kern_time.c revision 1.179 1 /* $NetBSD: kern_time.c,v 1.179 2013/05/22 16:00:52 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1986, 1989, 1993
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
61 */
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.179 2013/05/22 16:00:52 christos Exp $");
65
66 #include <sys/param.h>
67 #include <sys/resourcevar.h>
68 #include <sys/kernel.h>
69 #include <sys/systm.h>
70 #include <sys/proc.h>
71 #include <sys/vnode.h>
72 #include <sys/signalvar.h>
73 #include <sys/syslog.h>
74 #include <sys/timetc.h>
75 #include <sys/timex.h>
76 #include <sys/kauth.h>
77 #include <sys/mount.h>
78 #include <sys/syscallargs.h>
79 #include <sys/cpu.h>
80
81 static void timer_intr(void *);
82 static void itimerfire(struct ptimer *);
83 static void itimerfree(struct ptimers *, int);
84
85 kmutex_t timer_lock;
86
87 static void *timer_sih;
88 static TAILQ_HEAD(, ptimer) timer_queue;
89
90 struct pool ptimer_pool, ptimers_pool;
91
92 #define CLOCK_VIRTUAL_P(clockid) \
93 ((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)
94
95 CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
96 CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
97 CTASSERT(ITIMER_PROF == CLOCK_PROF);
98 CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC);
99
100 /*
101 * Initialize timekeeping.
102 */
103 void
104 time_init(void)
105 {
106
107 pool_init(&ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
108 &pool_allocator_nointr, IPL_NONE);
109 pool_init(&ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
110 &pool_allocator_nointr, IPL_NONE);
111 }
112
113 void
114 time_init2(void)
115 {
116
117 TAILQ_INIT(&timer_queue);
118 mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
119 timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
120 timer_intr, NULL);
121 }
122
123 /* Time of day and interval timer support.
124 *
125 * These routines provide the kernel entry points to get and set
126 * the time-of-day and per-process interval timers. Subroutines
127 * here provide support for adding and subtracting timeval structures
128 * and decrementing interval timers, optionally reloading the interval
129 * timers when they expire.
130 */
131
132 /* This function is used by clock_settime and settimeofday */
133 static int
134 settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
135 {
136 struct timespec delta, now;
137 int s;
138
139 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
140 s = splclock();
141 nanotime(&now);
142 timespecsub(ts, &now, &delta);
143
144 if (check_kauth && kauth_authorize_system(kauth_cred_get(),
145 KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
146 &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
147 splx(s);
148 return (EPERM);
149 }
150
151 #ifdef notyet
152 if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
153 splx(s);
154 return (EPERM);
155 }
156 #endif
157
158 tc_setclock(ts);
159
160 timespecadd(&boottime, &delta, &boottime);
161
162 resettodr();
163 splx(s);
164
165 return (0);
166 }
167
168 int
169 settime(struct proc *p, struct timespec *ts)
170 {
171 return (settime1(p, ts, true));
172 }
173
174 /* ARGSUSED */
175 int
176 sys___clock_gettime50(struct lwp *l,
177 const struct sys___clock_gettime50_args *uap, register_t *retval)
178 {
179 /* {
180 syscallarg(clockid_t) clock_id;
181 syscallarg(struct timespec *) tp;
182 } */
183 int error;
184 struct timespec ats;
185
186 error = clock_gettime1(SCARG(uap, clock_id), &ats);
187 if (error != 0)
188 return error;
189
190 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
191 }
192
193 /* ARGSUSED */
194 int
195 sys___clock_settime50(struct lwp *l,
196 const struct sys___clock_settime50_args *uap, register_t *retval)
197 {
198 /* {
199 syscallarg(clockid_t) clock_id;
200 syscallarg(const struct timespec *) tp;
201 } */
202 int error;
203 struct timespec ats;
204
205 if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
206 return error;
207
208 return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
209 }
210
211
212 int
213 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
214 bool check_kauth)
215 {
216 int error;
217
218 switch (clock_id) {
219 case CLOCK_REALTIME:
220 if ((error = settime1(p, tp, check_kauth)) != 0)
221 return (error);
222 break;
223 case CLOCK_MONOTONIC:
224 return (EINVAL); /* read-only clock */
225 default:
226 return (EINVAL);
227 }
228
229 return 0;
230 }
231
232 int
233 sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
234 register_t *retval)
235 {
236 /* {
237 syscallarg(clockid_t) clock_id;
238 syscallarg(struct timespec *) tp;
239 } */
240 struct timespec ts;
241 int error = 0;
242
243 if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
244 return error;
245
246 if (SCARG(uap, tp))
247 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
248
249 return error;
250 }
251
252 int
253 clock_getres1(clockid_t clock_id, struct timespec *ts)
254 {
255
256 switch (clock_id) {
257 case CLOCK_REALTIME:
258 case CLOCK_MONOTONIC:
259 ts->tv_sec = 0;
260 if (tc_getfrequency() > 1000000000)
261 ts->tv_nsec = 1;
262 else
263 ts->tv_nsec = 1000000000 / tc_getfrequency();
264 break;
265 default:
266 return EINVAL;
267 }
268
269 return 0;
270 }
271
272 /* ARGSUSED */
273 int
274 sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
275 register_t *retval)
276 {
277 /* {
278 syscallarg(struct timespec *) rqtp;
279 syscallarg(struct timespec *) rmtp;
280 } */
281 struct timespec rmt, rqt;
282 int error, error1;
283
284 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
285 if (error)
286 return (error);
287
288 error = nanosleep1(l, CLOCK_MONOTONIC, 0, &rqt,
