kern_time.c revision 1.177 1 /* $NetBSD: kern_time.c,v 1.177 2013/03/29 10:34:12 martin Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1986, 1989, 1993
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
61 */
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.177 2013/03/29 10:34:12 martin Exp $");
65
66 #include <sys/param.h>
67 #include <sys/resourcevar.h>
68 #include <sys/kernel.h>
69 #include <sys/systm.h>
70 #include <sys/proc.h>
71 #include <sys/vnode.h>
72 #include <sys/signalvar.h>
73 #include <sys/syslog.h>
74 #include <sys/timetc.h>
75 #include <sys/timex.h>
76 #include <sys/kauth.h>
77 #include <sys/mount.h>
78 #include <sys/syscallargs.h>
79 #include <sys/cpu.h>
80
81 static void timer_intr(void *);
82 static void itimerfire(struct ptimer *);
83 static void itimerfree(struct ptimers *, int);
84
85 kmutex_t timer_lock;
86
87 static void *timer_sih;
88 static TAILQ_HEAD(, ptimer) timer_queue;
89
90 struct pool ptimer_pool, ptimers_pool;
91
92 #define CLOCK_VIRTUAL_P(clockid) \
93 ((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)
94
95 CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
96 CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
97 CTASSERT(ITIMER_PROF == CLOCK_PROF);
98 CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC);
99
100 /*
101 * Initialize timekeeping.
102 */
103 void
104 time_init(void)
105 {
106
107 pool_init(&ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
108 &pool_allocator_nointr, IPL_NONE);
109 pool_init(&ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
110 &pool_allocator_nointr, IPL_NONE);
111 }
112
113 void
114 time_init2(void)
115 {
116
117 TAILQ_INIT(&timer_queue);
118 mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
119 timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
120 timer_intr, NULL);
121 }
122
123 /* Time of day and interval timer support.
124 *
125 * These routines provide the kernel entry points to get and set
126 * the time-of-day and per-process interval timers. Subroutines
127 * here provide support for adding and subtracting timeval structures
128 * and decrementing interval timers, optionally reloading the interval
129 * timers when they expire.
130 */
131
132 /* This function is used by clock_settime and settimeofday */
133 static int
134 settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
135 {
136 struct timespec delta, now;
137 int s;
138
139 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
140 s = splclock();
141 nanotime(&now);
142 timespecsub(ts, &now, &delta);
143
144 if (check_kauth && kauth_authorize_system(kauth_cred_get(),
145 KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
146 &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
147 splx(s);
148 return (EPERM);
149 }
150
151 #ifdef notyet
152 if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
153 splx(s);
154 return (EPERM);
155 }
156 #endif
157
158 tc_setclock(ts);
159
160 timespecadd(&boottime, &delta, &boottime);
161
162 resettodr();
163 splx(s);
164
165 return (0);
166 }
167
168 int
169 settime(struct proc *p, struct timespec *ts)
170 {
171 return (settime1(p, ts, true));
172 }
173
174 /* ARGSUSED */
175 int
176 sys___clock_gettime50(struct lwp *l,
177 const struct sys___clock_gettime50_args *uap, register_t *retval)
178 {
179 /* {
180 syscallarg(clockid_t) clock_id;
181 syscallarg(struct timespec *) tp;
182 } */
183 int error;
184 struct timespec ats;
185
186 error = clock_gettime1(SCARG(uap, clock_id), &ats);
187 if (error != 0)
188 return error;
189
190 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
191 }
192
193 /* ARGSUSED */
194 int
195 sys___clock_settime50(struct lwp *l,
196 const struct sys___clock_settime50_args *uap, register_t *retval)
197 {
198 /* {
199 syscallarg(clockid_t) clock_id;
200 syscallarg(const struct timespec *) tp;
201 } */
202 int error;
203 struct timespec ats;
204
205 if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
206 return error;
207
208 return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
209 }
210
211
212 int
213 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
214 bool check_kauth)
215 {
216 int error;
217
218 switch (clock_id) {
219 case CLOCK_REALTIME:
220 if ((error = settime1(p, tp, check_kauth)) != 0)
221 return (error);
222 break;
223 case CLOCK_MONOTONIC:
224 return (EINVAL); /* read-only clock */
225 default:
226 return (EINVAL);
227 }
228
229 return 0;
230 }
231
232 int
233 sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
234 register_t *retval)
235 {
236 /* {
237 syscallarg(clockid_t) clock_id;
238 syscallarg(struct timespec *) tp;
239 } */
240 struct timespec ts;
241 int error = 0;
242
243 if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
244 return error;
245
246 if (SCARG(uap, tp))
247 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
248
249 return error;
250 }
251
252 int
253 clock_getres1(clockid_t clock_id, struct timespec *ts)
254 {
255
256 switch (clock_id) {
257 case CLOCK_REALTIME:
258 case CLOCK_MONOTONIC:
259 ts->tv_sec = 0;
260 if (tc_getfrequency() > 1000000000)
261 ts->tv_nsec = 1;
262 else
263 ts->tv_nsec = 1000000000 / tc_getfrequency();
264 break;
265 default:
266 return EINVAL;
267 }
268
269 return 0;
270 }
271
272 /* ARGSUSED */
273 int
274 sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
275 register_t *retval)
276 {
277 /* {
278 syscallarg(struct timespec *) rqtp;
279 syscallarg(struct timespec *) rmtp;
280 } */
281 struct timespec rmt, rqt;
282 int error, error1;
283
284 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
285 if (error)
286 return (error);
287
