kern_time.c revision 1.179.10.3 1 /* $NetBSD: kern_time.c,v 1.179.10.3 2016/03/19 11:30:31 skrll Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1986, 1989, 1993
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
61 */
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.179.10.3 2016/03/19 11:30:31 skrll Exp $");
65
66 #include <sys/param.h>
67 #include <sys/resourcevar.h>
68 #include <sys/kernel.h>
69 #include <sys/systm.h>
70 #include <sys/proc.h>
71 #include <sys/vnode.h>
72 #include <sys/signalvar.h>
73 #include <sys/syslog.h>
74 #include <sys/timetc.h>
75 #include <sys/timex.h>
76 #include <sys/kauth.h>
77 #include <sys/mount.h>
78 #include <sys/syscallargs.h>
79 #include <sys/cpu.h>
80
81 static void timer_intr(void *);
82 static void itimerfire(struct ptimer *);
83 static void itimerfree(struct ptimers *, int);
84
85 kmutex_t timer_lock;
86
87 static void *timer_sih;
88 static TAILQ_HEAD(, ptimer) timer_queue;
89
90 struct pool ptimer_pool, ptimers_pool;
91
92 #define CLOCK_VIRTUAL_P(clockid) \
93 ((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)
94
95 CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
96 CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
97 CTASSERT(ITIMER_PROF == CLOCK_PROF);
98 CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC);
99
100 /*
101 * Initialize timekeeping.
102 */
103 void
104 time_init(void)
105 {
106
107 pool_init(&ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
108 &pool_allocator_nointr, IPL_NONE);
109 pool_init(&ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
110 &pool_allocator_nointr, IPL_NONE);
111 }
112
113 void
114 time_init2(void)
115 {
116
117 TAILQ_INIT(&timer_queue);
118 mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
119 timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
120 timer_intr, NULL);
121 }
122
123 /* Time of day and interval timer support.
124 *
125 * These routines provide the kernel entry points to get and set
126 * the time-of-day and per-process interval timers. Subroutines
127 * here provide support for adding and subtracting timeval structures
128 * and decrementing interval timers, optionally reloading the interval
129 * timers when they expire.
130 */
131
132 /* This function is used by clock_settime and settimeofday */
133 static int
134 settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
135 {
136 struct timespec delta, now;
137 int s;
138
139 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
140 s = splclock();
141 nanotime(&now);
142 timespecsub(ts, &now, &delta);
143
144 if (check_kauth && kauth_authorize_system(kauth_cred_get(),
145 KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
146 &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
147 splx(s);
148 return (EPERM);
149 }
150
151 #ifdef notyet
152 if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
153 splx(s);
154 return (EPERM);
155 }
156 #endif
157
158 tc_setclock(ts);
159
160 timespecadd(&boottime, &delta, &boottime);
161
162 resettodr();
163 splx(s);
164
165 return (0);
166 }
167
168 int
169 settime(struct proc *p, struct timespec *ts)
170 {
171 return (settime1(p, ts, true));
172 }
173
174 /* ARGSUSED */
175 int
176 sys___clock_gettime50(struct lwp *l,
177 const struct sys___clock_gettime50_args *uap, register_t *retval)
178 {
179 /* {
180 syscallarg(clockid_t) clock_id;
181 syscallarg(struct timespec *) tp;
182 } */
183 int error;
184 struct timespec ats;
185
186 error = clock_gettime1(SCARG(uap, clock_id), &ats);
187 if (error != 0)
188 return error;
189
190 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
191 }
192
193 /* ARGSUSED */
194 int
195 sys___clock_settime50(struct lwp *l,
196 const struct sys___clock_settime50_args *uap, register_t *retval)
197 {
198 /* {
199 syscallarg(clockid_t) clock_id;
200 syscallarg(const struct timespec *) tp;
201 } */
202 int error;
203 struct timespec ats;
204
205 if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
206 return error;
207
208 return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
209 }
210
211
212 int
213 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
214 bool check_kauth)
215 {
216 int error;
217
218 switch (clock_id) {
219 case CLOCK_REALTIME:
220 if ((error = settime1(p, tp, check_kauth)) != 0)
221 return (error);
222 break;
223 case CLOCK_MONOTONIC:
224 return (EINVAL); /* read-only clock */
225 default:
226 return (EINVAL);
227 }
228
229 return 0;
230 }
231
232 int
233 sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
234 register_t *retval)
235 {
236 /* {
237 syscallarg(clockid_t) clock_id;
238 syscallarg(struct timespec *) tp;
239 } */
240 struct timespec ts;
241 int error;
242
243 if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
244 return error;
245
246 if (SCARG(uap, tp))
247 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
248
249 return error;
250 }
251
252 int
253 clock_getres1(clockid_t clock_id, struct timespec *ts)
254 {
255
256 switch (clock_id) {
257 case CLOCK_REALTIME:
258 case CLOCK_MONOTONIC:
259 ts->tv_sec = 0;
260 if (tc_getfrequency() > 1000000000)
261 ts->tv_nsec = 1;
262 else
263 ts->tv_nsec = 1000000000 / tc_getfrequency();
264 break;
265 default:
266 return EINVAL;
267 }
268
269 return 0;
270 }
271
272 /* ARGSUSED */
273 int
274 sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
275 register_t *retval)
276 {
277 /* {
278 syscallarg(struct timespec *) rqtp;
279 syscallarg(struct timespec *) rmtp;
280 } */
281 struct timespec rmt, rqt;
282 int error, error1;
283
284 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
285 if (error)
286 return (error);
287
288 error = nanosleep1(l, CLOCK_MONOTONIC, 0, &rqt,
289 SCARG(uap, rmtp) ? &rmt : NULL);
290 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
291 return error;
292
293 error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
294 return error1 ? error1 : error;
295 }
296
297 /* ARGSUSED */
298 int
299 sys_clock_nanosleep(struct lwp *l, const struct sys_clock_nanosleep_args *uap,
300 register_t *retval)
301 {
302 /* {
303 syscallarg(clockid_t) clock_id;
304 syscallarg(int) flags;
305 syscallarg(struct timespec *) rqtp;
306 syscallarg(struct timespec *) rmtp;
307 } */
308 struct timespec rmt, rqt;
309 int error, error1;
310
311 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
312 if (error)
313 goto out;
314
315 error = nanosleep1(l, SCARG(uap, clock_id), SCARG(uap, flags), &rqt,
316 SCARG(uap, rmtp) ? &rmt : NULL);
317 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
318 goto out;
319
320 if ((error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt))) != 0)
321 error = error1;
322 out:
323 *retval = error;
324 return 0;
325 }
326
327 int
328 nanosleep1(struct lwp *l, clockid_t clock_id, int flags, struct timespec *rqt,
329 struct timespec *rmt)
330 {
331 struct timespec rmtstart;
332 int error, timo;
333
334 if ((error = ts2timo(clock_id, flags, rqt, &timo, &rmtstart)) != 0) {
335 if (error == ETIMEDOUT) {
336 error = 0;
337 if (rmt != NULL)
338 rmt->tv_sec = rmt->tv_nsec = 0;
339 }
340 return error;
341 }
342
343 /*
344 * Avoid inadvertently sleeping forever
345 */
346 if (timo == 0)
347 timo = 1;
348 again:
349 error = kpause("nanoslp", true, timo, NULL);
350 if (rmt != NULL || error == 0) {
351 struct timespec rmtend;
352 struct timespec t0;
353 struct timespec *t;
354
355 (void)clock_gettime1(clock_id, &rmtend);
356 t = (rmt != NULL) ? rmt : &t0;
357 if (flags & TIMER_ABSTIME) {
358 timespecsub(rqt, &rmtend, t);
359 } else {
360 timespecsub(&rmtend, &rmtstart, t);
361 timespecsub(rqt, t, t);
362 }
363 if (t->tv_sec < 0)
364 timespecclear(t);
365 if (error == 0) {
366 timo = tstohz(t);
367 if (timo > 0)
368 goto again;
369 }
370 }
371
372 if (error == ERESTART)
373 error = EINTR;
374 if (error == EWOULDBLOCK)
375 error = 0;
376
377 return error;
378 }
379
380 /* ARGSUSED */
381 int
382 sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
383 register_t *retval)
384 {
385 /* {
386 syscallarg(struct timeval *) tp;
387 syscallarg(void *) tzp; really "struct timezone *";
388 } */
389 struct timeval atv;
390 int error = 0;
391 struct timezone tzfake;
392
393 if (SCARG(uap, tp)) {
394 microtime(&atv);
395 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
396 if (error)
397 return (error);
398 }
399 if (SCARG(uap, tzp)) {
400 /*
401 * NetBSD has no kernel notion of time zone, so we just
402 * fake up a timezone struct and return it if demanded.