289 SCARG(uap, rmtp) ? &rmt : NULL);
290 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
291 return error;
292
293 error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
294 return error1 ? error1 : error;
295 }
296
297 /* ARGSUSED */
298 int
299 sys_clock_nanosleep(struct lwp *l, const struct sys_clock_nanosleep_args *uap,
300 register_t *retval)
301 {
302 /* {
303 syscallarg(clockid_t) clock_id;
304 syscallarg(int) flags;
305 syscallarg(struct timespec *) rqtp;
306 syscallarg(struct timespec *) rmtp;
307 } */
308 struct timespec rmt, rqt;
309 int error, error1;
310
311 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
312 if (error)
313 return (error);
314
315 error = nanosleep1(l, SCARG(uap, clock_id), SCARG(uap, flags), &rqt,
316 SCARG(uap, rmtp) ? &rmt : NULL);
317 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
318 return error;
319
320 error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
321 return error1 ? error1 : error;
322 }
323
324 int
325 nanosleep1(struct lwp *l, clockid_t clock_id, int flags, struct timespec *rqt,
326 struct timespec *rmt)
327 {
328 struct timespec rmtstart;
329 int error, timo;
330
331 if ((error = ts2timo(clock_id, flags, rqt, &timo, &rmtstart)) != 0)
332 return error == ETIMEDOUT ? 0 : error;
333
334 /*
335 * Avoid inadvertently sleeping forever
336 */
337 if (timo == 0)
338 timo = 1;
339 again:
340 error = kpause("nanoslp", true, timo, NULL);
341 if (rmt != NULL || error == 0) {
342 struct timespec rmtend;
343 struct timespec t0;
344 struct timespec *t;
345
346 (void)clock_gettime1(clock_id, &rmtend);
347 t = (rmt != NULL) ? rmt : &t0;
348 if (flags & TIMER_ABSTIME) {
349 timespecsub(rqt, &rmtend, t);
350 } else {
351 timespecsub(&rmtend, &rmtstart, t);
352 timespecsub(rqt, t, t);
353 }
354 if (t->tv_sec < 0)
355 timespecclear(t);
356 if (error == 0) {
357 timo = tstohz(t);
358 if (timo > 0)
359 goto again;
360 }
361 }
362
363 if (error == ERESTART)
364 error = EINTR;
365 if (error == EWOULDBLOCK)
366 error = 0;
367
368 return error;
369 }
370
371 /* ARGSUSED */
372 int
373 sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
374 register_t *retval)
375 {
376 /* {
377 syscallarg(struct timeval *) tp;
378 syscallarg(void *) tzp; really "struct timezone *";
379 } */
380 struct timeval atv;
381 int error = 0;
382 struct timezone tzfake;
383
384 if (SCARG(uap, tp)) {
385 microtime(&atv);
386 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
387 if (error)
388 return (error);
389 }
390 if (SCARG(uap, tzp)) {
391 /*
392 * NetBSD has no kernel notion of time zone, so we just
393 * fake up a timezone struct and return it if demanded.
394 */
395 tzfake.tz_minuteswest = 0;
396 tzfake.tz_dsttime = 0;
397 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
398 }
399 return (error);
400 }
401
402 /* ARGSUSED */
403 int
404 sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
405 register_t *retval)
406 {
407 /* {
408 syscallarg(const struct timeval *) tv;
409 syscallarg(const void *) tzp; really "const struct timezone *";
410 } */
411
412 return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
413 }
414
415 int
416 settimeofday1(const struct timeval *utv, bool userspace,
417 const void *utzp, struct lwp *l, bool check_kauth)
418 {
419 struct timeval atv;
420 struct timespec ts;
421 int error;
422
423 /* Verify all parameters before changing time. */
424
425 /*
426 * NetBSD has no kernel notion of time zone, and only an
427 * obsolete program would try to set it, so we log a warning.
428 */
429 if (utzp)
430 log(LOG_WARNING, "pid %d attempted to set the "
431 "(obsolete) kernel time zone\n", l->l_proc->p_pid);
432
433 if (utv == NULL)
434 return 0;
435
436 if (userspace) {
437 if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
438 return error;
439 utv = &atv;
440 }
441
442 TIMEVAL_TO_TIMESPEC(utv, &ts);
443 return settime1(l->l_proc, &ts, check_kauth);
444 }
445
446 int time_adjusted; /* set if an adjustment is made */
447
448 /* ARGSUSED */
449 int
450 sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
451 register_t *retval)
452 {
453 /* {
454 syscallarg(const struct timeval *) delta;
455 syscallarg(struct timeval *) olddelta;
456 } */
457 int error = 0;
458 struct timeval atv, oldatv;
459
460 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
461 KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
462 return error;
463
464 if (SCARG(uap, delta)) {
465 error = copyin(SCARG(uap, delta), &atv,
466 sizeof(*SCARG(uap, delta)));
467 if (error)
468 return (error);
469 }
470 adjtime1(SCARG(uap, delta) ? &atv : NULL,
471 SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
472 if (SCARG(uap, olddelta))
473 error = copyout(&oldatv, SCARG(uap, olddelta),
474 sizeof(*SCARG(uap, olddelta)));
475 return error;
476 }
477
478 void
479 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
480 {
481 extern int64_t time_adjtime; /* in kern_ntptime.c */
482
483 if (olddelta) {
484 mutex_spin_enter(&timecounter_lock);
485 olddelta->tv_sec = time_adjtime / 1000000;
486 olddelta->tv_usec = time_adjtime % 1000000;
487 if (olddelta->tv_usec < 0) {
488 olddelta->tv_usec += 1000000;
489 olddelta->tv_sec--;
490 }
491 mutex_spin_exit(&timecounter_lock);
492 }
493
494 if (delta) {
495 mutex_spin_enter(&timecounter_lock);
496 time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
497
498 if (time_adjtime) {
499 /* We need to save the system time during shutdown */
500 time_adjusted |= 1;
501 }
502 mutex_spin_exit(&timecounter_lock);
503 }
504 }
505
506 /*
507 * Interval timer support. Both the BSD getitimer() family and the POSIX
508 * timer_*() family of routines are supported.
