *pts;
572 struct ptimer *pt;
573 struct proc *p;
574
575 p = l->l_proc;
576
577 if ((u_int)id > CLOCK_MONOTONIC)
578 return (EINVAL);
579
580 if ((pts = p->p_timers) == NULL)
581 pts = timers_alloc(p);
582
583 pt = pool_get(&ptimer_pool, PR_WAITOK);
584 if (evp != NULL) {
585 if (((error =
586 (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
587 ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
588 (pt->pt_ev.sigev_notify > SIGEV_SA)) ||
589 (pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
590 (pt->pt_ev.sigev_signo <= 0 ||
591 pt->pt_ev.sigev_signo >= NSIG))) {
592 pool_put(&ptimer_pool, pt);
593 return (error ? error : EINVAL);
594 }
595 }
596
597 /* Find a free timer slot, skipping those reserved for setitimer(). */
598 mutex_spin_enter(&timer_lock);
599 for (timerid = 3; timerid < TIMER_MAX; timerid++)
600 if (pts->pts_timers[timerid] == NULL)
601 break;
602 if (timerid == TIMER_MAX) {
603 mutex_spin_exit(&timer_lock);
604 pool_put(&ptimer_pool, pt);
605 return EAGAIN;
606 }
607 if (evp == NULL) {
608 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
609 switch (id) {
610 case CLOCK_REALTIME:
611 case CLOCK_MONOTONIC:
612 pt->pt_ev.sigev_signo = SIGALRM;
613 break;
614 case CLOCK_VIRTUAL:
615 pt->pt_ev.sigev_signo = SIGVTALRM;
616 break;
617 case CLOCK_PROF:
618 pt->pt_ev.sigev_signo = SIGPROF;
619 break;
620 }
621 pt->pt_ev.sigev_value.sival_int = timerid;
622 }
623 pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
624 pt->pt_info.ksi_errno = 0;
625 pt->pt_info.ksi_code = 0;
626 pt->pt_info.ksi_pid = p->p_pid;
627 pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
628 pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
629 pt->pt_type = id;
630 pt->pt_proc = p;
631 pt->pt_overruns = 0;
632 pt->pt_poverruns = 0;
633 pt->pt_entry = timerid;
634 pt->pt_queued = false;
635 timespecclear(&pt->pt_time.it_value);
636 if (!CLOCK_VIRTUAL_P(id))
637 callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
638 else
639 pt->pt_active = 0;
640
641 pts->pts_timers[timerid] = pt;
642 mutex_spin_exit(&timer_lock);
643
644 return copyout(&timerid, tid, sizeof(timerid));
645 }
646
647 /* Delete a POSIX realtime timer */
648 int
649 sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
650 register_t *retval)
651 {
652 /* {
653 syscallarg(timer_t) timerid;
654 } */
655 struct proc *p = l->l_proc;
656 timer_t timerid;
657 struct ptimers *pts;
658 struct ptimer *pt, *ptn;
659
660 timerid = SCARG(uap, timerid);
661 pts = p->p_timers;
662
663 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
664 return (EINVAL);
665
666 mutex_spin_enter(&timer_lock);
667 if ((pt = pts->pts_timers[timerid]) == NULL) {
668 mutex_spin_exit(&timer_lock);
669 return (EINVAL);
670 }
671 if (CLOCK_VIRTUAL_P(pt->pt_type)) {
672 if (pt->pt_active) {
673 ptn = LIST_NEXT(pt, pt_list);
674 LIST_REMOVE(pt, pt_list);
675 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
676 timespecadd(&pt->pt_time.it_value,
677 &ptn->pt_time.it_value,
678 &ptn->pt_time.it_value);
679 pt->pt_active = 0;
680 }
681 }
682 itimerfree(pts, timerid);
683
684 return (0);
685 }
686
687 /*
688 * Set up the given timer. The value in pt->pt_time.it_value is taken
689 * to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC timers and
690 * a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
691 */
692 void
693 timer_settime(struct ptimer *pt)
694 {
695 struct ptimer *ptn, *pptn;
696 struct ptlist *ptl;
697
698 KASSERT(mutex_owned(&timer_lock));
699
700 if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
701 callout_halt(&pt->pt_ch, &timer_lock);
702 if (timespecisset(&pt->pt_time.it_value)) {
703 /*
704 * Don't need to check tshzto() return value, here.
