Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.179
      1 /*	$NetBSD: kern_time.c,v 1.179 2013/05/22 16:00:52 christos Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Christopher G. Demetriou, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1982, 1986, 1989, 1993
     34  *	The Regents of the University of California.  All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. Neither the name of the University nor the names of its contributors
     45  *    may be used to endorse or promote products derived from this software
     46  *    without specific prior written permission.
     47  *
     48  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58  * SUCH DAMAGE.
     59  *
     60  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     61  */
     62 
     63 #include <sys/cdefs.h>
     64 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.179 2013/05/22 16:00:52 christos Exp $");
     65 
     66 #include <sys/param.h>
     67 #include <sys/resourcevar.h>
     68 #include <sys/kernel.h>
     69 #include <sys/systm.h>
     70 #include <sys/proc.h>
     71 #include <sys/vnode.h>
     72 #include <sys/signalvar.h>
     73 #include <sys/syslog.h>
     74 #include <sys/timetc.h>
     75 #include <sys/timex.h>
     76 #include <sys/kauth.h>
     77 #include <sys/mount.h>
     78 #include <sys/syscallargs.h>
     79 #include <sys/cpu.h>
     80 
     81 static void	timer_intr(void *);
     82 static void	itimerfire(struct ptimer *);
     83 static void	itimerfree(struct ptimers *, int);
     84 
     85 kmutex_t	timer_lock;
     86 
     87 static void	*timer_sih;
     88 static TAILQ_HEAD(, ptimer) timer_queue;
     89 
     90 struct pool ptimer_pool, ptimers_pool;
     91 
     92 #define	CLOCK_VIRTUAL_P(clockid)	\
     93 	((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)
     94 
     95 CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
     96 CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
     97 CTASSERT(ITIMER_PROF == CLOCK_PROF);
     98 CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC);
     99 
    100 /*
    101  * Initialize timekeeping.
    102  */
    103 void
    104 time_init(void)
    105 {
    106 
    107 	pool_init(&ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
    108 	    &pool_allocator_nointr, IPL_NONE);
    109 	pool_init(&ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
    110 	    &pool_allocator_nointr, IPL_NONE);
    111 }
    112 
    113 void
    114 time_init2(void)
    115 {
    116 
    117 	TAILQ_INIT(&timer_queue);
    118 	mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
    119 	timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
    120 	    timer_intr, NULL);
    121 }
    122 
    123 /* Time of day and interval timer support.
    124  *
    125  * These routines provide the kernel entry points to get and set
    126  * the time-of-day and per-process interval timers.  Subroutines
    127  * here provide support for adding and subtracting timeval structures
    128  * and decrementing interval timers, optionally reloading the interval
    129  * timers when they expire.
    130  */
    131 
    132 /* This function is used by clock_settime and settimeofday */
    133 static int
    134 settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
    135 {
    136 	struct timespec delta, now;
    137 	int s;
    138 
    139 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    140 	s = splclock();
    141 	nanotime(&now);
    142 	timespecsub(ts, &now, &delta);
    143 
    144 	if (check_kauth && kauth_authorize_system(kauth_cred_get(),
    145 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
    146 	    &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
    147 		splx(s);
    148 		return (EPERM);
    149 	}
    150 
    151 #ifdef notyet
    152 	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
    153 		splx(s);
    154 		return (EPERM);
    155 	}
    156 #endif
    157 
    158 	tc_setclock(ts);
    159 
    160 	timespecadd(&boottime, &delta, &boottime);
    161 
    162 	resettodr();
    163 	splx(s);
    164 
    165 	return (0);
    166 }
    167 
    168 int
    169 settime(struct proc *p, struct timespec *ts)
    170 {
    171 	return (settime1(p, ts, true));
    172 }
    173 
    174 /* ARGSUSED */
    175 int
    176 sys___clock_gettime50(struct lwp *l,
    177     const struct sys___clock_gettime50_args *uap, register_t *retval)
    178 {
    179 	/* {
    180 		syscallarg(clockid_t) clock_id;
    181 		syscallarg(struct timespec *) tp;
    182 	} */
    183 	int error;
    184 	struct timespec ats;
    185 
    186 	error = clock_gettime1(SCARG(uap, clock_id), &ats);
    187 	if (error != 0)
    188 		return error;
    189 
    190 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    191 }
    192 
    193 /* ARGSUSED */
    194 int
    195 sys___clock_settime50(struct lwp *l,
    196     const struct sys___clock_settime50_args *uap, register_t *retval)
    197 {
    198 	/* {
    199 		syscallarg(clockid_t) clock_id;
    200 		syscallarg(const struct timespec *) tp;
    201 	} */
    202 	int error;
    203 	struct timespec ats;
    204 
    205 	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
    206 		return error;
    207 
    208 	return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
    209 }
    210 
    211 
    212 int
    213 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
    214     bool check_kauth)
    215 {
    216 	int error;
    217 
    218 	switch (clock_id) {
    219 	case CLOCK_REALTIME:
    220 		if ((error = settime1(p, tp, check_kauth)) != 0)
    221 			return (error);
    222 		break;
    223 	case CLOCK_MONOTONIC:
    224 		return (EINVAL);	/* read-only clock */
    225 	default:
    226 		return (EINVAL);