509 *
510 * All timers are kept in an array pointed to by p_timers, which is
511 * allocated on demand - many processes don't use timers at all. The
512 * first three elements in this array are reserved for the BSD timers:
513 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element
514 * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be
515 * allocated by the timer_create() syscall.
516 *
517 * Realtime timers are kept in the ptimer structure as an absolute
518 * time; virtual time timers are kept as a linked list of deltas.
519 * Virtual time timers are processed in the hardclock() routine of
520 * kern_clock.c. The real time timer is processed by a callout
521 * routine, called from the softclock() routine. Since a callout may
522 * be delayed in real time due to interrupt processing in the system,
523 * it is possible for the real time timeout routine (realtimeexpire,
524 * given below), to be delayed in real time past when it is supposed
525 * to occur. It does not suffice, therefore, to reload the real timer
526 * .it_value from the real time timers .it_interval. Rather, we
527 * compute the next time in absolute time the timer should go off. */
528
529 /* Allocate a POSIX realtime timer. */
530 int
531 sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
532 register_t *retval)
533 {
534 /* {
535 syscallarg(clockid_t) clock_id;
536 syscallarg(struct sigevent *) evp;
537 syscallarg(timer_t *) timerid;
538 } */
539
540 return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
541 SCARG(uap, evp), copyin, l);
542 }
543
544 int
545 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
546 copyin_t fetch_event, struct lwp *l)
547 {
548 int error;
549 timer_t timerid;
550 struct ptimers *pts;
551 struct ptimer *pt;
552 struct proc *p;
553
554 p = l->l_proc;
555
556 if ((u_int)id > CLOCK_MONOTONIC)
557 return (EINVAL);
558
559 if ((pts = p->p_timers) == NULL)
560 pts = timers_alloc(p);
561
562 pt = pool_get(&ptimer_pool, PR_WAITOK);
563 if (evp != NULL) {
564 if (((error =
565 (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
566 ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
567 (pt->pt_ev.sigev_notify > SIGEV_SA)) ||
568 (pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
569 (pt->pt_ev.sigev_signo <= 0 ||
570 pt->pt_ev.sigev_signo >= NSIG))) {
571 pool_put(&ptimer_pool, pt);
572 return (error ? error : EINVAL);
573 }
574 }
575
576 /* Find a free timer slot, skipping those reserved for setitimer(). */
577 mutex_spin_enter(&timer_lock);
578 for (timerid = 3; timerid < TIMER_MAX; timerid++)
579 if (pts->pts_timers[timerid] == NULL)
580 break;
581 if (timerid == TIMER_MAX) {
582 mutex_spin_exit(&timer_lock);
583 pool_put(&ptimer_pool, pt);
584 return EAGAIN;
585 }
586 if (evp == NULL) {
587 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
588 switch (id) {
589 case CLOCK_REALTIME:
590 case CLOCK_MONOTONIC:
591 pt->pt_ev.sigev_signo = SIGALRM;
592 break;
593 case CLOCK_VIRTUAL:
594 pt->pt_ev.sigev_signo = SIGVTALRM;
595 break;
596 case CLOCK_PROF:
597 pt->pt_ev.sigev_signo = SIGPROF;
598 break;
599 }
600 pt->pt_ev.sigev_value.sival_int = timerid;
601 }
602 pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
603 pt->pt_info.ksi_errno = 0;
604 pt->pt_info.ksi_code = 0;
605 pt->pt_info.ksi_pid = p->p_pid;
606 pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
607 pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
608 pt->pt_type = id;
609 pt->pt_proc = p;
610 pt->pt_overruns = 0;
611 pt->pt_poverruns = 0;
612 pt->pt_entry = timerid;
613 pt->pt_queued = false;
614 timespecclear(&pt->pt_time.it_value);
615 if (!CLOCK_VIRTUAL_P(id))
616 callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
617 else
618 pt->pt_active = 0;
619
620 pts->pts_timers[timerid] = pt;
621 mutex_spin_exit(&timer_lock);
622
623 return copyout(&timerid, tid, sizeof(timerid));
624 }
625
626 /* Delete a POSIX realtime timer */
627 int
628 sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
629 register_t *retval)
630 {
631 /* {
632 syscallarg(timer_t) timerid;
633 } */
634 struct proc *p = l->l_proc;
635 timer_t timerid;
636 struct ptimers *pts;
637 struct ptimer *pt, *ptn;
638
639 timerid = SCARG(uap, timerid);
640 pts = p->p_timers;
641
642 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
643 return (EINVAL);
644
645 mutex_spin_enter(&timer_lock);
646 if ((pt = pts->pts_timers[timerid]) == NULL) {
647 mutex_spin_exit(&timer_lock);
648 return (EINVAL);
649 }
650 if (CLOCK_VIRTUAL_P(pt->pt_type)) {
651 if (pt->pt_active) {
652 ptn = LIST_NEXT(pt, pt_list);
653 LIST_REMOVE(pt, pt_list);
654 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
655 timespecadd(&pt->pt_time.it_value,
656 &ptn->pt_time.it_value,
657 &ptn->pt_time.it_value);
658 pt->pt_active = 0;
659 }
660 }
661 itimerfree(pts, timerid);
662
663 return (0);
664 }
665
666 /*
667 * Set up the given timer. The value in pt->pt_time.it_value is taken
668 * to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC timers and
669 * a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
670 */
671 void
672 timer_settime(struct ptimer *pt)
673 {
674 struct ptimer *ptn, *pptn;
675 struct ptlist *ptl;
676
677 KASSERT(mutex_owned(&timer_lock));
678
679 if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
680 callout_halt(&pt->pt_ch, &timer_lock);
681 if (timespecisset(&pt->pt_time.it_value)) {
682 /*
683 * Don't need to check tshzto() return value, here.