288 error = nanosleep1(l, CLOCK_MONOTONIC, 0, &rqt,
289 SCARG(uap, rmtp) ? &rmt : NULL);
290 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
291 return error;
292
293 error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
294 return error1 ? error1 : error;
295 }
296
297 /* ARGSUSED */
298 int
299 sys_clock_nanosleep(struct lwp *l, const struct sys_clock_nanosleep_args *uap,
300 register_t *retval)
301 {
302 /* {
303 syscallarg(clockid_t) clock_id;
304 syscallarg(int) flags;
305 syscallarg(struct timespec *) rqtp;
306 syscallarg(struct timespec *) rmtp;
307 } */
308 struct timespec rmt, rqt;
309 int error, error1;
310
311 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
312 if (error)
313 return (error);
314
315 error = nanosleep1(l, SCARG(uap, clock_id), SCARG(uap, flags), &rqt,
316 SCARG(uap, rmtp) ? &rmt : NULL);
317 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
318 return error;
319
320 error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
321 return error1 ? error1 : error;
322 }
323
324 int
325 nanosleep1(struct lwp *l, clockid_t clock_id, int flags, struct timespec *rqt,
326 struct timespec *rmt)
327 {
328 struct timespec rmtstart;
329 int error, timo;
330
331 if ((error = ts2timo(clock_id, flags, rqt, &timo, &rmtstart)) != 0) {
332 if (error == ETIMEDOUT)
333 timo = 0;
334 }
335
336 /*
337 * Avoid inadvertently sleeping forever
338 */
339 if (timo == 0)
340 timo = 1;
341 again:
342 error = kpause("nanoslp", true, timo, NULL);
343 if (rmt != NULL || error == 0) {
344 struct timespec rmtend;
345 struct timespec t0;
346 struct timespec *t;
347
348 (void)clock_gettime1(clock_id, &rmtend);
349 t = (rmt != NULL) ? rmt : &t0;
350 timespecsub(&rmtend, &rmtstart, t);
351 timespecsub(rqt, t, t);
352 if (t->tv_sec < 0)
353 timespecclear(t);
354 if (error == 0) {
355 timo = tstohz(t);
356 if (timo > 0)
357 goto again;
358 }
359 }
360
361 if (error == ERESTART)
362 error = EINTR;
363 if (error == EWOULDBLOCK)
364 error = 0;
365
366 return error;
367 }
368
369 /* ARGSUSED */
370 int
371 sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
372 register_t *retval)
373 {
374 /* {
375 syscallarg(struct timeval *) tp;
376 syscallarg(void *) tzp; really "struct timezone *";
377 } */
378 struct timeval atv;
379 int error = 0;
380 struct timezone tzfake;
381
382 if (SCARG(uap, tp)) {
383 microtime(&atv);
384 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
385 if (error)
386 return (error);
387 }
388 if (SCARG(uap, tzp)) {
389 /*
390 * NetBSD has no kernel notion of time zone, so we just
391 * fake up a timezone struct and return it if demanded.
392 */
393 tzfake.tz_minuteswest = 0;
394 tzfake.tz_dsttime = 0;
395 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
396 }
397 return (error);
398 }
399
400 /* ARGSUSED */
401 int
402 sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
403 register_t *retval)
404 {
405 /* {
406 syscallarg(const struct timeval *) tv;
407 syscallarg(const void *) tzp; really "const struct timezone *";
408 } */
409
410 return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
411 }
412
413 int
414 settimeofday1(const struct timeval *utv, bool userspace,
415 const void *utzp, struct lwp *l, bool check_kauth)
416 {
417 struct timeval atv;
418 struct timespec ts;
419 int error;
420
421 /* Verify all parameters before changing time. */
422
423 /*
424 * NetBSD has no kernel notion of time zone, and only an
425 * obsolete program would try to set it, so we log a warning.
426 */
427 if (utzp)
428 log(LOG_WARNING, "pid %d attempted to set the "
429 "(obsolete) kernel time zone\n", l->l_proc->p_pid);
430
431 if (utv == NULL)
432 return 0;
433
434 if (userspace) {
435 if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
436 return error;
437 utv = &atv;
438 }
439
440 TIMEVAL_TO_TIMESPEC(utv, &ts);
441 return settime1(l->l_proc, &ts, check_kauth);
442 }
443
444 int time_adjusted; /* set if an adjustment is made */
445
446 /* ARGSUSED */
447 int
448 sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
449 register_t *retval)
450 {
451 /* {
452 syscallarg(const struct timeval *) delta;
453 syscallarg(struct timeval *) olddelta;
454 } */
455 int error = 0;
456 struct timeval atv, oldatv;
457
458 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
459 KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
460 return error;
461
462 if (SCARG(uap, delta)) {
463 error = copyin(SCARG(uap, delta), &atv,
464 sizeof(*SCARG(uap, delta)));
465 if (error)
466 return (error);
467 }
468 adjtime1(SCARG(uap, delta) ? &atv : NULL,
469 SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
470 if (SCARG(uap, olddelta))
471 error = copyout(&oldatv, SCARG(uap, olddelta),
472 sizeof(*SCARG(uap, olddelta)));
473 return error;
474 }
475
476 void
477 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
478 {
479 extern int64_t time_adjtime; /* in kern_ntptime.c */
480
481 if (olddelta) {
482 mutex_spin_enter(&timecounter_lock);
483 olddelta->tv_sec = time_adjtime / 1000000;
484 olddelta->tv_usec = time_adjtime % 1000000;
485 if (olddelta->tv_usec < 0) {
486 olddelta->tv_usec += 1000000;
487 olddelta->tv_sec--;
488 }
489 mutex_spin_exit(&timecounter_lock);
490 }
491
492 if (delta) {
493 mutex_spin_enter(&timecounter_lock);
494 time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
495
496 if (time_adjtime) {
497 /* We need to save the system time during shutdown */
498 time_adjusted |= 1;
499 }
500 mutex_spin_exit(&timecounter_lock);
501 }
502 }
503
504 /*
505 * Interval timer support. Both the BSD getitimer() family and the POSIX
506 * timer_*() family of routines are supported.