    227 	}
    228 
    229 	return 0;
    230 }
    231 
    232 int
    233 sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
    234     register_t *retval)
    235 {
    236 	/* {
    237 		syscallarg(clockid_t) clock_id;
    238 		syscallarg(struct timespec *) tp;
    239 	} */
    240 	struct timespec ts;
    241 	int error = 0;
    242 
    243 	if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
    244 		return error;
    245 
    246 	if (SCARG(uap, tp))
    247 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    248 
    249 	return error;
    250 }
    251 
    252 int
    253 clock_getres1(clockid_t clock_id, struct timespec *ts)
    254 {
    255 
    256 	switch (clock_id) {
    257 	case CLOCK_REALTIME:
    258 	case CLOCK_MONOTONIC:
    259 		ts->tv_sec = 0;
    260 		if (tc_getfrequency() > 1000000000)
    261 			ts->tv_nsec = 1;
    262 		else
    263 			ts->tv_nsec = 1000000000 / tc_getfrequency();
    264 		break;
    265 	default:
    266 		return EINVAL;
    267 	}
    268 
    269 	return 0;
    270 }
    271 
    272 /* ARGSUSED */
    273 int
    274 sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
    275     register_t *retval)
    276 {
    277 	/* {
    278 		syscallarg(struct timespec *) rqtp;
    279 		syscallarg(struct timespec *) rmtp;
    280 	} */
    281 	struct timespec rmt, rqt;
    282 	int error, error1;
    283 
    284 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    285 	if (error)
    286 		return (error);
    287 
    288 	error = nanosleep1(l, CLOCK_MONOTONIC, 0, &rqt,
    289 	    SCARG(uap, rmtp) ? &rmt : NULL);
    290 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
    291 		return error;
    292 
    293 	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
    294 	return error1 ? error1 : error;
    295 }
    296 
    297 /* ARGSUSED */
    298 int
    299 sys_clock_nanosleep(struct lwp *l, const struct sys_clock_nanosleep_args *uap,
    300     register_t *retval)
    301 {
    302 	/* {
    303 		syscallarg(clockid_t) clock_id;
    304 		syscallarg(int) flags;
    305 		syscallarg(struct timespec *) rqtp;
    306 		syscallarg(struct timespec *) rmtp;
    307 	} */
    308 	struct timespec rmt, rqt;
    309 	int error, error1;
    310 
    311 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    312 	if (error)
    313 		return (error);
    314 
    315 	error = nanosleep1(l, SCARG(uap, clock_id), SCARG(uap, flags), &rqt,
    316 	    SCARG(uap, rmtp) ? &rmt : NULL);
    317 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
    318 		return error;
    319 
    320 	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
    321 	return error1 ? error1 : error;
    322 }
    323 
    324 int
    325 nanosleep1(struct lwp *l, clockid_t clock_id, int flags, struct timespec *rqt,
    326     struct timespec *rmt)
    327 {
    328 	struct timespec rmtstart;
    329 	int error, timo;
    330 
    331 	if ((error = ts2timo(clock_id, flags, rqt, &timo, &rmtstart)) != 0)
    332 		return error == ETIMEDOUT ? 0 : error;
    333 
    334 	/*
    335 	 * Avoid inadvertently sleeping forever
    336 	 */
    337 	if (timo == 0)
    338 		timo = 1;
    339 again:
    340 	error = kpause("nanoslp", true, timo, NULL);
    341 	if (rmt != NULL || error == 0) {
    342 		struct timespec rmtend;
    343 		struct timespec t0;
    344 		struct timespec *t;
    345 
    346 		(void)clock_gettime1(clock_id, &rmtend);
    347 		t = (rmt != NULL) ? rmt : &t0;
    348 		if (flags & TIMER_ABSTIME) {
    349 			timespecsub(rqt, &rmtend, t);
    350 		} else {
    351 			timespecsub(&rmtend, &rmtstart, t);
    352 			timespecsub(rqt, t, t);
    353 		}
    354 		if (t->tv_sec < 0)
    355 			timespecclear(t);
    356 		if (error == 0) {
    357 			timo = tstohz(t);
    358 			if (timo > 0)
    359 				goto again;
    360 		}
    361 	}
    362 
    363 	if (error == ERESTART)
    364 		error = EINTR;
    365 	if (error == EWOULDBLOCK)
    366 		error = 0;
    367 
    368 	return error;
    369 }
    370 
    371 /* ARGSUSED */
    372 int
    373 sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
    374     register_t *retval)
    375 {
    376 	/* {
    377 		syscallarg(struct timeval *) tp;
    378 		syscallarg(void *) tzp;		really "struct timezone *";
    379 	} */
    380 	struct timeval atv;
    381 	int error = 0;
    382 	struct timezone tzfake;
    383 
    384 	if (SCARG(uap, tp)) {
    385 		microtime(&atv);
    386 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    387 		if (error)
    388 			return (error);
    389 	}
    390 	if (SCARG(uap, tzp)) {
    391 		/*
    392 		 * NetBSD has no kernel notion of time zone, so we just
    393 		 * fake up a timezone struct and return it if demanded.
    394 		 */
    395 		tzfake.tz_minuteswest = 0;
    396 		tzfake.tz_dsttime = 0;
    397 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    398 	}
    399 	return (error);
    400 }
    401 
    402 /* ARGSUSED */
    403 int
    404 sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
    405     register_t *retval)
    406 {
    407 	/* {
    408 		syscallarg(const struct timeval *) tv;
    409 		syscallarg(const void *) tzp; really "const struct timezone *";
    410 	} */
    411 
    412 	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
    413 }
    414 
    415 int
    416 settimeofday1(const struct timeval *utv, bool userspace,
    417     const void *utzp, struct lwp *l, bool check_kauth)
    418 {
    419 	struct timeval atv;
    420 	struct timespec ts;
    421 	int error;
    422 
    423 	/* Verify all parameters before changing time. */
    424 
    425 	/*
    426 	 * NetBSD has no kernel notion of time zone, and only an
    427 	 * obsolete program would try to set it, so we log a warning.