684 * callout_reset() does it for us.
685 */
686 callout_reset(&pt->pt_ch,
687 pt->pt_type == CLOCK_MONOTONIC ?
688 tshztoup(&pt->pt_time.it_value) :
689 tshzto(&pt->pt_time.it_value),
690 realtimerexpire, pt);
691 }
692 } else {
693 if (pt->pt_active) {
694 ptn = LIST_NEXT(pt, pt_list);
695 LIST_REMOVE(pt, pt_list);
696 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
697 timespecadd(&pt->pt_time.it_value,
698 &ptn->pt_time.it_value,
699 &ptn->pt_time.it_value);
700 }
701 if (timespecisset(&pt->pt_time.it_value)) {
702 if (pt->pt_type == CLOCK_VIRTUAL)
703 ptl = &pt->pt_proc->p_timers->pts_virtual;
704 else
705 ptl = &pt->pt_proc->p_timers->pts_prof;
706
707 for (ptn = LIST_FIRST(ptl), pptn = NULL;
708 ptn && timespeccmp(&pt->pt_time.it_value,
709 &ptn->pt_time.it_value, >);
710 pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
711 timespecsub(&pt->pt_time.it_value,
712 &ptn->pt_time.it_value,
713 &pt->pt_time.it_value);
714
715 if (pptn)
716 LIST_INSERT_AFTER(pptn, pt, pt_list);
717 else
718 LIST_INSERT_HEAD(ptl, pt, pt_list);
719
720 for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
721 timespecsub(&ptn->pt_time.it_value,
722 &pt->pt_time.it_value,
723 &ptn->pt_time.it_value);
724
725 pt->pt_active = 1;
726 } else
727 pt->pt_active = 0;
728 }
729 }
730
731 void
732 timer_gettime(struct ptimer *pt, struct itimerspec *aits)
733 {
734 struct timespec now;
735 struct ptimer *ptn;
736
737 KASSERT(mutex_owned(&timer_lock));
738
739 *aits = pt->pt_time;
740 if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
741 /*
742 * Convert from absolute to relative time in .it_value
743 * part of real time timer. If time for real time
744 * timer has passed return 0, else return difference
745 * between current time and time for the timer to go
746 * off.
747 */
748 if (timespecisset(&aits->it_value)) {
749 if (pt->pt_type == CLOCK_REALTIME) {
750 getnanotime(&now);
751 } else { /* CLOCK_MONOTONIC */
752 getnanouptime(&now);
753 }
754 if (timespeccmp(&aits->it_value, &now, <))
755 timespecclear(&aits->it_value);
756 else
757 timespecsub(&aits->it_value, &now,
758 &aits->it_value);
759 }
760 } else if (pt->pt_active) {
761 if (pt->pt_type == CLOCK_VIRTUAL)
762 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
763 else
764 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
765 for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
766 timespecadd(&aits->it_value,
767 &ptn->pt_time.it_value, &aits->it_value);
768 KASSERT(ptn != NULL); /* pt should be findable on the list */
769 } else
770 timespecclear(&aits->it_value);
771 }
772
773
774
775 /* Set and arm a POSIX realtime timer */
776 int
777 sys___timer_settime50(struct lwp *l,
778 const struct sys___timer_settime50_args *uap,
779 register_t *retval)
780 {
781 /* {
782 syscallarg(timer_t) timerid;
783 syscallarg(int) flags;
784 syscallarg(const struct itimerspec *) value;
785 syscallarg(struct itimerspec *) ovalue;
786 } */
787 int error;
788 struct itimerspec value, ovalue, *ovp = NULL;
789
790 if ((error = copyin(SCARG(uap, value), &value,
791 sizeof(struct itimerspec))) != 0)
792 return (error);
793
794 if (SCARG(uap, ovalue))
795 ovp = &ovalue;
796
797 if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
798 SCARG(uap, flags), l->l_proc)) != 0)
799 return error;
800
801 if (ovp)
802 return copyout(&ovalue, SCARG(uap, ovalue),
803 sizeof(struct itimerspec));
804 return 0;
805 }
806
807 int
808 dotimer_settime(int timerid, struct itimerspec *value,
809 struct itimerspec *ovalue, int flags, struct proc *p)
810 {
811 struct timespec now;
812 struct itimerspec val, oval;
813 struct ptimers *pts;
814 struct ptimer *pt;
815 int error;
816
817 pts = p->p_timers;
818
819 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
820 return EINVAL;
821 val = *value;
822 if ((error = itimespecfix(&val.it_value)) != 0 ||
823 (error = itimespecfix(&val.it_interval)) != 0)
824 return error;
825
826 mutex_spin_enter(&timer_lock);
827 if ((pt = pts->pts_timers[timerid]) == NULL) {
828 mutex_spin_exit(&timer_lock);
829 return EINVAL;
830 }
831
832 oval = pt->pt_time;
833 pt->pt_time = val;
834
835 /*
836 * If we've been passed a relative time for a realtime timer,
837 * convert it to absolute; if an absolute time for a virtual
838 * timer, convert it to relative and make sure we don't set it
839 * to zero, which would cancel the timer, or let it go
840 * negative, which would confuse the comparison tests.