507 *
508 * All timers are kept in an array pointed to by p_timers, which is
509 * allocated on demand - many processes don't use timers at all. The
510 * first three elements in this array are reserved for the BSD timers:
511 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element
512 * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be
513 * allocated by the timer_create() syscall.
514 *
515 * Realtime timers are kept in the ptimer structure as an absolute
516 * time; virtual time timers are kept as a linked list of deltas.
517 * Virtual time timers are processed in the hardclock() routine of
518 * kern_clock.c. The real time timer is processed by a callout
519 * routine, called from the softclock() routine. Since a callout may
520 * be delayed in real time due to interrupt processing in the system,
521 * it is possible for the real time timeout routine (realtimeexpire,
522 * given below), to be delayed in real time past when it is supposed
523 * to occur. It does not suffice, therefore, to reload the real timer
524 * .it_value from the real time timers .it_interval. Rather, we
525 * compute the next time in absolute time the timer should go off. */
526
527 /* Allocate a POSIX realtime timer. */
528 int
529 sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
530 register_t *retval)
531 {
532 /* {
533 syscallarg(clockid_t) clock_id;
534 syscallarg(struct sigevent *) evp;
535 syscallarg(timer_t *) timerid;
536 } */
537
538 return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
539 SCARG(uap, evp), copyin, l);
540 }
541
542 int
543 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
544 copyin_t fetch_event, struct lwp *l)
545 {
546 int error;
547 timer_t timerid;
548 struct ptimers *pts;
549 struct ptimer *pt;
550 struct proc *p;
551
552 p = l->l_proc;
553
554 if ((u_int)id > CLOCK_MONOTONIC)
555 return (EINVAL);
556
557 if ((pts = p->p_timers) == NULL)
558 pts = timers_alloc(p);
559
560 pt = pool_get(&ptimer_pool, PR_WAITOK);
561 if (evp != NULL) {
562 if (((error =
563 (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
564 ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
565 (pt->pt_ev.sigev_notify > SIGEV_SA)) ||
566 (pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
567 (pt->pt_ev.sigev_signo <= 0 ||
568 pt->pt_ev.sigev_signo >= NSIG))) {
569 pool_put(&ptimer_pool, pt);
570 return (error ? error : EINVAL);
571 }
572 }
573
574 /* Find a free timer slot, skipping those reserved for setitimer(). */
575 mutex_spin_enter(&timer_lock);
576 for (timerid = 3; timerid < TIMER_MAX; timerid++)
577 if (pts->pts_timers[timerid] == NULL)
578 break;
579 if (timerid == TIMER_MAX) {
580 mutex_spin_exit(&timer_lock);
581 pool_put(&ptimer_pool, pt);
582 return EAGAIN;
583 }
584 if (evp == NULL) {
585 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
586 switch (id) {
587 case CLOCK_REALTIME:
588 case CLOCK_MONOTONIC:
589 pt->pt_ev.sigev_signo = SIGALRM;
590 break;
591 case CLOCK_VIRTUAL:
592 pt->pt_ev.sigev_signo = SIGVTALRM;
593 break;
594 case CLOCK_PROF:
595 pt->pt_ev.sigev_signo = SIGPROF;
596 break;
597 }
598 pt->pt_ev.sigev_value.sival_int = timerid;
599 }
600 pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
601 pt->pt_info.ksi_errno = 0;
602 pt->pt_info.ksi_code = 0;
603 pt->pt_info.ksi_pid = p->p_pid;
604 pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
605 pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
606 pt->pt_type = id;
607 pt->pt_proc = p;
608 pt->pt_overruns = 0;
609 pt->pt_poverruns = 0;
610 pt->pt_entry = timerid;
611 pt->pt_queued = false;
612 timespecclear(&pt->pt_time.it_value);
613 if (!CLOCK_VIRTUAL_P(id))
614 callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
615 else
616 pt->pt_active = 0;
617
618 pts->pts_timers[timerid] = pt;
619 mutex_spin_exit(&timer_lock);
620
621 return copyout(&timerid, tid, sizeof(timerid));
622 }
623
624 /* Delete a POSIX realtime timer */
625 int
626 sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
627 register_t *retval)
628 {
629 /* {
630 syscallarg(timer_t) timerid;
631 } */
632 struct proc *p = l->l_proc;
633 timer_t timerid;
634 struct ptimers *pts;
635 struct ptimer *pt, *ptn;
636
637 timerid = SCARG(uap, timerid);
638 pts = p->p_timers;
639
640 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
641 return (EINVAL);
642
643 mutex_spin_enter(&timer_lock);
644 if ((pt = pts->pts_timers[timerid]) == NULL) {
645 mutex_spin_exit(&timer_lock);
646 return (EINVAL);
647 }
648 if (CLOCK_VIRTUAL_P(pt->pt_type)) {
649 if (pt->pt_active) {
650 ptn = LIST_NEXT(pt, pt_list);
651 LIST_REMOVE(pt, pt_list);
652 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
653 timespecadd(&pt->pt_time.it_value,
654 &ptn->pt_time.it_value,
655 &ptn->pt_time.it_value);
656 pt->pt_active = 0;
657 }
658 }
659 itimerfree(pts, timerid);
660
661 return (0);
662 }
663
664 /*
665 * Set up the given timer. The value in pt->pt_time.it_value is taken
666 * to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC timers and
667 * a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
668 */
669 void
670 timer_settime(struct ptimer *pt)
671 {
672 struct ptimer *ptn, *pptn;
673 struct ptlist *ptl;
674
675 KASSERT(mutex_owned(&timer_lock));
676
677 if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
678 callout_halt(&pt->pt_ch, &timer_lock);
679 if (timespecisset(&pt->pt_time.it_value)) {
680 /*
681 * Don't need to check tshzto() return value, here.