    428 	 */
    429 	if (utzp)
    430 		log(LOG_WARNING, "pid %d attempted to set the "
    431 		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
    432 
    433 	if (utv == NULL)
    434 		return 0;
    435 
    436 	if (userspace) {
    437 		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
    438 			return error;
    439 		utv = &atv;
    440 	}
    441 
    442 	TIMEVAL_TO_TIMESPEC(utv, &ts);
    443 	return settime1(l->l_proc, &ts, check_kauth);
    444 }
    445 
    446 int	time_adjusted;			/* set if an adjustment is made */
    447 
    448 /* ARGSUSED */
    449 int
    450 sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
    451     register_t *retval)
    452 {
    453 	/* {
    454 		syscallarg(const struct timeval *) delta;
    455 		syscallarg(struct timeval *) olddelta;
    456 	} */
    457 	int error = 0;
    458 	struct timeval atv, oldatv;
    459 
    460 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
    461 	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
    462 		return error;
    463 
    464 	if (SCARG(uap, delta)) {
    465 		error = copyin(SCARG(uap, delta), &atv,
    466 		    sizeof(*SCARG(uap, delta)));
    467 		if (error)
    468 			return (error);
    469 	}
    470 	adjtime1(SCARG(uap, delta) ? &atv : NULL,
    471 	    SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
    472 	if (SCARG(uap, olddelta))
    473 		error = copyout(&oldatv, SCARG(uap, olddelta),
    474 		    sizeof(*SCARG(uap, olddelta)));
    475 	return error;
    476 }
    477 
    478 void
    479 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
    480 {
    481 	extern int64_t time_adjtime;  /* in kern_ntptime.c */
    482 
    483 	if (olddelta) {
    484 		mutex_spin_enter(&timecounter_lock);
    485 		olddelta->tv_sec = time_adjtime / 1000000;
    486 		olddelta->tv_usec = time_adjtime % 1000000;
    487 		if (olddelta->tv_usec < 0) {
    488 			olddelta->tv_usec += 1000000;
    489 			olddelta->tv_sec--;
    490 		}
    491 		mutex_spin_exit(&timecounter_lock);
    492 	}
    493 
    494 	if (delta) {
    495 		mutex_spin_enter(&timecounter_lock);
    496 		time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
    497 
    498 		if (time_adjtime) {
    499 			/* We need to save the system time during shutdown */
    500 			time_adjusted |= 1;
    501 		}
    502 		mutex_spin_exit(&timecounter_lock);
    503 	}
    504 }
    505 
    506 /*
    507  * Interval timer support. Both the BSD getitimer() family and the POSIX
    508  * timer_*() family of routines are supported.
    509  *
    510  * All timers are kept in an array pointed to by p_timers, which is
    511  * allocated on demand - many processes don't use timers at all. The
    512  * first three elements in this array are reserved for the BSD timers:
    513  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element
    514  * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be
    515  * allocated by the timer_create() syscall.
    516  *
    517  * Realtime timers are kept in the ptimer structure as an absolute
    518  * time; virtual time timers are kept as a linked list of deltas.
    519  * Virtual time timers are processed in the hardclock() routine of
    520  * kern_clock.c.  The real time timer is processed by a callout
    521  * routine, called from the softclock() routine.  Since a callout may
    522  * be delayed in real time due to interrupt processing in the system,
    523  * it is possible for the real time timeout routine (realtimeexpire,
    524  * given below), to be delayed in real time past when it is supposed
    525  * to occur.  It does not suffice, therefore, to reload the real timer
    526  * .it_value from the real time timers .it_interval.  Rather, we
    527  * compute the next time in absolute time the timer should go off.  */
    528 
    529 /* Allocate a POSIX realtime timer. */
    530 int
    531 sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
    532     register_t *retval)
    533 {
    534 	/* {
    535 		syscallarg(clockid_t) clock_id;
    536 		syscallarg(struct sigevent *) evp;
    537 		syscallarg(timer_t *) timerid;
    538 	} */
    539 
    540 	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
    541 	    SCARG(uap, evp), copyin, l);
    542 }
    543 
    544 int
    545 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
    546     copyin_t fetch_event, struct lwp *l)
    547 {
    548 	int error;
    549 	timer_t timerid;
    550 	struct ptimers *pts;
    551 	struct ptimer *pt;
    552 	struct proc *p;
    553 
    554 	p = l->l_proc;
    555 
    556 	if ((u_int)id > CLOCK_MONOTONIC)
    557 		return (EINVAL);
    558 
    559 	if ((pts = p->p_timers) == NULL)
    560 		pts = timers_alloc(p);
    561 
    562 	pt = pool_get(&ptimer_pool, PR_WAITOK);
    563 	if (evp != NULL) {
    564 		if (((error =
    565 		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
    566 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
    567 			(pt->pt_ev.sigev_notify > SIGEV_SA)) ||
    568 			(pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
    569 			 (pt->pt_ev.sigev_signo <= 0 ||
    570 			  pt->pt_ev.sigev_signo >= NSIG))) {
    571 			pool_put(&ptimer_pool, pt);
    572 			return (error ? error : EINVAL);
    573 		}
    574 	}
    575 
    576 	/* Find a free timer slot, skipping those reserved for setitimer(). */
    577 	mutex_spin_enter(&timer_lock);
    578 	for (timerid = 3; timerid < TIMER_MAX; timerid++)
    579 		if (pts->pts_timers[timerid] == NULL)
    580 			break;