705 * callout_reset() does it for us.
706 */
707 callout_reset(&pt->pt_ch,
708 pt->pt_type == CLOCK_MONOTONIC ?
709 tshztoup(&pt->pt_time.it_value) :
710 tshzto(&pt->pt_time.it_value),
711 realtimerexpire, pt);
712 }
713 } else {
714 if (pt->pt_active) {
715 ptn = LIST_NEXT(pt, pt_list);
716 LIST_REMOVE(pt, pt_list);
717 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
718 timespecadd(&pt->pt_time.it_value,
719 &ptn->pt_time.it_value,
720 &ptn->pt_time.it_value);
721 }
722 if (timespecisset(&pt->pt_time.it_value)) {
723 if (pt->pt_type == CLOCK_VIRTUAL)
724 ptl = &pt->pt_proc->p_timers->pts_virtual;
725 else
726 ptl = &pt->pt_proc->p_timers->pts_prof;
727
728 for (ptn = LIST_FIRST(ptl), pptn = NULL;
729 ptn && timespeccmp(&pt->pt_time.it_value,
730 &ptn->pt_time.it_value, >);
731 pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
732 timespecsub(&pt->pt_time.it_value,
733 &ptn->pt_time.it_value,
734 &pt->pt_time.it_value);
735
736 if (pptn)
737 LIST_INSERT_AFTER(pptn, pt, pt_list);
738 else
739 LIST_INSERT_HEAD(ptl, pt, pt_list);
740
741 for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
742 timespecsub(&ptn->pt_time.it_value,
743 &pt->pt_time.it_value,
744 &ptn->pt_time.it_value);
745
746 pt->pt_active = 1;
747 } else
748 pt->pt_active = 0;
749 }
750 }
751
752 void
753 timer_gettime(struct ptimer *pt, struct itimerspec *aits)
754 {
755 struct timespec now;
756 struct ptimer *ptn;
757
758 KASSERT(mutex_owned(&timer_lock));
759
760 *aits = pt->pt_time;
761 if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
762 /*
763 * Convert from absolute to relative time in .it_value
764 * part of real time timer. If time for real time
765 * timer has passed return 0, else return difference
766 * between current time and time for the timer to go
767 * off.
768 */
769 if (timespecisset(&aits->it_value)) {
770 if (pt->pt_type == CLOCK_REALTIME) {
771 getnanotime(&now);
772 } else { /* CLOCK_MONOTONIC */
773 getnanouptime(&now);
774 }
775 if (timespeccmp(&aits->it_value, &now, <))
776 timespecclear(&aits->it_value);
777 else
778 timespecsub(&aits->it_value, &now,
779 &aits->it_value);
780 }
781 } else if (pt->pt_active) {
782 if (pt->pt_type == CLOCK_VIRTUAL)
783 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
784 else
785 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
786 for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
787 timespecadd(&aits->it_value,
788 &ptn->pt_time.it_value, &aits->it_value);
789 KASSERT(ptn != NULL); /* pt should be findable on the list */
790 } else
791 timespecclear(&aits->it_value);
792 }
793
794
795
796 /* Set and arm a POSIX realtime timer */
797 int
798 sys___timer_settime50(struct lwp *l,
799 const struct sys___timer_settime50_args *uap,
800 register_t *retval)
801 {
802 /* {
803 syscallarg(timer_t) timerid;
804 syscallarg(int) flags;
805 syscallarg(const struct itimerspec *) value;
806 syscallarg(struct itimerspec *) ovalue;
807 } */
808 int error;
809 struct itimerspec value, ovalue, *ovp = NULL;
810
811 if ((error = copyin(SCARG(uap, value), &value,
812 sizeof(struct itimerspec))) != 0)
813 return (error);
814
815 if (SCARG(uap, ovalue))
816 ovp = &ovalue;
817
818 if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
819 SCARG(uap, flags), l->l_proc)) != 0)
820 return error;
821
822 if (ovp)
823 return copyout(&ovalue, SCARG(uap, ovalue),
824 sizeof(struct itimerspec));
825 return 0;
826 }
827
828 int
829 dotimer_settime(int timerid, struct itimerspec *value,
830 struct itimerspec *ovalue, int flags, struct proc *p)
831 {
832 struct timespec now;
833 struct itimerspec val, oval;
834 struct ptimers *pts;
835 struct ptimer *pt;
836 int error;
837
838 pts = p->p_timers;
839
840 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
841 return EINVAL;
842 val = *value;
843 if ((error = itimespecfix(&val.it_value)) != 0 ||
844 (error = itimespecfix(&val.it_interval)) != 0)
845 return error;
846
847 mutex_spin_enter(&timer_lock);
848 if ((pt = pts->pts_timers[timerid]) == NULL) {
849 mutex_spin_exit(&timer_lock);
850 return EINVAL;
851 }
852
853 oval = pt->pt_time;
854 pt->pt_time = val;
855
856 /*
857 * If we've been passed a relative time for a realtime timer,
858 * convert it to absolute; if an absolute time for a virtual
859 * timer, convert it to relative and make sure we don't set it
860 * to zero, which would cancel the timer, or let it go
861 * negative, which would confuse the comparison tests.