682 * callout_reset() does it for us.
683 */
684 callout_reset(&pt->pt_ch,
685 pt->pt_type == CLOCK_MONOTONIC ?
686 tshztoup(&pt->pt_time.it_value) :
687 tshzto(&pt->pt_time.it_value),
688 realtimerexpire, pt);
689 }
690 } else {
691 if (pt->pt_active) {
692 ptn = LIST_NEXT(pt, pt_list);
693 LIST_REMOVE(pt, pt_list);
694 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
695 timespecadd(&pt->pt_time.it_value,
696 &ptn->pt_time.it_value,
697 &ptn->pt_time.it_value);
698 }
699 if (timespecisset(&pt->pt_time.it_value)) {
700 if (pt->pt_type == CLOCK_VIRTUAL)
701 ptl = &pt->pt_proc->p_timers->pts_virtual;
702 else
703 ptl = &pt->pt_proc->p_timers->pts_prof;
704
705 for (ptn = LIST_FIRST(ptl), pptn = NULL;
706 ptn && timespeccmp(&pt->pt_time.it_value,
707 &ptn->pt_time.it_value, >);
708 pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
709 timespecsub(&pt->pt_time.it_value,
710 &ptn->pt_time.it_value,
711 &pt->pt_time.it_value);
712
713 if (pptn)
714 LIST_INSERT_AFTER(pptn, pt, pt_list);
715 else
716 LIST_INSERT_HEAD(ptl, pt, pt_list);
717
718 for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
719 timespecsub(&ptn->pt_time.it_value,
720 &pt->pt_time.it_value,
721 &ptn->pt_time.it_value);
722
723 pt->pt_active = 1;
724 } else
725 pt->pt_active = 0;
726 }
727 }
728
729 void
730 timer_gettime(struct ptimer *pt, struct itimerspec *aits)
731 {
732 struct timespec now;
733 struct ptimer *ptn;
734
735 KASSERT(mutex_owned(&timer_lock));
736
737 *aits = pt->pt_time;
738 if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
739 /*
740 * Convert from absolute to relative time in .it_value
741 * part of real time timer. If time for real time
742 * timer has passed return 0, else return difference
743 * between current time and time for the timer to go
744 * off.
745 */
746 if (timespecisset(&aits->it_value)) {
747 if (pt->pt_type == CLOCK_REALTIME) {
748 getnanotime(&now);
749 } else { /* CLOCK_MONOTONIC */
750 getnanouptime(&now);
751 }
752 if (timespeccmp(&aits->it_value, &now, <))
753 timespecclear(&aits->it_value);
754 else
755 timespecsub(&aits->it_value, &now,
756 &aits->it_value);
757 }
758 } else if (pt->pt_active) {
759 if (pt->pt_type == CLOCK_VIRTUAL)
760 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
761 else
762 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
763 for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
764 timespecadd(&aits->it_value,
765 &ptn->pt_time.it_value, &aits->it_value);
766 KASSERT(ptn != NULL); /* pt should be findable on the list */
767 } else
768 timespecclear(&aits->it_value);
769 }
770
771
772
773 /* Set and arm a POSIX realtime timer */
774 int
775 sys___timer_settime50(struct lwp *l,
776 const struct sys___timer_settime50_args *uap,
777 register_t *retval)
778 {
779 /* {
780 syscallarg(timer_t) timerid;
781 syscallarg(int) flags;
782 syscallarg(const struct itimerspec *) value;
783 syscallarg(struct itimerspec *) ovalue;
784 } */
785 int error;
786 struct itimerspec value, ovalue, *ovp = NULL;
787
788 if ((error = copyin(SCARG(uap, value), &value,
789 sizeof(struct itimerspec))) != 0)
790 return (error);
791
792 if (SCARG(uap, ovalue))
793 ovp = &ovalue;
794
795 if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
796 SCARG(uap, flags), l->l_proc)) != 0)
797 return error;
798
799 if (ovp)
800 return copyout(&ovalue, SCARG(uap, ovalue),
801 sizeof(struct itimerspec));
802 return 0;
803 }
804
805 int
806 dotimer_settime(int timerid, struct itimerspec *value,
807 struct itimerspec *ovalue, int flags, struct proc *p)
808 {
809 struct timespec now;
810 struct itimerspec val, oval;
811 struct ptimers *pts;
812 struct ptimer *pt;
813 int error;
814
815 pts = p->p_timers;
816
817 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
818 return EINVAL;
819 val = *value;
820 if ((error = itimespecfix(&val.it_value)) != 0 ||
821 (error = itimespecfix(&val.it_interval)) != 0)
822 return error;
823
824 mutex_spin_enter(&timer_lock);
825 if ((pt = pts->pts_timers[timerid]) == NULL) {
826 mutex_spin_exit(&timer_lock);
827 return EINVAL;
828 }
829
830 oval = pt->pt_time;
831 pt->pt_time = val;
832
833 /*
834 * If we've been passed a relative time for a realtime timer,
835 * convert it to absolute; if an absolute time for a virtual
836 * timer, convert it to relative and make sure we don't set it
837 * to zero, which would cancel the timer, or let it go
838 * negative, which would confuse the comparison tests.