    581 	if (timerid == TIMER_MAX) {
    582 		mutex_spin_exit(&timer_lock);
    583 		pool_put(&ptimer_pool, pt);
    584 		return EAGAIN;
    585 	}
    586 	if (evp == NULL) {
    587 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    588 		switch (id) {
    589 		case CLOCK_REALTIME:
    590 		case CLOCK_MONOTONIC:
    591 			pt->pt_ev.sigev_signo = SIGALRM;
    592 			break;
    593 		case CLOCK_VIRTUAL:
    594 			pt->pt_ev.sigev_signo = SIGVTALRM;
    595 			break;
    596 		case CLOCK_PROF:
    597 			pt->pt_ev.sigev_signo = SIGPROF;
    598 			break;
    599 		}
    600 		pt->pt_ev.sigev_value.sival_int = timerid;
    601 	}
    602 	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
    603 	pt->pt_info.ksi_errno = 0;
    604 	pt->pt_info.ksi_code = 0;
    605 	pt->pt_info.ksi_pid = p->p_pid;
    606 	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
    607 	pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
    608 	pt->pt_type = id;
    609 	pt->pt_proc = p;
    610 	pt->pt_overruns = 0;
    611 	pt->pt_poverruns = 0;
    612 	pt->pt_entry = timerid;
    613 	pt->pt_queued = false;
    614 	timespecclear(&pt->pt_time.it_value);
    615 	if (!CLOCK_VIRTUAL_P(id))
    616 		callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
    617 	else
    618 		pt->pt_active = 0;
    619 
    620 	pts->pts_timers[timerid] = pt;
    621 	mutex_spin_exit(&timer_lock);
    622 
    623 	return copyout(&timerid, tid, sizeof(timerid));
    624 }
    625 
    626 /* Delete a POSIX realtime timer */
    627 int
    628 sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
    629     register_t *retval)
    630 {
    631 	/* {
    632 		syscallarg(timer_t) timerid;
    633 	} */
    634 	struct proc *p = l->l_proc;
    635 	timer_t timerid;
    636 	struct ptimers *pts;
    637 	struct ptimer *pt, *ptn;
    638 
    639 	timerid = SCARG(uap, timerid);
    640 	pts = p->p_timers;
    641 
    642 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    643 		return (EINVAL);
    644 
    645 	mutex_spin_enter(&timer_lock);
    646 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    647 		mutex_spin_exit(&timer_lock);
    648 		return (EINVAL);
    649 	}
    650 	if (CLOCK_VIRTUAL_P(pt->pt_type)) {
    651 		if (pt->pt_active) {
    652 			ptn = LIST_NEXT(pt, pt_list);
    653 			LIST_REMOVE(pt, pt_list);
    654 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    655 				timespecadd(&pt->pt_time.it_value,
    656 				    &ptn->pt_time.it_value,
    657 				    &ptn->pt_time.it_value);
    658 			pt->pt_active = 0;
    659 		}
    660 	}
    661 	itimerfree(pts, timerid);
    662 
    663 	return (0);
    664 }
    665 
    666 /*
    667  * Set up the given timer. The value in pt->pt_time.it_value is taken
    668  * to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC timers and
    669  * a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
    670  */
    671 void
    672 timer_settime(struct ptimer *pt)
    673 {
    674 	struct ptimer *ptn, *pptn;
    675 	struct ptlist *ptl;
    676 
    677 	KASSERT(mutex_owned(&timer_lock));
    678 
    679 	if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
    680 		callout_halt(&pt->pt_ch, &timer_lock);
    681 		if (timespecisset(&pt->pt_time.it_value)) {
    682 			/*
    683 			 * Don't need to check tshzto() return value, here.
    684 			 * callout_reset() does it for us.
    685 			 */
    686 			callout_reset(&pt->pt_ch,
    687 			    pt->pt_type == CLOCK_MONOTONIC ?
    688 			    tshztoup(&pt->pt_time.it_value) :
    689 			    tshzto(&pt->pt_time.it_value),
    690 			    realtimerexpire, pt);
    691 		}
    692 	} else {
    693 		if (pt->pt_active) {
    694 			ptn = LIST_NEXT(pt, pt_list);
    695 			LIST_REMOVE(pt, pt_list);
    696 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    697 				timespecadd(&pt->pt_time.it_value,
    698 				    &ptn->pt_time.it_value,
    699 				    &ptn->pt_time.it_value);
    700 		}
    701 		if (timespecisset(&pt->pt_time.it_value)) {
    702 			if (pt->pt_type == CLOCK_VIRTUAL)
    703 				ptl = &pt->pt_proc->p_timers->pts_virtual;
    704 			else
    705 				ptl = &pt->pt_proc->p_timers->pts_prof;
    706 
    707 			for (ptn = LIST_FIRST(ptl), pptn = NULL;
    708 			     ptn && timespeccmp(&pt->pt_time.it_value,
    709 				 &ptn->pt_time.it_value, >);
    710 			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
    711 				timespecsub(&pt->pt_time.it_value,
    712 				    &ptn->pt_time.it_value,
    713 				    &pt->pt_time.it_value);
    714 
    715 			if (pptn)
    716 				LIST_INSERT_AFTER(pptn, pt, pt_list);
    717 			else
    718 				LIST_INSERT_HEAD(ptl, pt, pt_list);
    719 
    720 			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
    721 				timespecsub(&ptn->pt_time.it_value,
    722 				    &pt->pt_time.it_value,
    723 				    &ptn->pt_time.it_value);
    724 
    725 			pt->pt_active = 1;
    726 		} else
    727 			pt->pt_active = 0;
    728 	}
    729 }
    730 
    731 void
    732 timer_gettime(struct ptimer *pt, struct itimerspec *aits)
    733 {
    734 	struct timespec now;
    735 	struct ptimer *ptn;
    736 
    737 	KASSERT(mutex_owned(&timer_lock));
    738 
    739 	*aits = pt->pt_time;
    740 	if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
    741 		/*
    742 		 * Convert from absolute to relative time in .it_value
    743 		 * part of real time timer.  If time for real time
    744 		 * timer has passed return 0, else return difference
    745 		 * between current time and time for the timer to go
    746 		 * off.