403 */
404 tzfake.tz_minuteswest = 0;
405 tzfake.tz_dsttime = 0;
406 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
407 }
408 return (error);
409 }
410
411 /* ARGSUSED */
412 int
413 sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
414 register_t *retval)
415 {
416 /* {
417 syscallarg(const struct timeval *) tv;
418 syscallarg(const void *) tzp; really "const struct timezone *";
419 } */
420
421 return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
422 }
423
424 int
425 settimeofday1(const struct timeval *utv, bool userspace,
426 const void *utzp, struct lwp *l, bool check_kauth)
427 {
428 struct timeval atv;
429 struct timespec ts;
430 int error;
431
432 /* Verify all parameters before changing time. */
433
434 /*
435 * NetBSD has no kernel notion of time zone, and only an
436 * obsolete program would try to set it, so we log a warning.
437 */
438 if (utzp)
439 log(LOG_WARNING, "pid %d attempted to set the "
440 "(obsolete) kernel time zone\n", l->l_proc->p_pid);
441
442 if (utv == NULL)
443 return 0;
444
445 if (userspace) {
446 if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
447 return error;
448 utv = &atv;
449 }
450
451 TIMEVAL_TO_TIMESPEC(utv, &ts);
452 return settime1(l->l_proc, &ts, check_kauth);
453 }
454
455 int time_adjusted; /* set if an adjustment is made */
456
457 /* ARGSUSED */
458 int
459 sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
460 register_t *retval)
461 {
462 /* {
463 syscallarg(const struct timeval *) delta;
464 syscallarg(struct timeval *) olddelta;
465 } */
466 int error;
467 struct timeval atv, oldatv;
468
469 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
470 KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
471 return error;
472
473 if (SCARG(uap, delta)) {
474 error = copyin(SCARG(uap, delta), &atv,
475 sizeof(*SCARG(uap, delta)));
476 if (error)
477 return (error);
478 }
479 adjtime1(SCARG(uap, delta) ? &atv : NULL,
480 SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
481 if (SCARG(uap, olddelta))
482 error = copyout(&oldatv, SCARG(uap, olddelta),
483 sizeof(*SCARG(uap, olddelta)));
484 return error;
485 }
486
487 void
488 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
489 {
490 extern int64_t time_adjtime; /* in kern_ntptime.c */
491
492 if (olddelta) {
493 mutex_spin_enter(&timecounter_lock);
494 olddelta->tv_sec = time_adjtime / 1000000;
495 olddelta->tv_usec = time_adjtime % 1000000;
496 if (olddelta->tv_usec < 0) {
497 olddelta->tv_usec += 1000000;
498 olddelta->tv_sec--;
499 }
500 mutex_spin_exit(&timecounter_lock);
501 }
502
503 if (delta) {
504 mutex_spin_enter(&timecounter_lock);
505 time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
506
507 if (time_adjtime) {
508 /* We need to save the system time during shutdown */
509 time_adjusted |= 1;
510 }
511 mutex_spin_exit(&timecounter_lock);
512 }
513 }
514
515 /*
516 * Interval timer support. Both the BSD getitimer() family and the POSIX
517 * timer_*() family of routines are supported.
518 *
519 * All timers are kept in an array pointed to by p_timers, which is
520 * allocated on demand - many processes don't use timers at all. The
521 * first four elements in this array are reserved for the BSD timers:
522 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element
523 * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be
524 * allocated by the timer_create() syscall.
525 *
526 * Realtime timers are kept in the ptimer structure as an absolute
527 * time; virtual time timers are kept as a linked list of deltas.