839 */
840 if (timespecisset(&pt->pt_time.it_value)) {
841 if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
842 if ((flags & TIMER_ABSTIME) == 0) {
843 if (pt->pt_type == CLOCK_REALTIME) {
844 getnanotime(&now);
845 } else { /* CLOCK_MONOTONIC */
846 getnanouptime(&now);
847 }
848 timespecadd(&pt->pt_time.it_value, &now,
849 &pt->pt_time.it_value);
850 }
851 } else {
852 if ((flags & TIMER_ABSTIME) != 0) {
853 getnanotime(&now);
854 timespecsub(&pt->pt_time.it_value, &now,
855 &pt->pt_time.it_value);
856 if (!timespecisset(&pt->pt_time.it_value) ||
857 pt->pt_time.it_value.tv_sec < 0) {
858 pt->pt_time.it_value.tv_sec = 0;
859 pt->pt_time.it_value.tv_nsec = 1;
860 }
861 }
862 }
863 }
864
865 timer_settime(pt);
866 mutex_spin_exit(&timer_lock);
867
868 if (ovalue)
869 *ovalue = oval;
870
871 return (0);
872 }
873
874 /* Return the time remaining until a POSIX timer fires. */
875 int
876 sys___timer_gettime50(struct lwp *l,
877 const struct sys___timer_gettime50_args *uap, register_t *retval)
878 {
879 /* {
880 syscallarg(timer_t) timerid;
881 syscallarg(struct itimerspec *) value;
882 } */
883 struct itimerspec its;
884 int error;
885
886 if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
887 &its)) != 0)
888 return error;
889
890 return copyout(&its, SCARG(uap, value), sizeof(its));
891 }
892
893 int
894 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
895 {
896 struct ptimer *pt;
897 struct ptimers *pts;
898
899 pts = p->p_timers;
900 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
901 return (EINVAL);
902 mutex_spin_enter(&timer_lock);
903 if ((pt = pts->pts_timers[timerid]) == NULL) {
904 mutex_spin_exit(&timer_lock);
905 return (EINVAL);
906 }
907 timer_gettime(pt, its);
908 mutex_spin_exit(&timer_lock);
909
910 return 0;
911 }
912
913 /*
914 * Return the count of the number of times a periodic timer expired
915 * while a notification was already pending. The counter is reset when
916 * a timer expires and a notification can be posted.
917 */
918 int
919 sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
920 register_t *retval)
921 {
922 /* {
923 syscallarg(timer_t) timerid;
924 } */
925 struct proc *p = l->l_proc;
926 struct ptimers *pts;
927 int timerid;
928 struct ptimer *pt;
929
930 timerid = SCARG(uap, timerid);
931
932 pts = p->p_timers;
933 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
934 return (EINVAL);
935 mutex_spin_enter(&timer_lock);
936 if ((pt = pts->pts_timers[timerid]) == NULL) {
937 mutex_spin_exit(&timer_lock);
938 return (EINVAL);
939 }
940 *retval = pt->pt_poverruns;
941 mutex_spin_exit(&timer_lock);
942
943 return (0);
944 }
945
946 /*
947 * Real interval timer expired:
948 * send process whose timer expired an alarm signal.
949 * If time is not set up to reload, then just return.
950 * Else compute next time timer should go off which is > current time.
951 * This is where delay in processing this timeout causes multiple
952 * SIGALRM calls to be compressed into one.