862 */
863 if (timespecisset(&pt->pt_time.it_value)) {
864 if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
865 if ((flags & TIMER_ABSTIME) == 0) {
866 if (pt->pt_type == CLOCK_REALTIME) {
867 getnanotime(&now);
868 } else { /* CLOCK_MONOTONIC */
869 getnanouptime(&now);
870 }
871 timespecadd(&pt->pt_time.it_value, &now,
872 &pt->pt_time.it_value);
873 }
874 } else {
875 if ((flags & TIMER_ABSTIME) != 0) {
876 getnanotime(&now);
877 timespecsub(&pt->pt_time.it_value, &now,
878 &pt->pt_time.it_value);
879 if (!timespecisset(&pt->pt_time.it_value) ||
880 pt->pt_time.it_value.tv_sec < 0) {
881 pt->pt_time.it_value.tv_sec = 0;
882 pt->pt_time.it_value.tv_nsec = 1;
883 }
884 }
885 }
886 }
887
888 timer_settime(pt);
889 mutex_spin_exit(&timer_lock);
890
891 if (ovalue)
892 *ovalue = oval;
893
894 return (0);
895 }
896
897 /* Return the time remaining until a POSIX timer fires. */
898 int
899 sys___timer_gettime50(struct lwp *l,
900 const struct sys___timer_gettime50_args *uap, register_t *retval)
901 {
902 /* {
903 syscallarg(timer_t) timerid;
904 syscallarg(struct itimerspec *) value;
905 } */
906 struct itimerspec its;
907 int error;
908
909 if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
910 &its)) != 0)
911 return error;
912
913 return copyout(&its, SCARG(uap, value), sizeof(its));
914 }
915
916 int
917 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
918 {
919 struct ptimer *pt;
920 struct ptimers *pts;
921
922 pts = p->p_timers;
923 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
924 return (EINVAL);
925 mutex_spin_enter(&timer_lock);
926 if ((pt = pts->pts_timers[timerid]) == NULL) {
927 mutex_spin_exit(&timer_lock);
928 return (EINVAL);
929 }
930 timer_gettime(pt, its);
931 mutex_spin_exit(&timer_lock);
932
933 return 0;
934 }
935
936 /*
937 * Return the count of the number of times a periodic timer expired
938 * while a notification was already pending. The counter is reset when
939 * a timer expires and a notification can be posted.
940 */
941 int
942 sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
943 register_t *retval)
944 {
945 /* {
946 syscallarg(timer_t) timerid;
947 } */
948 struct proc *p = l->l_proc;
949 struct ptimers *pts;
950 int timerid;
951 struct ptimer *pt;
952
953 timerid = SCARG(uap, timerid);
954
955 pts = p->p_timers;
956 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
957 return (EINVAL);
958 mutex_spin_enter(&timer_lock);
959 if ((pt = pts->pts_timers[timerid]) == NULL) {
960 mutex_spin_exit(&timer_lock);
961 return (EINVAL);
962 }
963 *retval = pt->pt_poverruns;
964 mutex_spin_exit(&timer_lock);
965
966 return (0);
967 }
968
969 /*
970 * Real interval timer expired:
971 * send process whose timer expired an alarm signal.