841 */
842 if (timespecisset(&pt->pt_time.it_value)) {
843 if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
844 if ((flags & TIMER_ABSTIME) == 0) {
845 if (pt->pt_type == CLOCK_REALTIME) {
846 getnanotime(&now);
847 } else { /* CLOCK_MONOTONIC */
848 getnanouptime(&now);
849 }
850 timespecadd(&pt->pt_time.it_value, &now,
851 &pt->pt_time.it_value);
852 }
853 } else {
854 if ((flags & TIMER_ABSTIME) != 0) {
855 getnanotime(&now);
856 timespecsub(&pt->pt_time.it_value, &now,
857 &pt->pt_time.it_value);
858 if (!timespecisset(&pt->pt_time.it_value) ||
859 pt->pt_time.it_value.tv_sec < 0) {
860 pt->pt_time.it_value.tv_sec = 0;
861 pt->pt_time.it_value.tv_nsec = 1;
862 }
863 }
864 }
865 }
866
867 timer_settime(pt);
868 mutex_spin_exit(&timer_lock);
869
870 if (ovalue)
871 *ovalue = oval;
872
873 return (0);
874 }
875
876 /* Return the time remaining until a POSIX timer fires. */
877 int
878 sys___timer_gettime50(struct lwp *l,
879 const struct sys___timer_gettime50_args *uap, register_t *retval)
880 {
881 /* {
882 syscallarg(timer_t) timerid;
883 syscallarg(struct itimerspec *) value;
884 } */
885 struct itimerspec its;
886 int error;
887
888 if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
889 &its)) != 0)
890 return error;
891
892 return copyout(&its, SCARG(uap, value), sizeof(its));
893 }
894
895 int
896 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
897 {
898 struct ptimer *pt;
899 struct ptimers *pts;
900
901 pts = p->p_timers;
902 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
903 return (EINVAL);
904 mutex_spin_enter(&timer_lock);
905 if ((pt = pts->pts_timers[timerid]) == NULL) {
906 mutex_spin_exit(&timer_lock);
907 return (EINVAL);
908 }
909 timer_gettime(pt, its);
910 mutex_spin_exit(&timer_lock);
911
912 return 0;
913 }
914
915 /*
916 * Return the count of the number of times a periodic timer expired
917 * while a notification was already pending. The counter is reset when
918 * a timer expires and a notification can be posted.
919 */
920 int
921 sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
922 register_t *retval)
923 {
924 /* {
925 syscallarg(timer_t) timerid;
926 } */
927 struct proc *p = l->l_proc;
928 struct ptimers *pts;
929 int timerid;
930 struct ptimer *pt;
931
932 timerid = SCARG(uap, timerid);
933
934 pts = p->p_timers;
935 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
936 return (EINVAL);
937 mutex_spin_enter(&timer_lock);
938 if ((pt = pts->pts_timers[timerid]) == NULL) {
939 mutex_spin_exit(&timer_lock);
940 return (EINVAL);
941 }
942 *retval = pt->pt_poverruns;
943 mutex_spin_exit(&timer_lock);
944
945 return (0);
946 }
947
948 /*
949 * Real interval timer expired:
950 * send process whose timer expired an alarm signal.
951 * If time is not set up to reload, then just return.
952 * Else compute next time timer should go off which is > current time.
953 * This is where delay in processing this timeout causes multiple
954 * SIGALRM calls to be compressed into one.