    747 		 */
    748 		if (timespecisset(&aits->it_value)) {
    749 			if (pt->pt_type == CLOCK_REALTIME) {
    750 				getnanotime(&now);
    751 			} else { /* CLOCK_MONOTONIC */
    752 				getnanouptime(&now);
    753 			}
    754 			if (timespeccmp(&aits->it_value, &now, <))
    755 				timespecclear(&aits->it_value);
    756 			else
    757 				timespecsub(&aits->it_value, &now,
    758 				    &aits->it_value);
    759 		}
    760 	} else if (pt->pt_active) {
    761 		if (pt->pt_type == CLOCK_VIRTUAL)
    762 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
    763 		else
    764 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
    765 		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
    766 			timespecadd(&aits->it_value,
    767 			    &ptn->pt_time.it_value, &aits->it_value);
    768 		KASSERT(ptn != NULL); /* pt should be findable on the list */
    769 	} else
    770 		timespecclear(&aits->it_value);
    771 }
    772 
    773 
    774 
    775 /* Set and arm a POSIX realtime timer */
    776 int
    777 sys___timer_settime50(struct lwp *l,
    778     const struct sys___timer_settime50_args *uap,
    779     register_t *retval)
    780 {
    781 	/* {
    782 		syscallarg(timer_t) timerid;
    783 		syscallarg(int) flags;
    784 		syscallarg(const struct itimerspec *) value;
    785 		syscallarg(struct itimerspec *) ovalue;
    786 	} */
    787 	int error;
    788 	struct itimerspec value, ovalue, *ovp = NULL;
    789 
    790 	if ((error = copyin(SCARG(uap, value), &value,
    791 	    sizeof(struct itimerspec))) != 0)
    792 		return (error);
    793 
    794 	if (SCARG(uap, ovalue))
    795 		ovp = &ovalue;
    796 
    797 	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
    798 	    SCARG(uap, flags), l->l_proc)) != 0)
    799 		return error;
    800 
    801 	if (ovp)
    802 		return copyout(&ovalue, SCARG(uap, ovalue),
    803 		    sizeof(struct itimerspec));
    804 	return 0;
    805 }
    806 
    807 int
    808 dotimer_settime(int timerid, struct itimerspec *value,
    809     struct itimerspec *ovalue, int flags, struct proc *p)
    810 {
    811 	struct timespec now;
    812 	struct itimerspec val, oval;
    813 	struct ptimers *pts;
    814 	struct ptimer *pt;
    815 	int error;
    816 
    817 	pts = p->p_timers;
    818 
    819 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    820 		return EINVAL;
    821 	val = *value;
    822 	if ((error = itimespecfix(&val.it_value)) != 0 ||
    823 	    (error = itimespecfix(&val.it_interval)) != 0)
    824 		return error;
    825 
    826 	mutex_spin_enter(&timer_lock);
    827 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    828 		mutex_spin_exit(&timer_lock);
    829 		return EINVAL;
    830 	}
    831 
    832 	oval = pt->pt_time;
    833 	pt->pt_time = val;
    834 
    835 	/*
    836 	 * If we've been passed a relative time for a realtime timer,
    837 	 * convert it to absolute; if an absolute time for a virtual
    838 	 * timer, convert it to relative and make sure we don't set it
    839 	 * to zero, which would cancel the timer, or let it go
    840 	 * negative, which would confuse the comparison tests.
    841 	 */
    842 	if (timespecisset(&pt->pt_time.it_value)) {
    843 		if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
    844 			if ((flags & TIMER_ABSTIME) == 0) {
    845 				if (pt->pt_type == CLOCK_REALTIME) {
    846 					getnanotime(&now);
    847 				} else { /* CLOCK_MONOTONIC */
    848 					getnanouptime(&now);
    849 				}
    850 				timespecadd(&pt->pt_time.it_value, &now,
    851 				    &pt->pt_time.it_value);
    852 			}
    853 		} else {
    854 			if ((flags & TIMER_ABSTIME) != 0) {
    855 				getnanotime(&now);
    856 				timespecsub(&pt->pt_time.it_value, &now,
    857 				    &pt->pt_time.it_value);
    858 				if (!timespecisset(&pt->pt_time.it_value) ||
    859 				    pt->pt_time.it_value.tv_sec < 0) {
    860 					pt->pt_time.it_value.tv_sec = 0;
    861 					pt->pt_time.it_value.tv_nsec = 1;
    862 				}
    863 			}
    864 		}
    865 	}
    866 
    867 	timer_settime(pt);
    868 	mutex_spin_exit(&timer_lock);
    869 
    870 	if (ovalue)
    871 		*ovalue = oval;
    872 
    873 	return (0);
    874 }
    875 
    876 /* Return the time remaining until a POSIX timer fires. */
    877 int
    878 sys___timer_gettime50(struct lwp *l,
    879     const struct sys___timer_gettime50_args *uap, register_t *retval)
    880 {
    881 	/* {
    882 		syscallarg(timer_t) timerid;
    883 		syscallarg(struct itimerspec *) value;
    884 	} */
    885 	struct itimerspec its;
    886 	int error;
    887 
    888 	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
    889 	    &its)) != 0)
    890 		return error;
    891 
    892 	return copyout(&its, SCARG(uap, value), sizeof(its));
    893 }
    894 
    895 int
    896 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
    897 {
    898 	struct ptimer *pt;
    899 	struct ptimers *pts;
    900 
    901 	pts = p->p_timers;
    902 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    903 		return (EINVAL);
    904 	mutex_spin_enter(&timer_lock);
    905 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    906 		mutex_spin_exit(&timer_lock);
    907 		return (EINVAL);
    908 	}
    909 	timer_gettime(pt, its);
    910 	mutex_spin_exit(&timer_lock);
    911 
    912 	return 0;
    913 }
    914 
    915 /*
    916  * Return the count of the number of times a periodic timer expired
    917  * while a notification was already pending. The counter is reset when
    918  * a timer expires and a notification can be posted.
    919  */
    920 int
    921 sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
    922     register_t *retval)
    923 {
    924 	/* {
    925 		syscallarg(timer_t) timerid;
    926 	} */
    927 	struct proc *p = l->l_proc;
    928 	struct ptimers *pts;
    929 	int timerid;
    930 	struct ptimer *pt;
    931 
    932 	timerid = SCARG(uap, timerid);
    933 
    934 	pts = p->p_timers;
    935 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    936 		return (EINVAL);
    937 	mutex_spin_enter(&timer_lock);
    938 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    939 		mutex_spin_exit(&timer_lock);
    940 		return (EINVAL);
    941 	}
    942 	*retval = pt->pt_poverruns;
    943 	mutex_spin_exit(&timer_lock);
    944 
    945 	return (0);
    946 }
    947 
    948 /*
    949  * Real interval timer expired:
    950  * send process whose timer expired an alarm signal.
    951  * If time is not set up to reload, then just return.
    952  * Else compute next time timer should go off which is > current time.
    953  * This is where delay in processing this timeout causes multiple
    954  * SIGALRM calls to be compressed into one.