972 * If time is not set up to reload, then just return.
973 * Else compute next time timer should go off which is > current time.
974 * This is where delay in processing this timeout causes multiple
975 * SIGALRM calls to be compressed into one.
976 */
977 void
978 realtimerexpire(void *arg)
979 {
980 uint64_t last_val, next_val, interval, now_ns;
981 struct timespec now, next;
982 struct ptimer *pt;
983 int backwards;
984
985 pt = arg;
986
987 mutex_spin_enter(&timer_lock);
988 itimerfire(pt);
989
990 if (!timespecisset(&pt->pt_time.it_interval)) {
991 timespecclear(&pt->pt_time.it_value);
992 mutex_spin_exit(&timer_lock);
993 return;
994 }
995
996 if (pt->pt_type == CLOCK_MONOTONIC) {
997 getnanouptime(&now);
998 } else {
999 getnanotime(&now);
1000 }
1001 backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
1002 timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
1003 /* Handle the easy case of non-overflown timers first. */
1004 if (!backwards && timespeccmp(&next, &now, >)) {
1005 pt->pt_time.it_value = next;
1006 } else {
1007 now_ns = timespec2ns(&now);
1008 last_val = timespec2ns(&pt->pt_time.it_value);
1009 interval = timespec2ns(&pt->pt_time.it_interval);
1010
1011 next_val = now_ns +
1012 (now_ns - last_val + interval - 1) % interval;
1013
1014 if (backwards)
1015 next_val += interval;
1016 else
1017 pt->pt_overruns += (now_ns - last_val) / interval;
1018
1019 pt->pt_time.it_value.tv_sec = next_val / 1000000000;
1020 pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
1021 }
1022
1023 /*
1024 * Don't need to check tshzto() return value, here.
1025 * callout_reset() does it for us.
1026 */
1027 callout_reset(&pt->pt_ch, pt->pt_type == CLOCK_MONOTONIC ?
1028 tshztoup(&pt->pt_time.it_value) : tshzto(&pt->pt_time.it_value),
1029 realtimerexpire, pt);
1030 mutex_spin_exit(&timer_lock);
1031 }
1032
1033 /* BSD routine to get the value of an interval timer. */
1034 /* ARGSUSED */
1035 int
1036 sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
1037 register_t *retval)
1038 {
1039 /* {
1040 syscallarg(int) which;
1041 syscallarg(struct itimerval *) itv;
1042 } */
1043 struct proc *p = l->l_proc;
1044 struct itimerval aitv;
1045 int error;
1046
1047 error = dogetitimer(p, SCARG(uap, which), &aitv);
1048 if (error)
1049 return error;
1050 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1051 }
1052
1053 int
1054 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1055 {
1056 struct ptimers *pts;
1057 struct ptimer *pt;
1058 struct itimerspec its;
1059
1060 if ((u_int)which > ITIMER_MONOTONIC)
1061 return (EINVAL);
1062
1063 mutex_spin_enter(&timer_lock);
1064 pts = p->p_timers;
1065 if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
1066 timerclear(&itvp->it_value);
1067 timerclear(&itvp->it_interval);
1068 } else {
1069 timer_gettime(pt, &its);
1070 TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
1071 TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
1072 }
1073 mutex_spin_exit(&timer_lock);
1074
1075 return 0;
1076 }
1077
1078 /* BSD routine to set/arm an interval timer. */
1079 /* ARGSUSED */
1080 int
1081 sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
1082 register_t *retval)
1083 {
1084 /* {
1085 syscallarg(int) which;
1086 syscallarg(const struct itimerval *) itv;
1087 syscallarg(struct itimerval *) oitv;
1088 } */
1089 struct proc *p = l->l_proc;
1090 int which = SCARG(uap, which);
1091 struct sys___getitimer50_args getargs;
1092 const struct itimerval *itvp;
1093 struct itimerval aitv;
1094 int error;
1095
1096 if ((u_int)which > ITIMER_MONOTONIC)
1097 return (EINVAL);
1098 itvp = SCARG(uap, itv);
1099 if (itvp &&
1100 (error = copyin(itvp, &aitv, sizeof(struct itimerval))) != 0)
1101 return (error);
1102 if (SCARG(uap, oitv) != NULL) {
1103 SCARG(&getargs, which) = which;
1104 SCARG(&getargs, itv) = SCARG(uap, oitv);
1105 if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
1106 return (error);
1107 }
1108 if (itvp == 0)
1109 return (0);
1110
1111 return dosetitimer(p, which, &aitv);
1112 }
1113
1114 int
1115 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1116 {
1117 struct timespec now;
1118 struct ptimers *pts;
1119 struct ptimer *pt, *spare;
1120
1121 KASSERT((u_int)which <= CLOCK_MONOTONIC);
1122 if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1123 return (EINVAL);
1124
1125 /*
1126 * Don't bother allocating data structures if the process just
1127 * wants to clear the timer.