953 */
954 void
955 realtimerexpire(void *arg)
956 {
957 uint64_t last_val, next_val, interval, now_ns;
958 struct timespec now, next;
959 struct ptimer *pt;
960 int backwards;
961
962 pt = arg;
963
964 mutex_spin_enter(&timer_lock);
965 itimerfire(pt);
966
967 if (!timespecisset(&pt->pt_time.it_interval)) {
968 timespecclear(&pt->pt_time.it_value);
969 mutex_spin_exit(&timer_lock);
970 return;
971 }
972
973 if (pt->pt_type == CLOCK_MONOTONIC) {
974 getnanouptime(&now);
975 } else {
976 getnanotime(&now);
977 }
978 backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
979 timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
980 /* Handle the easy case of non-overflown timers first. */
981 if (!backwards && timespeccmp(&next, &now, >)) {
982 pt->pt_time.it_value = next;
983 } else {
984 now_ns = timespec2ns(&now);
985 last_val = timespec2ns(&pt->pt_time.it_value);
986 interval = timespec2ns(&pt->pt_time.it_interval);
987
988 next_val = now_ns +
989 (now_ns - last_val + interval - 1) % interval;
990
991 if (backwards)
992 next_val += interval;
993 else
994 pt->pt_overruns += (now_ns - last_val) / interval;
995
996 pt->pt_time.it_value.tv_sec = next_val / 1000000000;
997 pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
998 }
999
1000 /*
1001 * Don't need to check tshzto() return value, here.
1002 * callout_reset() does it for us.
1003 */
1004 callout_reset(&pt->pt_ch, pt->pt_type == CLOCK_MONOTONIC ?
1005 tshztoup(&pt->pt_time.it_value) : tshzto(&pt->pt_time.it_value),
1006 realtimerexpire, pt);
1007 mutex_spin_exit(&timer_lock);
1008 }
1009
1010 /* BSD routine to get the value of an interval timer. */
1011 /* ARGSUSED */
1012 int
1013 sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
1014 register_t *retval)
1015 {
1016 /* {
1017 syscallarg(int) which;
1018 syscallarg(struct itimerval *) itv;
1019 } */
1020 struct proc *p = l->l_proc;
1021 struct itimerval aitv;
1022 int error;
1023
1024 error = dogetitimer(p, SCARG(uap, which), &aitv);
1025 if (error)
1026 return error;
1027 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1028 }
1029
1030 int
1031 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1032 {
1033 struct ptimers *pts;
1034 struct ptimer *pt;
1035 struct itimerspec its;
1036
1037 if ((u_int)which > ITIMER_MONOTONIC)
1038 return (EINVAL);
1039
1040 mutex_spin_enter(&timer_lock);
1041 pts = p->p_timers;
1042 if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
1043 timerclear(&itvp->it_value);
1044 timerclear(&itvp->it_interval);
1045 } else {
1046 timer_gettime(pt, &its);
1047 TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
1048 TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
1049 }
1050 mutex_spin_exit(&timer_lock);
1051
1052 return 0;
1053 }
1054
1055 /* BSD routine to set/arm an interval timer. */
1056 /* ARGSUSED */
1057 int
1058 sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
1059 register_t *retval)
1060 {
1061 /* {
1062 syscallarg(int) which;
1063 syscallarg(const struct itimerval *) itv;
1064 syscallarg(struct itimerval *) oitv;
1065 } */
1066 struct proc *p = l->l_proc;
1067 int which = SCARG(uap, which);
1068 struct sys___getitimer50_args getargs;
1069 const struct itimerval *itvp;
1070 struct itimerval aitv;
1071 int error;
1072
1073 if ((u_int)which > ITIMER_MONOTONIC)
1074 return (EINVAL);
1075 itvp = SCARG(uap, itv);
1076 if (itvp &&
1077 (error = copyin(itvp, &aitv, sizeof(struct itimerval))) != 0)
1078 return (error);
1079 if (SCARG(uap, oitv) != NULL) {
1080 SCARG(&getargs, which) = which;
1081 SCARG(&getargs, itv) = SCARG(uap, oitv);
1082 if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
1083 return (error);
1084 }
1085 if (itvp == 0)
1086 return (0);
1087
1088 return dosetitimer(p, which, &aitv);
1089 }
1090
1091 int
1092 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1093 {
1094 struct timespec now;
1095 struct ptimers *pts;
1096 struct ptimer *pt, *spare;
1097
1098 KASSERT((u_int)which <= CLOCK_MONOTONIC);
1099 if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1100 return (EINVAL);
1101
1102 /*
1103 * Don't bother allocating data structures if the process just
1104 * wants to clear the timer.