    955  */
    956 void
    957 realtimerexpire(void *arg)
    958 {
    959 	uint64_t last_val, next_val, interval, now_ns;
    960 	struct timespec now, next;
    961 	struct ptimer *pt;
    962 	int backwards;
    963 
    964 	pt = arg;
    965 
    966 	mutex_spin_enter(&timer_lock);
    967 	itimerfire(pt);
    968 
    969 	if (!timespecisset(&pt->pt_time.it_interval)) {
    970 		timespecclear(&pt->pt_time.it_value);
    971 		mutex_spin_exit(&timer_lock);
    972 		return;
    973 	}
    974 
    975 	if (pt->pt_type == CLOCK_MONOTONIC) {
    976 		getnanouptime(&now);
    977 	} else {
    978 		getnanotime(&now);
    979 	}
    980 	backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
    981 	timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
    982 	/* Handle the easy case of non-overflown timers first. */
    983 	if (!backwards && timespeccmp(&next, &now, >)) {
    984 		pt->pt_time.it_value = next;
    985 	} else {
    986 		now_ns = timespec2ns(&now);
    987 		last_val = timespec2ns(&pt->pt_time.it_value);
    988 		interval = timespec2ns(&pt->pt_time.it_interval);
    989 
    990 		next_val = now_ns +
    991 		    (now_ns - last_val + interval - 1) % interval;
    992 
    993 		if (backwards)
    994 			next_val += interval;
    995 		else
    996 			pt->pt_overruns += (now_ns - last_val) / interval;
    997 
    998 		pt->pt_time.it_value.tv_sec = next_val / 1000000000;
    999 		pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
   1000 	}
   1001 
   1002 	/*
   1003 	 * Don't need to check tshzto() return value, here.
   1004 	 * callout_reset() does it for us.
   1005 	 */
   1006 	callout_reset(&pt->pt_ch, pt->pt_type == CLOCK_MONOTONIC ?
   1007 	    tshztoup(&pt->pt_time.it_value) : tshzto(&pt->pt_time.it_value),
   1008 	    realtimerexpire, pt);
   1009 	mutex_spin_exit(&timer_lock);
   1010 }
   1011 
   1012 /* BSD routine to get the value of an interval timer. */
   1013 /* ARGSUSED */
   1014 int
   1015 sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
   1016     register_t *retval)
   1017 {
   1018 	/* {
   1019 		syscallarg(int) which;
   1020 		syscallarg(struct itimerval *) itv;
   1021 	} */
   1022 	struct proc *p = l->l_proc;
   1023 	struct itimerval aitv;
   1024 	int error;
   1025 
   1026 	error = dogetitimer(p, SCARG(uap, which), &aitv);
   1027 	if (error)
   1028 		return error;
   1029 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
   1030 }
   1031 
   1032 int
   1033 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
   1034 {
   1035 	struct ptimers *pts;
   1036 	struct ptimer *pt;
   1037 	struct itimerspec its;
   1038 
   1039 	if ((u_int)which > ITIMER_MONOTONIC)
   1040 		return (EINVAL);
   1041 
   1042 	mutex_spin_enter(&timer_lock);
   1043 	pts = p->p_timers;
   1044 	if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
   1045 		timerclear(&itvp->it_value);
   1046 		timerclear(&itvp->it_interval);
   1047 	} else {
   1048 		timer_gettime(pt, &its);
   1049 		TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
   1050 		TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
   1051 	}
   1052 	mutex_spin_exit(&timer_lock);
   1053 
   1054 	return 0;
   1055 }
   1056 
   1057 /* BSD routine to set/arm an interval timer. */
   1058 /* ARGSUSED */
   1059 int
   1060 sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
   1061     register_t *retval)
   1062 {
   1063 	/* {
   1064 		syscallarg(int) which;
   1065 		syscallarg(const struct itimerval *) itv;
   1066 		syscallarg(struct itimerval *) oitv;
   1067 	} */
   1068 	struct proc *p = l->l_proc;
   1069 	int which = SCARG(uap, which);
   1070 	struct sys___getitimer50_args getargs;
   1071 	const struct itimerval *itvp;
   1072 	struct itimerval aitv;
   1073 	int error;
   1074 
   1075 	if ((u_int)which > ITIMER_MONOTONIC)
   1076 		return (EINVAL);
   1077 	itvp = SCARG(uap, itv);
   1078 	if (itvp &&
   1079 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval))) != 0)
   1080 		return (error);
   1081 	if (SCARG(uap, oitv) != NULL) {
   1082 		SCARG(&getargs, which) = which;
   1083 		SCARG(&getargs, itv) = SCARG(uap, oitv);
   1084 		if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
   1085 			return (error);
   1086 	}
   1087 	if (itvp == 0)
   1088 		return (0);
   1089 
   1090 	return dosetitimer(p, which, &aitv);
   1091 }
   1092 
   1093 int
   1094 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
   1095 {
   1096 	struct timespec now;
   1097 	struct ptimers *pts;
   1098 	struct ptimer *pt, *spare;
   1099 
   1100 	KASSERT((u_int)which <= CLOCK_MONOTONIC);
   1101 	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
   1102 		return (EINVAL);
   1103 
   1104 	/*
   1105 	 * Don't bother allocating data structures if the process just
   1106 	 * wants to clear the timer.