955 */
956 void
957 realtimerexpire(void *arg)
958 {
959 uint64_t last_val, next_val, interval, now_ns;
960 struct timespec now, next;
961 struct ptimer *pt;
962 int backwards;
963
964 pt = arg;
965
966 mutex_spin_enter(&timer_lock);
967 itimerfire(pt);
968
969 if (!timespecisset(&pt->pt_time.it_interval)) {
970 timespecclear(&pt->pt_time.it_value);
971 mutex_spin_exit(&timer_lock);
972 return;
973 }
974
975 if (pt->pt_type == CLOCK_MONOTONIC) {
976 getnanouptime(&now);
977 } else {
978 getnanotime(&now);
979 }
980 backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
981 timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
982 /* Handle the easy case of non-overflown timers first. */
983 if (!backwards && timespeccmp(&next, &now, >)) {
984 pt->pt_time.it_value = next;
985 } else {
986 now_ns = timespec2ns(&now);
987 last_val = timespec2ns(&pt->pt_time.it_value);
988 interval = timespec2ns(&pt->pt_time.it_interval);
989
990 next_val = now_ns +
991 (now_ns - last_val + interval - 1) % interval;
992
993 if (backwards)
994 next_val += interval;
995 else
996 pt->pt_overruns += (now_ns - last_val) / interval;
997
998 pt->pt_time.it_value.tv_sec = next_val / 1000000000;
999 pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
1000 }
1001
1002 /*
1003 * Don't need to check tshzto() return value, here.
1004 * callout_reset() does it for us.
1005 */
1006 callout_reset(&pt->pt_ch, pt->pt_type == CLOCK_MONOTONIC ?
1007 tshztoup(&pt->pt_time.it_value) : tshzto(&pt->pt_time.it_value),
1008 realtimerexpire, pt);
1009 mutex_spin_exit(&timer_lock);
1010 }
1011
1012 /* BSD routine to get the value of an interval timer. */
1013 /* ARGSUSED */
1014 int
1015 sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
1016 register_t *retval)
1017 {
1018 /* {
1019 syscallarg(int) which;
1020 syscallarg(struct itimerval *) itv;
1021 } */
1022 struct proc *p = l->l_proc;
1023 struct itimerval aitv;
1024 int error;
1025
1026 error = dogetitimer(p, SCARG(uap, which), &aitv);
1027 if (error)
1028 return error;
1029 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1030 }
1031
1032 int
1033 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1034 {
1035 struct ptimers *pts;
1036 struct ptimer *pt;
1037 struct itimerspec its;
1038
1039 if ((u_int)which > ITIMER_MONOTONIC)
1040 return (EINVAL);
1041
1042 mutex_spin_enter(&timer_lock);
1043 pts = p->p_timers;
1044 if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
1045 timerclear(&itvp->it_value);
1046 timerclear(&itvp->it_interval);
1047 } else {
1048 timer_gettime(pt, &its);
1049 TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
1050 TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
1051 }
1052 mutex_spin_exit(&timer_lock);
1053
1054 return 0;
1055 }
1056
1057 /* BSD routine to set/arm an interval timer. */
1058 /* ARGSUSED */
1059 int
1060 sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
1061 register_t *retval)
1062 {
1063 /* {
1064 syscallarg(int) which;
1065 syscallarg(const struct itimerval *) itv;
1066 syscallarg(struct itimerval *) oitv;
1067 } */
1068 struct proc *p = l->l_proc;
1069 int which = SCARG(uap, which);
1070 struct sys___getitimer50_args getargs;
1071 const struct itimerval *itvp;
1072 struct itimerval aitv;
1073 int error;
1074
1075 if ((u_int)which > ITIMER_MONOTONIC)
1076 return (EINVAL);
1077 itvp = SCARG(uap, itv);
1078 if (itvp &&
1079 (error = copyin(itvp, &aitv, sizeof(struct itimerval))) != 0)
1080 return (error);
1081 if (SCARG(uap, oitv) != NULL) {
1082 SCARG(&getargs, which) = which;
1083 SCARG(&getargs, itv) = SCARG(uap, oitv);
1084 if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
1085 return (error);
1086 }
1087 if (itvp == 0)
1088 return (0);
1089
1090 return dosetitimer(p, which, &aitv);
1091 }
1092
1093 int
1094 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1095 {
1096 struct timespec now;
1097 struct ptimers *pts;
1098 struct ptimer *pt, *spare;
1099
1100 KASSERT((u_int)which <= CLOCK_MONOTONIC);
1101 if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1102 return (EINVAL);
1103
1104 /*
1105 * Don't bother allocating data structures if the process just
1106 * wants to clear the timer.