1105 */
1106 spare = NULL;
1107 pts = p->p_timers;
1108 retry:
1109 if (!timerisset(&itvp->it_value) && (pts == NULL ||
1110 pts->pts_timers[which] == NULL))
1111 return (0);
1112 if (pts == NULL)
1113 pts = timers_alloc(p);
1114 mutex_spin_enter(&timer_lock);
1115 pt = pts->pts_timers[which];
1116 if (pt == NULL) {
1117 if (spare == NULL) {
1118 mutex_spin_exit(&timer_lock);
1119 spare = pool_get(&ptimer_pool, PR_WAITOK);
1120 goto retry;
1121 }
1122 pt = spare;
1123 spare = NULL;
1124 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1125 pt->pt_ev.sigev_value.sival_int = which;
1126 pt->pt_overruns = 0;
1127 pt->pt_proc = p;
1128 pt->pt_type = which;
1129 pt->pt_entry = which;
1130 pt->pt_queued = false;
1131 if (pt->pt_type == CLOCK_REALTIME)
1132 callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
1133 else
1134 pt->pt_active = 0;
1135
1136 switch (which) {
1137 case ITIMER_REAL:
1138 case ITIMER_MONOTONIC:
1139 pt->pt_ev.sigev_signo = SIGALRM;
1140 break;
1141 case ITIMER_VIRTUAL:
1142 pt->pt_ev.sigev_signo = SIGVTALRM;
1143 break;
1144 case ITIMER_PROF:
1145 pt->pt_ev.sigev_signo = SIGPROF;
1146 break;
1147 }
1148 pts->pts_timers[which] = pt;
1149 }
1150
1151 TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
1152 TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
1153
1154 if (timespecisset(&pt->pt_time.it_value)) {
1155 /* Convert to absolute time */
1156 /* XXX need to wrap in splclock for timecounters case? */
1157 switch (which) {
1158 case ITIMER_REAL:
1159 getnanotime(&now);
1160 timespecadd(&pt->pt_time.it_value, &now,
1161 &pt->pt_time.it_value);
1162 break;
1163 case ITIMER_MONOTONIC:
1164 getnanouptime(&now);
1165 timespecadd(&pt->pt_time.it_value, &now,
1166 &pt->pt_time.it_value);
1167 break;
1168 default:
1169 break;
1170 }
1171 }
1172 timer_settime(pt);
1173 mutex_spin_exit(&timer_lock);
1174 if (spare != NULL)
1175 pool_put(&ptimer_pool, spare);
1176
1177 return (0);
1178 }
1179
1180 /* Utility routines to manage the array of pointers to timers. */
1181 struct ptimers *
1182 timers_alloc(struct proc *p)
1183 {
1184 struct ptimers *pts;
1185 int i;
1186
1187 pts = pool_get(&ptimers_pool, PR_WAITOK);
1188 LIST_INIT(&pts->pts_virtual);
1189 LIST_INIT(&pts->pts_prof);
1190 for (i = 0; i < TIMER_MAX; i++)
1191 pts->pts_timers[i] = NULL;
1192 pts->pts_fired = 0;
1193 mutex_spin_enter(&timer_lock);
1194 if (p->p_timers == NULL) {
1195 p->p_timers = pts;
1196 mutex_spin_exit(&timer_lock);
1197 return pts;
1198 }
1199 mutex_spin_exit(&timer_lock);
1200 pool_put(&ptimers_pool, pts);
1201 return p->p_timers;
1202 }
1203
1204 /*
1205 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1206 * then clean up all timers and free all the data structures. If
1207 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1208 * by timer_create(), not the BSD setitimer() timers, and only free the
1209 * structure if none of those remain.
1210 */
1211 void
1212 timers_free(struct proc *p, int which)
1213 {
1214 struct ptimers *pts;
1215 struct ptimer *ptn;
1216 struct timespec ts;
1217 int i;
1218
1219 if (p->p_timers == NULL)
1220 return;
1221
1222 pts = p->p_timers;
1223 mutex_spin_enter(&timer_lock);
1224 if (which == TIMERS_ALL) {
1225 p->p_timers = NULL;
1226 i = 0;
1227 } else {
1228 timespecclear(&ts);
1229 for (ptn = LIST_FIRST(&pts->pts_virtual);
1230 ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1231 ptn = LIST_NEXT(ptn, pt_list)) {
1232 KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1233 timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1234 }
1235 LIST_FIRST(&pts->pts_virtual) = NULL;
1236 if (ptn) {
1237 KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1238 timespecadd(&ts, &ptn->pt_time.it_value,
1239 &ptn->pt_time.it_value);
1240 LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
1241 }
1242 timespecclear(&ts);
1243 for (ptn = LIST_FIRST(&pts->pts_prof);
1244 ptn && ptn != pts->pts_timers[ITIMER_PROF];
1245 ptn = LIST_NEXT(ptn, pt_list)) {
1246 KASSERT(ptn->pt_type == CLOCK_PROF);
1247 timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1248 }
1249 LIST_FIRST(&pts->pts_prof) = NULL;
1250 if (ptn) {
1251 KASSERT(ptn->pt_type == CLOCK_PROF);
1252 timespecadd(&ts, &ptn->pt_time.it_value,
1253 &ptn->pt_time.it_value);
1254 LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
1255 }
1256 i = 3;
1257 }
1258 for ( ; i < TIMER_MAX; i++) {
1259 if (pts->pts_timers[i] != NULL) {
1260 itimerfree(pts, i);
1261 mutex_spin_enter(&timer_lock);
1262 }
1263 }
1264 if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
1265 pts->pts_timers[2] == NULL) {
1266 p->p_timers = NULL;
1267 mutex_spin_exit(&timer_lock);
1268 pool_put(&ptimers_pool, pts);
1269 } else
1270 mutex_spin_exit(&timer_lock);
1271 }
1272
1273 static void
1274 itimerfree(struct ptimers *pts, int index)
1275 {
1276 struct ptimer *pt;
1277
1278 KASSERT(mutex_owned(&timer_lock));
1279
1280 pt = pts->pts_timers[index];
1281 pts->pts_timers[index] = NULL;
1282 if (!CLOCK_VIRTUAL_P(pt->pt_type))
1283 callout_halt(&pt->pt_ch, &timer_lock);
1284 if (pt->pt_queued)
1285 TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1286 mutex_spin_exit(&timer_lock);
1287 if (!CLOCK_VIRTUAL_P(pt->pt_type))
1288 callout_destroy(&pt->pt_ch);
1289 pool_put(&ptimer_pool, pt);
1290 }
1291
1292 /*
1293 * Decrement an interval timer by a specified number
1294 * of nanoseconds, which must be less than a second,
1295 * i.e. < 1000000000. If the timer expires, then reload
1296 * it. In this case, carry over (nsec - old value) to
1297 * reduce the value reloaded into the timer so that
1298 * the timer does not drift. This routine assumes
1299 * that it is called in a context where the timers
1300 * on which it is operating cannot change in value.