   1107 	 */
   1108 	spare = NULL;
   1109 	pts = p->p_timers;
   1110  retry:
   1111 	if (!timerisset(&itvp->it_value) && (pts == NULL ||
   1112 	    pts->pts_timers[which] == NULL))
   1113 		return (0);
   1114 	if (pts == NULL)
   1115 		pts = timers_alloc(p);
   1116 	mutex_spin_enter(&timer_lock);
   1117 	pt = pts->pts_timers[which];
   1118 	if (pt == NULL) {
   1119 		if (spare == NULL) {
   1120 			mutex_spin_exit(&timer_lock);
   1121 			spare = pool_get(&ptimer_pool, PR_WAITOK);
   1122 			goto retry;
   1123 		}
   1124 		pt = spare;
   1125 		spare = NULL;
   1126 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
   1127 		pt->pt_ev.sigev_value.sival_int = which;
   1128 		pt->pt_overruns = 0;
   1129 		pt->pt_proc = p;
   1130 		pt->pt_type = which;
   1131 		pt->pt_entry = which;
   1132 		pt->pt_queued = false;
   1133 		if (pt->pt_type == CLOCK_REALTIME)
   1134 			callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
   1135 		else
   1136 			pt->pt_active = 0;
   1137 
   1138 		switch (which) {
   1139 		case ITIMER_REAL:
   1140 		case ITIMER_MONOTONIC:
   1141 			pt->pt_ev.sigev_signo = SIGALRM;
   1142 			break;
   1143 		case ITIMER_VIRTUAL:
   1144 			pt->pt_ev.sigev_signo = SIGVTALRM;
   1145 			break;
   1146 		case ITIMER_PROF:
   1147 			pt->pt_ev.sigev_signo = SIGPROF;
   1148 			break;
   1149 		}
   1150 		pts->pts_timers[which] = pt;
   1151 	}
   1152 
   1153 	TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
   1154 	TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
   1155 
   1156 	if (timespecisset(&pt->pt_time.it_value)) {
   1157 		/* Convert to absolute time */
   1158 		/* XXX need to wrap in splclock for timecounters case? */
   1159 		switch (which) {
   1160 		case ITIMER_REAL:
   1161 			getnanotime(&now);
   1162 			timespecadd(&pt->pt_time.it_value, &now,
   1163 			    &pt->pt_time.it_value);
   1164 			break;
   1165 		case ITIMER_MONOTONIC:
   1166 			getnanouptime(&now);
   1167 			timespecadd(&pt->pt_time.it_value, &now,
   1168 			    &pt->pt_time.it_value);
   1169 			break;
   1170 		default:
   1171 			break;
   1172 		}
   1173 	}
   1174 	timer_settime(pt);
   1175 	mutex_spin_exit(&timer_lock);
   1176 	if (spare != NULL)
   1177 		pool_put(&ptimer_pool, spare);
   1178 
   1179 	return (0);
   1180 }
   1181 
   1182 /* Utility routines to manage the array of pointers to timers. */
   1183 struct ptimers *
   1184 timers_alloc(struct proc *p)
   1185 {
   1186 	struct ptimers *pts;
   1187 	int i;
   1188 
   1189 	pts = pool_get(&ptimers_pool, PR_WAITOK);
   1190 	LIST_INIT(&pts->pts_virtual);
   1191 	LIST_INIT(&pts->pts_prof);
   1192 	for (i = 0; i < TIMER_MAX; i++)
   1193 		pts->pts_timers[i] = NULL;
   1194 	pts->pts_fired = 0;
   1195 	mutex_spin_enter(&timer_lock);
   1196 	if (p->p_timers == NULL) {
   1197 		p->p_timers = pts;
   1198 		mutex_spin_exit(&timer_lock);
   1199 		return pts;
   1200 	}
   1201 	mutex_spin_exit(&timer_lock);
   1202 	pool_put(&ptimers_pool, pts);
   1203 	return p->p_timers;
   1204 }
   1205 
   1206 /*
   1207  * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
   1208  * then clean up all timers and free all the data structures. If
   1209  * "which" is set to TIMERS_POSIX, only clean up the timers allocated
   1210  * by timer_create(), not the BSD setitimer() timers, and only free the
   1211  * structure if none of those remain.
   1212  */
   1213 void
   1214 timers_free(struct proc *p, int which)
   1215 {
   1216 	struct ptimers *pts;
   1217 	struct ptimer *ptn;
   1218 	struct timespec ts;
   1219 	int i;
   1220 
   1221 	if (p->p_timers == NULL)
   1222 		return;
   1223 
   1224 	pts = p->p_timers;
   1225 	mutex_spin_enter(&timer_lock);
   1226 	if (which == TIMERS_ALL) {
   1227 		p->p_timers = NULL;
   1228 		i = 0;
   1229 	} else {
   1230 		timespecclear(&ts);
   1231 		for (ptn = LIST_FIRST(&pts->pts_virtual);
   1232 		     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
   1233 		     ptn = LIST_NEXT(ptn, pt_list)) {
   1234 			KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
   1235 			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
   1236 		}
   1237 		LIST_FIRST(&pts->pts_virtual) = NULL;
   1238 		if (ptn) {
   1239 			KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
   1240 			timespecadd(&ts, &ptn->pt_time.it_value,
   1241 			    &ptn->pt_time.it_value);
   1242 			LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
   1243 		}
   1244 		timespecclear(&ts);
   1245 		for (ptn = LIST_FIRST(&pts->pts_prof);
   1246 		     ptn && ptn != pts->pts_timers[ITIMER_PROF];
   1247 		     ptn = LIST_NEXT(ptn, pt_list)) {
   1248 			KASSERT(ptn->pt_type == CLOCK_PROF);
   1249 			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
   1250 		}
   1251 		LIST_FIRST(&pts->pts_prof) = NULL;
   1252 		if (ptn) {
   1253 			KASSERT(ptn->pt_type == CLOCK_PROF);
   1254 			timespecadd(&ts, &ptn->pt_time.it_value,
   1255 			    &ptn->pt_time.it_value);
   1256 			LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
   1257 		}
   1258 		i = 3;
   1259 	}
   1260 	for ( ; i < TIMER_MAX; i++) {
   1261 		if (pts->pts_timers[i] != NULL) {
   1262 			itimerfree(pts, i);
   1263 			mutex_spin_enter(&timer_lock);
   1264 		}
   1265 	}
   1266 	if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
   1267 	    pts->pts_timers[2] == NULL) {
   1268 		p->p_timers = NULL;
   1269 		mutex_spin_exit(&timer_lock);
   1270 		pool_put(&ptimers_pool, pts);
   1271 	} else
   1272 		mutex_spin_exit(&timer_lock);
   1273 }
   1274 
   1275 static void
   1276 itimerfree(struct ptimers *pts, int index)
   1277 {
   1278 	struct ptimer *pt;
   1279 
   1280 	KASSERT(mutex_owned(&timer_lock));
   1281 
   1282 	pt = pts->pts_timers[index];
   1283 	pts->pts_timers[index] = NULL;
   1284 	if (!CLOCK_VIRTUAL_P(pt->pt_type))
   1285 		callout_halt(&pt->pt_ch, &timer_lock);
   1286 	if (pt->pt_queued)
   1287 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
   1288 	mutex_spin_exit(&timer_lock);
   1289 	if (!CLOCK_VIRTUAL_P(pt->pt_type))
   1290 		callout_destroy(&pt->pt_ch);
   1291 	pool_put(&ptimer_pool, pt);
   1292 }
   1293 
   1294 /*
   1295  * Decrement an interval timer by a specified number
   1296  * of nanoseconds, which must be less than a second,
   1297  * i.e. < 1000000000.  If the timer expires, then reload
   1298  * it.  In this case, carry over (nsec - old value) to
   1299  * reduce the value reloaded into the timer so that
   1300  * the timer does not drift.  This routine assumes
   1301  * that it is called in a context where the timers
   1302  * on which it is operating cannot change in value.