1107 */
1108 spare = NULL;
1109 pts = p->p_timers;
1110 retry:
1111 if (!timerisset(&itvp->it_value) && (pts == NULL ||
1112 pts->pts_timers[which] == NULL))
1113 return (0);
1114 if (pts == NULL)
1115 pts = timers_alloc(p);
1116 mutex_spin_enter(&timer_lock);
1117 pt = pts->pts_timers[which];
1118 if (pt == NULL) {
1119 if (spare == NULL) {
1120 mutex_spin_exit(&timer_lock);
1121 spare = pool_get(&ptimer_pool, PR_WAITOK);
1122 goto retry;
1123 }
1124 pt = spare;
1125 spare = NULL;
1126 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1127 pt->pt_ev.sigev_value.sival_int = which;
1128 pt->pt_overruns = 0;
1129 pt->pt_proc = p;
1130 pt->pt_type = which;
1131 pt->pt_entry = which;
1132 pt->pt_queued = false;
1133 if (pt->pt_type == CLOCK_REALTIME)
1134 callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
1135 else
1136 pt->pt_active = 0;
1137
1138 switch (which) {
1139 case ITIMER_REAL:
1140 case ITIMER_MONOTONIC:
1141 pt->pt_ev.sigev_signo = SIGALRM;
1142 break;
1143 case ITIMER_VIRTUAL:
1144 pt->pt_ev.sigev_signo = SIGVTALRM;
1145 break;
1146 case ITIMER_PROF:
1147 pt->pt_ev.sigev_signo = SIGPROF;
1148 break;
1149 }
1150 pts->pts_timers[which] = pt;
1151 }
1152
1153 TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
1154 TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
1155
1156 if (timespecisset(&pt->pt_time.it_value)) {
1157 /* Convert to absolute time */
1158 /* XXX need to wrap in splclock for timecounters case? */
1159 switch (which) {
1160 case ITIMER_REAL:
1161 getnanotime(&now);
1162 timespecadd(&pt->pt_time.it_value, &now,
1163 &pt->pt_time.it_value);
1164 break;
1165 case ITIMER_MONOTONIC:
1166 getnanouptime(&now);
1167 timespecadd(&pt->pt_time.it_value, &now,
1168 &pt->pt_time.it_value);
1169 break;
1170 default:
1171 break;
1172 }
1173 }
1174 timer_settime(pt);
1175 mutex_spin_exit(&timer_lock);
1176 if (spare != NULL)
1177 pool_put(&ptimer_pool, spare);
1178
1179 return (0);
1180 }
1181
1182 /* Utility routines to manage the array of pointers to timers. */
1183 struct ptimers *
1184 timers_alloc(struct proc *p)
1185 {
1186 struct ptimers *pts;
1187 int i;
1188
1189 pts = pool_get(&ptimers_pool, PR_WAITOK);
1190 LIST_INIT(&pts->pts_virtual);
1191 LIST_INIT(&pts->pts_prof);
1192 for (i = 0; i < TIMER_MAX; i++)
1193 pts->pts_timers[i] = NULL;
1194 pts->pts_fired = 0;
1195 mutex_spin_enter(&timer_lock);
1196 if (p->p_timers == NULL) {
1197 p->p_timers = pts;
1198 mutex_spin_exit(&timer_lock);
1199 return pts;
1200 }
1201 mutex_spin_exit(&timer_lock);
1202 pool_put(&ptimers_pool, pts);
1203 return p->p_timers;
1204 }
1205
1206 /*
1207 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1208 * then clean up all timers and free all the data structures. If
1209 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1210 * by timer_create(), not the BSD setitimer() timers, and only free the
1211 * structure if none of those remain.
1212 */
1213 void
1214 timers_free(struct proc *p, int which)
1215 {
1216 struct ptimers *pts;
1217 struct ptimer *ptn;
1218 struct timespec ts;
1219 int i;
1220
1221 if (p->p_timers == NULL)
1222 return;
1223
1224 pts = p->p_timers;
1225 mutex_spin_enter(&timer_lock);
1226 if (which == TIMERS_ALL) {
1227 p->p_timers = NULL;
1228 i = 0;
1229 } else {
1230 timespecclear(&ts);
1231 for (ptn = LIST_FIRST(&pts->pts_virtual);
1232 ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1233 ptn = LIST_NEXT(ptn, pt_list)) {
1234 KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1235 timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1236 }
1237 LIST_FIRST(&pts->pts_virtual) = NULL;
1238 if (ptn) {
1239 KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1240 timespecadd(&ts, &ptn->pt_time.it_value,
1241 &ptn->pt_time.it_value);
1242 LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
1243 }
1244 timespecclear(&ts);
1245 for (ptn = LIST_FIRST(&pts->pts_prof);
1246 ptn && ptn != pts->pts_timers[ITIMER_PROF];
1247 ptn = LIST_NEXT(ptn, pt_list)) {
1248 KASSERT(ptn->pt_type == CLOCK_PROF);
1249 timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1250 }
1251 LIST_FIRST(&pts->pts_prof) = NULL;
1252 if (ptn) {
1253 KASSERT(ptn->pt_type == CLOCK_PROF);
1254 timespecadd(&ts, &ptn->pt_time.it_value,
1255 &ptn->pt_time.it_value);
1256 LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
1257 }
1258 i = 3;
1259 }
1260 for ( ; i < TIMER_MAX; i++) {
1261 if (pts->pts_timers[i] != NULL) {
1262 itimerfree(pts, i);
1263 mutex_spin_enter(&timer_lock);
1264 }
1265 }
1266 if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
1267 pts->pts_timers[2] == NULL) {
1268 p->p_timers = NULL;
1269 mutex_spin_exit(&timer_lock);
1270 pool_put(&ptimers_pool, pts);
1271 } else
1272 mutex_spin_exit(&timer_lock);
1273 }
1274
1275 static void
1276 itimerfree(struct ptimers *pts, int index)
1277 {
1278 struct ptimer *pt;
1279
1280 KASSERT(mutex_owned(&timer_lock));
1281
1282 pt = pts->pts_timers[index];
1283 pts->pts_timers[index] = NULL;
1284 if (!CLOCK_VIRTUAL_P(pt->pt_type))
1285 callout_halt(&pt->pt_ch, &timer_lock);
1286 if (pt->pt_queued)
1287 TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1288 mutex_spin_exit(&timer_lock);
1289 if (!CLOCK_VIRTUAL_P(pt->pt_type))
1290 callout_destroy(&pt->pt_ch);
1291 pool_put(&ptimer_pool, pt);
1292 }
1293
1294 /*
1295 * Decrement an interval timer by a specified number
1296 * of nanoseconds, which must be less than a second,
1297 * i.e. < 1000000000. If the timer expires, then reload
1298 * it. In this case, carry over (nsec - old value) to
1299 * reduce the value reloaded into the timer so that
1300 * the timer does not drift. This routine assumes
1301 * that it is called in a context where the timers
1302 * on which it is operating cannot change in value.