1128 */
1129 spare = NULL;
1130 pts = p->p_timers;
1131 retry:
1132 if (!timerisset(&itvp->it_value) && (pts == NULL ||
1133 pts->pts_timers[which] == NULL))
1134 return (0);
1135 if (pts == NULL)
1136 pts = timers_alloc(p);
1137 mutex_spin_enter(&timer_lock);
1138 pt = pts->pts_timers[which];
1139 if (pt == NULL) {
1140 if (spare == NULL) {
1141 mutex_spin_exit(&timer_lock);
1142 spare = pool_get(&ptimer_pool, PR_WAITOK);
1143 goto retry;
1144 }
1145 pt = spare;
1146 spare = NULL;
1147 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1148 pt->pt_ev.sigev_value.sival_int = which;
1149 pt->pt_overruns = 0;
1150 pt->pt_proc = p;
1151 pt->pt_type = which;
1152 pt->pt_entry = which;
1153 pt->pt_queued = false;
1154 if (pt->pt_type == CLOCK_REALTIME)
1155 callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
1156 else
1157 pt->pt_active = 0;
1158
1159 switch (which) {
1160 case ITIMER_REAL:
1161 case ITIMER_MONOTONIC:
1162 pt->pt_ev.sigev_signo = SIGALRM;
1163 break;
1164 case ITIMER_VIRTUAL:
1165 pt->pt_ev.sigev_signo = SIGVTALRM;
1166 break;
1167 case ITIMER_PROF:
1168 pt->pt_ev.sigev_signo = SIGPROF;
1169 break;
1170 }
1171 pts->pts_timers[which] = pt;
1172 }
1173
1174 TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
1175 TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
1176
1177 if (timespecisset(&pt->pt_time.it_value)) {
1178 /* Convert to absolute time */
1179 /* XXX need to wrap in splclock for timecounters case? */
1180 switch (which) {
1181 case ITIMER_REAL:
1182 getnanotime(&now);
1183 timespecadd(&pt->pt_time.it_value, &now,
1184 &pt->pt_time.it_value);
1185 break;
1186 case ITIMER_MONOTONIC:
1187 getnanouptime(&now);
1188 timespecadd(&pt->pt_time.it_value, &now,
1189 &pt->pt_time.it_value);
1190 break;
1191 default:
1192 break;
1193 }
1194 }
1195 timer_settime(pt);
1196 mutex_spin_exit(&timer_lock);
1197 if (spare != NULL)
1198 pool_put(&ptimer_pool, spare);
1199
1200 return (0);
1201 }
1202
1203 /* Utility routines to manage the array of pointers to timers. */
1204 struct ptimers *
1205 timers_alloc(struct proc *p)
1206 {
1207 struct ptimers *pts;
1208 int i;
1209
1210 pts = pool_get(&ptimers_pool, PR_WAITOK);
1211 LIST_INIT(&pts->pts_virtual);
1212 LIST_INIT(&pts->pts_prof);
1213 for (i = 0; i < TIMER_MAX; i++)
1214 pts->pts_timers[i] = NULL;
1215 pts->pts_fired = 0;
1216 mutex_spin_enter(&timer_lock);
1217 if (p->p_timers == NULL) {
1218 p->p_timers = pts;
1219 mutex_spin_exit(&timer_lock);
1220 return pts;
1221 }
1222 mutex_spin_exit(&timer_lock);
1223 pool_put(&ptimers_pool, pts);
1224 return p->p_timers;
1225 }
1226
1227 /*
1228 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1229 * then clean up all timers and free all the data structures. If
1230 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1231 * by timer_create(), not the BSD setitimer() timers, and only free the
1232 * structure if none of those remain.