   1303  */
   1304 static int
   1305 itimerdecr(struct ptimer *pt, int nsec)
   1306 {
   1307 	struct itimerspec *itp;
   1308 
   1309 	KASSERT(mutex_owned(&timer_lock));
   1310 	KASSERT(CLOCK_VIRTUAL_P(pt->pt_type));
   1311 
   1312 	itp = &pt->pt_time;
   1313 	if (itp->it_value.tv_nsec < nsec) {
   1314 		if (itp->it_value.tv_sec == 0) {
   1315 			/* expired, and already in next interval */
   1316 			nsec -= itp->it_value.tv_nsec;
   1317 			goto expire;
   1318 		}
   1319 		itp->it_value.tv_nsec += 1000000000;
   1320 		itp->it_value.tv_sec--;
   1321 	}
   1322 	itp->it_value.tv_nsec -= nsec;
   1323 	nsec = 0;
   1324 	if (timespecisset(&itp->it_value))
   1325 		return (1);
   1326 	/* expired, exactly at end of interval */
   1327 expire:
   1328 	if (timespecisset(&itp->it_interval)) {
   1329 		itp->it_value = itp->it_interval;
   1330 		itp->it_value.tv_nsec -= nsec;
   1331 		if (itp->it_value.tv_nsec < 0) {
   1332 			itp->it_value.tv_nsec += 1000000000;
   1333 			itp->it_value.tv_sec--;
   1334 		}
   1335 		timer_settime(pt);
   1336 	} else
   1337 		itp->it_value.tv_nsec = 0;		/* sec is already 0 */
   1338 	return (0);
   1339 }
   1340 
   1341 static void
   1342 itimerfire(struct ptimer *pt)
   1343 {
   1344 
   1345 	KASSERT(mutex_owned(&timer_lock));
   1346 
   1347 	/*
   1348 	 * XXX Can overrun, but we don't do signal queueing yet, anyway.
   1349 	 * XXX Relying on the clock interrupt is stupid.
   1350 	 */
   1351 	if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL || pt->pt_queued) {
   1352 		return;
   1353 	}
   1354 	TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
   1355 	pt->pt_queued = true;
   1356 	softint_schedule(timer_sih);
   1357 }
   1358 
   1359 void
   1360 timer_tick(lwp_t *l, bool user)
   1361 {
   1362 	struct ptimers *pts;
   1363 	struct ptimer *pt;
   1364 	proc_t *p;
   1365 
   1366 	p = l->l_proc;
   1367 	if (p->p_timers == NULL)
   1368 		return;
   1369 
   1370 	mutex_spin_enter(&timer_lock);
   1371 	if ((pts = l->l_proc->p_timers) != NULL) {
   1372 		/*
   1373 		 * Run current process's virtual and profile time, as needed.
   1374 		 */
   1375 		if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
   1376 			if (itimerdecr(pt, tick * 1000) == 0)
   1377 				itimerfire(pt);
   1378 		if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
   1379 			if (itimerdecr(pt, tick * 1000) == 0)
   1380 				itimerfire(pt);
   1381 	}
   1382 	mutex_spin_exit(&timer_lock);
   1383 }
   1384 
   1385 static void
   1386 timer_intr(void *cookie)
   1387 {
   1388 	ksiginfo_t ksi;
   1389 	struct ptimer *pt;
   1390 	proc_t *p;
   1391 
   1392 	mutex_enter(proc_lock);
   1393 	mutex_spin_enter(&timer_lock);
   1394 	while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
   1395 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
   1396 		KASSERT(pt->pt_queued);
   1397 		pt->pt_queued = false;
   1398 
   1399 		if (pt->pt_proc->p_timers == NULL) {
   1400 			/* Process is dying. */
   1401 			continue;
   1402 		}
   1403 		p = pt->pt_proc;
   1404 		if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
   1405 			continue;
   1406 		}
   1407 		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
   1408 			pt->pt_overruns++;
   1409 			continue;
   1410 		}
   1411 
   1412 		KSI_INIT(&ksi);
   1413 		ksi.ksi_signo = pt->pt_ev.sigev_signo;
   1414 		ksi.ksi_code = SI_TIMER;
   1415 		ksi.ksi_value = pt->pt_ev.sigev_value;
   1416 		pt->pt_poverruns = pt->pt_overruns;
   1417 		pt->pt_overruns = 0;
   1418 		mutex_spin_exit(&timer_lock);
   1419 		kpsignal(p, &ksi, NULL);
   1420 		mutex_spin_enter(&timer_lock);
   1421 	}
   1422 	mutex_spin_exit(&timer_lock);
   1423 	mutex_exit(proc_lock);
   1424 }
   1425 
   1426 /*
   1427  * Check if the time will wrap if set to ts.
   1428  *
   1429  * ts - timespec describing the new time
   1430  * delta - the delta between the current time and ts
   1431  */
   1432 bool
   1433 time_wraps(struct timespec *ts, struct timespec *delta)
   1434 {
   1435 
   1436 	/*
   1437 	 * Don't allow the time to be set forward so far it
   1438 	 * will wrap and become negative, thus allowing an
   1439 	 * attacker to bypass the next check below.  The
   1440 	 * cutoff is 1 year before rollover occurs, so even
   1441 	 * if the attacker uses adjtime(2) to move the time
   1442 	 * past the cutoff, it will take a very long time
   1443 	 * to get to the wrap point.
   1444 	 */
   1445 	if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
   1446 	    (delta->tv_sec < 0 || delta->tv_nsec < 0))
   1447 		return true;
   1448 
   1449 	return false;
   1450 }
   1451