1301 */
1302 static int
1303 itimerdecr(struct ptimer *pt, int nsec)
1304 {
1305 struct itimerspec *itp;
1306
1307 KASSERT(mutex_owned(&timer_lock));
1308 KASSERT(CLOCK_VIRTUAL_P(pt->pt_type));
1309
1310 itp = &pt->pt_time;
1311 if (itp->it_value.tv_nsec < nsec) {
1312 if (itp->it_value.tv_sec == 0) {
1313 /* expired, and already in next interval */
1314 nsec -= itp->it_value.tv_nsec;
1315 goto expire;
1316 }
1317 itp->it_value.tv_nsec += 1000000000;
1318 itp->it_value.tv_sec--;
1319 }
1320 itp->it_value.tv_nsec -= nsec;
1321 nsec = 0;
1322 if (timespecisset(&itp->it_value))
1323 return (1);
1324 /* expired, exactly at end of interval */
1325 expire:
1326 if (timespecisset(&itp->it_interval)) {
1327 itp->it_value = itp->it_interval;
1328 itp->it_value.tv_nsec -= nsec;
1329 if (itp->it_value.tv_nsec < 0) {
1330 itp->it_value.tv_nsec += 1000000000;
1331 itp->it_value.tv_sec--;
1332 }
1333 timer_settime(pt);
1334 } else
1335 itp->it_value.tv_nsec = 0; /* sec is already 0 */
1336 return (0);
1337 }
1338
1339 static void
1340 itimerfire(struct ptimer *pt)
1341 {
1342
1343 KASSERT(mutex_owned(&timer_lock));
1344
1345 /*
1346 * XXX Can overrun, but we don't do signal queueing yet, anyway.
1347 * XXX Relying on the clock interrupt is stupid.
1348 */
1349 if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL || pt->pt_queued) {
1350 return;
1351 }
1352 TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
1353 pt->pt_queued = true;
1354 softint_schedule(timer_sih);
1355 }
1356
1357 void
1358 timer_tick(lwp_t *l, bool user)
1359 {
1360 struct ptimers *pts;
1361 struct ptimer *pt;
1362 proc_t *p;
1363
1364 p = l->l_proc;
1365 if (p->p_timers == NULL)
1366 return;
1367
1368 mutex_spin_enter(&timer_lock);
1369 if ((pts = l->l_proc->p_timers) != NULL) {
1370 /*
1371 * Run current process's virtual and profile time, as needed.
1372 */
1373 if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
1374 if (itimerdecr(pt, tick * 1000) == 0)
1375 itimerfire(pt);
1376 if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
1377 if (itimerdecr(pt, tick * 1000) == 0)
1378 itimerfire(pt);
1379 }
1380 mutex_spin_exit(&timer_lock);
1381 }
1382
1383 static void
1384 timer_intr(void *cookie)
1385 {
1386 ksiginfo_t ksi;
1387 struct ptimer *pt;
1388 proc_t *p;
1389
1390 mutex_enter(proc_lock);
1391 mutex_spin_enter(&timer_lock);
1392 while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
1393 TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1394 KASSERT(pt->pt_queued);
1395 pt->pt_queued = false;
1396
1397 if (pt->pt_proc->p_timers == NULL) {
1398 /* Process is dying. */
1399 continue;
1400 }
1401 p = pt->pt_proc;
1402 if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
1403 continue;
1404 }
1405 if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
1406 pt->pt_overruns++;
1407 continue;
1408 }
1409
1410 KSI_INIT(&ksi);
1411 ksi.ksi_signo = pt->pt_ev.sigev_signo;
1412 ksi.ksi_code = SI_TIMER;
1413 ksi.ksi_value = pt->pt_ev.sigev_value;
1414 pt->pt_poverruns = pt->pt_overruns;
1415 pt->pt_overruns = 0;
1416 mutex_spin_exit(&timer_lock);
1417 kpsignal(p, &ksi, NULL);
1418 mutex_spin_enter(&timer_lock);
1419 }
1420 mutex_spin_exit(&timer_lock);
1421 mutex_exit(proc_lock);
1422 }
1423
1424 /*
1425 * Check if the time will wrap if set to ts.
1426 *
1427 * ts - timespec describing the new time
1428 * delta - the delta between the current time and ts
1429 */
1430 bool
1431 time_wraps(struct timespec *ts, struct timespec *delta)
1432 {
1433
1434 /*
1435 * Don't allow the time to be set forward so far it
1436 * will wrap and become negative, thus allowing an
1437 * attacker to bypass the next check below. The
1438 * cutoff is 1 year before rollover occurs, so even
1439 * if the attacker uses adjtime(2) to move the time
1440 * past the cutoff, it will take a very long time
1441 * to get to the wrap point.
1442 */
1443 if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
1444 (delta->tv_sec < 0 || delta->tv_nsec < 0))
1445 return true;
1446
1447 return false;
1448 }
1449