1233 */
1234 void
1235 timers_free(struct proc *p, int which)
1236 {
1237 struct ptimers *pts;
1238 struct ptimer *ptn;
1239 struct timespec ts;
1240 int i;
1241
1242 if (p->p_timers == NULL)
1243 return;
1244
1245 pts = p->p_timers;
1246 mutex_spin_enter(&timer_lock);
1247 if (which == TIMERS_ALL) {
1248 p->p_timers = NULL;
1249 i = 0;
1250 } else {
1251 timespecclear(&ts);
1252 for (ptn = LIST_FIRST(&pts->pts_virtual);
1253 ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1254 ptn = LIST_NEXT(ptn, pt_list)) {
1255 KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1256 timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1257 }
1258 LIST_FIRST(&pts->pts_virtual) = NULL;
1259 if (ptn) {
1260 KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1261 timespecadd(&ts, &ptn->pt_time.it_value,
1262 &ptn->pt_time.it_value);
1263 LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
1264 }
1265 timespecclear(&ts);
1266 for (ptn = LIST_FIRST(&pts->pts_prof);
1267 ptn && ptn != pts->pts_timers[ITIMER_PROF];
1268 ptn = LIST_NEXT(ptn, pt_list)) {
1269 KASSERT(ptn->pt_type == CLOCK_PROF);
1270 timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1271 }
1272 LIST_FIRST(&pts->pts_prof) = NULL;
1273 if (ptn) {
1274 KASSERT(ptn->pt_type == CLOCK_PROF);
1275 timespecadd(&ts, &ptn->pt_time.it_value,
1276 &ptn->pt_time.it_value);
1277 LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
1278 }
1279 i = 3;
1280 }
1281 for ( ; i < TIMER_MAX; i++) {
1282 if (pts->pts_timers[i] != NULL) {
1283 itimerfree(pts, i);
1284 mutex_spin_enter(&timer_lock);
1285 }
1286 }
1287 if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
1288 pts->pts_timers[2] == NULL) {
1289 p->p_timers = NULL;
1290 mutex_spin_exit(&timer_lock);
1291 pool_put(&ptimers_pool, pts);
1292 } else
1293 mutex_spin_exit(&timer_lock);
1294 }
1295
1296 static void
1297 itimerfree(struct ptimers *pts, int index)
1298 {
1299 struct ptimer *pt;
1300
1301 KASSERT(mutex_owned(&timer_lock));
1302
1303 pt = pts->pts_timers[index];
1304 pts->pts_timers[index] = NULL;
1305 if (!CLOCK_VIRTUAL_P(pt->pt_type))
1306 callout_halt(&pt->pt_ch, &timer_lock);
1307 if (pt->pt_queued)
1308 TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1309 mutex_spin_exit(&timer_lock);
1310 if (!CLOCK_VIRTUAL_P(pt->pt_type))
1311 callout_destroy(&pt->pt_ch);
1312 pool_put(&ptimer_pool, pt);
1313 }
1314
1315 /*
1316 * Decrement an interval timer by a specified number
1317 * of nanoseconds, which must be less than a second,
1318 * i.e. < 1000000000. If the timer expires, then reload
1319 * it. In this case, carry over (nsec - old value) to
1320 * reduce the value reloaded into the timer so that
1321 * the timer does not drift. This routine assumes
1322 * that it is called in a context where the timers
1323 * on which it is operating cannot change in value.