1303 */
1304 static int
1305 itimerdecr(struct ptimer *pt, int nsec)
1306 {
1307 struct itimerspec *itp;
1308
1309 KASSERT(mutex_owned(&timer_lock));
1310 KASSERT(CLOCK_VIRTUAL_P(pt->pt_type));
1311
1312 itp = &pt->pt_time;
1313 if (itp->it_value.tv_nsec < nsec) {
1314 if (itp->it_value.tv_sec == 0) {
1315 /* expired, and already in next interval */
1316 nsec -= itp->it_value.tv_nsec;
1317 goto expire;
1318 }
1319 itp->it_value.tv_nsec += 1000000000;
1320 itp->it_value.tv_sec--;
1321 }
1322 itp->it_value.tv_nsec -= nsec;
1323 nsec = 0;
1324 if (timespecisset(&itp->it_value))
1325 return (1);
1326 /* expired, exactly at end of interval */
1327 expire:
1328 if (timespecisset(&itp->it_interval)) {
1329 itp->it_value = itp->it_interval;
1330 itp->it_value.tv_nsec -= nsec;
1331 if (itp->it_value.tv_nsec < 0) {
1332 itp->it_value.tv_nsec += 1000000000;
1333 itp->it_value.tv_sec--;
1334 }
1335 timer_settime(pt);
1336 } else
1337 itp->it_value.tv_nsec = 0; /* sec is already 0 */
1338 return (0);
1339 }
1340
1341 static void
1342 itimerfire(struct ptimer *pt)
1343 {
1344
1345 KASSERT(mutex_owned(&timer_lock));
1346
1347 /*
1348 * XXX Can overrun, but we don't do signal queueing yet, anyway.
1349 * XXX Relying on the clock interrupt is stupid.
1350 */
1351 if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL || pt->pt_queued) {
1352 return;
1353 }
1354 TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
1355 pt->pt_queued = true;
1356 softint_schedule(timer_sih);
1357 }
1358
1359 void
1360 timer_tick(lwp_t *l, bool user)
1361 {
1362 struct ptimers *pts;
1363 struct ptimer *pt;
1364 proc_t *p;
1365
1366 p = l->l_proc;
1367 if (p->p_timers == NULL)
1368 return;
1369
1370 mutex_spin_enter(&timer_lock);
1371 if ((pts = l->l_proc->p_timers) != NULL) {
1372 /*
1373 * Run current process's virtual and profile time, as needed.
1374 */
1375 if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
1376 if (itimerdecr(pt, tick * 1000) == 0)
1377 itimerfire(pt);
1378 if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
1379 if (itimerdecr(pt, tick * 1000) == 0)
1380 itimerfire(pt);
1381 }
1382 mutex_spin_exit(&timer_lock);
1383 }
1384
1385 static void
1386 timer_intr(void *cookie)
1387 {
1388 ksiginfo_t ksi;
1389 struct ptimer *pt;
1390 proc_t *p;
1391
1392 mutex_enter(proc_lock);
1393 mutex_spin_enter(&timer_lock);
1394 while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
1395 TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1396 KASSERT(pt->pt_queued);
1397 pt->pt_queued = false;
1398
1399 if (pt->pt_proc->p_timers == NULL) {
1400 /* Process is dying. */
1401 continue;
1402 }
1403 p = pt->pt_proc;
1404 if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
1405 continue;
1406 }
1407 if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
1408 pt->pt_overruns++;
1409 continue;
1410 }
1411
1412 KSI_INIT(&ksi);
1413 ksi.ksi_signo = pt->pt_ev.sigev_signo;
1414 ksi.ksi_code = SI_TIMER;
1415 ksi.ksi_value = pt->pt_ev.sigev_value;
1416 pt->pt_poverruns = pt->pt_overruns;
1417 pt->pt_overruns = 0;
1418 mutex_spin_exit(&timer_lock);
1419 kpsignal(p, &ksi, NULL);
1420 mutex_spin_enter(&timer_lock);
1421 }
1422 mutex_spin_exit(&timer_lock);
1423 mutex_exit(proc_lock);
1424 }
1425
1426 /*
1427 * Check if the time will wrap if set to ts.
1428 *
1429 * ts - timespec describing the new time
1430 * delta - the delta between the current time and ts
1431 */
1432 bool
1433 time_wraps(struct timespec *ts, struct timespec *delta)
1434 {
1435
1436 /*
1437 * Don't allow the time to be set forward so far it
1438 * will wrap and become negative, thus allowing an
1439 * attacker to bypass the next check below. The
1440 * cutoff is 1 year before rollover occurs, so even
1441 * if the attacker uses adjtime(2) to move the time
1442 * past the cutoff, it will take a very long time
1443 * to get to the wrap point.
1444 */
1445 if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
1446 (delta->tv_sec < 0 || delta->tv_nsec < 0))
1447 return true;
1448
1449 return false;
1450 }
1451