1324 */
1325 static int
1326 itimerdecr(struct ptimer *pt, int nsec)
1327 {
1328 struct itimerspec *itp;
1329
1330 KASSERT(mutex_owned(&timer_lock));
1331 KASSERT(CLOCK_VIRTUAL_P(pt->pt_type));
1332
1333 itp = &pt->pt_time;
1334 if (itp->it_value.tv_nsec < nsec) {
1335 if (itp->it_value.tv_sec == 0) {
1336 /* expired, and already in next interval */
1337 nsec -= itp->it_value.tv_nsec;
1338 goto expire;
1339 }
1340 itp->it_value.tv_nsec += 1000000000;
1341 itp->it_value.tv_sec--;
1342 }
1343 itp->it_value.tv_nsec -= nsec;
1344 nsec = 0;
1345 if (timespecisset(&itp->it_value))
1346 return (1);
1347 /* expired, exactly at end of interval */
1348 expire:
1349 if (timespecisset(&itp->it_interval)) {
1350 itp->it_value = itp->it_interval;
1351 itp->it_value.tv_nsec -= nsec;
1352 if (itp->it_value.tv_nsec < 0) {
1353 itp->it_value.tv_nsec += 1000000000;
1354 itp->it_value.tv_sec--;
1355 }
1356 timer_settime(pt);
1357 } else
1358 itp->it_value.tv_nsec = 0; /* sec is already 0 */
1359 return (0);
1360 }
1361
1362 static void
1363 itimerfire(struct ptimer *pt)
1364 {
1365
1366 KASSERT(mutex_owned(&timer_lock));
1367
1368 /*
1369 * XXX Can overrun, but we don't do signal queueing yet, anyway.
1370 * XXX Relying on the clock interrupt is stupid.
1371 */
1372 if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL || pt->pt_queued) {
1373 return;
1374 }
1375 TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
1376 pt->pt_queued = true;
1377 softint_schedule(timer_sih);
1378 }
1379
1380 void
1381 timer_tick(lwp_t *l, bool user)
1382 {
1383 struct ptimers *pts;
1384 struct ptimer *pt;
1385 proc_t *p;
1386
1387 p = l->l_proc;
1388 if (p->p_timers == NULL)
1389 return;
1390
1391 mutex_spin_enter(&timer_lock);
1392 if ((pts = l->l_proc->p_timers) != NULL) {
1393 /*
1394 * Run current process's virtual and profile time, as needed.
1395 */
1396 if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
1397 if (itimerdecr(pt, tick * 1000) == 0)
1398 itimerfire(pt);
1399 if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
1400 if (itimerdecr(pt, tick * 1000) == 0)
1401 itimerfire(pt);
1402 }
1403 mutex_spin_exit(&timer_lock);
1404 }
1405
1406 static void
1407 timer_intr(void *cookie)
1408 {
1409 ksiginfo_t ksi;
1410 struct ptimer *pt;
1411 proc_t *p;
1412
1413 mutex_enter(proc_lock);
1414 mutex_spin_enter(&timer_lock);
1415 while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
1416 TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1417 KASSERT(pt->pt_queued);
1418 pt->pt_queued = false;
1419
1420 if (pt->pt_proc->p_timers == NULL) {
1421 /* Process is dying. */
1422 continue;
1423 }
1424 p = pt->pt_proc;
1425 if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
1426 continue;
1427 }
1428 if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
1429 pt->pt_overruns++;
1430 continue;
1431 }
1432
1433 KSI_INIT(&ksi);
1434 ksi.ksi_signo = pt->pt_ev.sigev_signo;
1435 ksi.ksi_code = SI_TIMER;
1436 ksi.ksi_value = pt->pt_ev.sigev_value;
1437 pt->pt_poverruns = pt->pt_overruns;
1438 pt->pt_overruns = 0;
1439 mutex_spin_exit(&timer_lock);
1440 kpsignal(p, &ksi, NULL);
1441 mutex_spin_enter(&timer_lock);
1442 }
1443 mutex_spin_exit(&timer_lock);
1444 mutex_exit(proc_lock);
1445 }
1446
1447 /*
1448 * Check if the time will wrap if set to ts.
1449 *
1450 * ts - timespec describing the new time
1451 * delta - the delta between the current time and ts
1452 */
1453 bool
1454 time_wraps(struct timespec *ts, struct timespec *delta)
1455 {
1456
1457 /*
1458 * Don't allow the time to be set forward so far it
1459 * will wrap and become negative, thus allowing an
1460 * attacker to bypass the next check below. The
1461 * cutoff is 1 year before rollover occurs, so even
1462 * if the attacker uses adjtime(2) to move the time
1463 * past the cutoff, it will take a very long time
1464 * to get to the wrap point.
1465 */
1466 if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
1467 (delta->tv_sec < 0 || delta->tv_nsec < 0))
1468 return true;
1469
1470 return false;
1471 }
1472