528 * Virtual time timers are processed in the hardclock() routine of
529 * kern_clock.c. The real time timer is processed by a callout
530 * routine, called from the softclock() routine. Since a callout may
531 * be delayed in real time due to interrupt processing in the system,
532 * it is possible for the real time timeout routine (realtimeexpire,
533 * given below), to be delayed in real time past when it is supposed
534 * to occur. It does not suffice, therefore, to reload the real timer
535 * .it_value from the real time timers .it_interval. Rather, we
536 * compute the next time in absolute time the timer should go off. */
537
538 /* Allocate a POSIX realtime timer. */
539 int
540 sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
541 register_t *retval)
542 {
543 /* {
544 syscallarg(clockid_t) clock_id;
545 syscallarg(struct sigevent *) evp;
546 syscallarg(timer_t *) timerid;
547 } */
548
549 return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
550 SCARG(uap, evp), copyin, l);
551 }
552
553 int
554 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
555 copyin_t fetch_event, struct lwp *l)
556 {
557 int error;
558 timer_t timerid;
559 struct ptimers *pts;
560 struct ptimer *pt;
561 struct proc *p;
562
563 p = l->l_proc;
564
565 if ((u_int)id > CLOCK_MONOTONIC)
566 return (EINVAL);
567
568 if ((pts = p->p_timers) == NULL)
569 pts = timers_alloc(p);
570
571 pt = pool_get(&ptimer_pool, PR_WAITOK);
572 if (evp != NULL) {
573 if (((error =
574 (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
575 ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
576 (pt->pt_ev.sigev_notify > SIGEV_SA)) ||
577 (pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
578 (pt->pt_ev.sigev_signo <= 0 ||
579 pt->pt_ev.sigev_signo >= NSIG))) {
580 pool_put(&ptimer_pool, pt);
581 return (error ? error : EINVAL);
582 }
583 }
584
585 /* Find a free timer slot, skipping those reserved for setitimer(). */
586 mutex_spin_enter(&timer_lock);
587 for (timerid = TIMER_MIN; timerid < TIMER_MAX; timerid++)
588 if (pts->pts_timers[timerid] == NULL)
589 break;
590 if (timerid == TIMER_MAX) {
591 mutex_spin_exit(&timer_lock);
592 pool_put(&ptimer_pool, pt);
593 return EAGAIN;
594 }
595 if (evp == NULL) {
596 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
597 switch (id) {
598 case CLOCK_REALTIME:
599 case CLOCK_MONOTONIC:
600 pt->pt_ev.sigev_signo = SIGALRM;
601 break;
602 case CLOCK_VIRTUAL:
603 pt->pt_ev.sigev_signo = SIGVTALRM;
604 break;
605 case CLOCK_PROF:
606 pt->pt_ev.sigev_signo = SIGPROF;
607 break;
608 }
609 pt->pt_ev.sigev_value.sival_int = timerid;
610 }
611 pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
612 pt->pt_info.ksi_errno = 0;
613 pt->pt_info.ksi_code = 0;
614 pt->pt_info.ksi_pid = p->p_pid;
615 pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
616 pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
617 pt->pt_type = id;
618 pt->pt_proc = p;
619 pt->pt_overruns = 0;
620 pt->pt_poverruns = 0;
621 pt->pt_entry = timerid;
622 pt->pt_queued = false;
623 timespecclear(&pt->pt_time.it_value);
624 if (!CLOCK_VIRTUAL_P(id))
625 callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
626 else
627 pt->pt_active = 0;
628
629 pts->pts_timers[timerid] = pt;
630 mutex_spin_exit(&timer_lock);
631
632 return copyout(&timerid, tid, sizeof(timerid));
633 }
634
635 /* Delete a POSIX realtime timer */
636 int
637 sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
638 register_t *retval)
639 {
640 /* {
641 syscallarg(timer_t) timerid;
642 } */
643 struct proc *p = l->l_proc;
644 timer_t timerid;
645 struct ptimers *pts;
646 struct ptimer *pt, *ptn;
647
648 timerid = SCARG(uap, timerid);
649 pts = p->p_timers;
650
651 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
652 return (EINVAL);
653
654 mutex_spin_enter(&timer_lock);
655 if ((pt = pts->pts_timers[timerid]) == NULL) {
656 mutex_spin_exit(&timer_lock);
657 return (EINVAL);
658 }
659 if (CLOCK_VIRTUAL_P(pt->pt_type)) {
660 if (pt->pt_active) {
661 ptn = LIST_NEXT(pt, pt_list);
662 LIST_REMOVE(pt, pt_list);
663 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
664 timespecadd(&pt->pt_time.it_value,
665 &ptn->pt_time.it_value,
666 &ptn->pt_time.it_value);
667 pt->pt_active = 0;
668 }
669 }
670 itimerfree(pts, timerid);
671
672 return (0);
673 }
674
675 /*
676 * Set up the given timer. The value in pt->pt_time.it_value is taken
677 * to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC timers and
678 * a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
679 */
680 void
681 timer_settime(struct ptimer *pt)
682 {
683 struct ptimer *ptn, *pptn;
684 struct ptlist *ptl;
685
686 KASSERT(mutex_owned(&timer_lock));
687
688 if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
689 callout_halt(&pt->pt_ch, &timer_lock);
690 if (timespecisset(&pt->pt_time.it_value)) {
691 /*
692 * Don't need to check tshzto() return value, here.
693 * callout_reset() does it for us.
694 */
695 callout_reset(&pt->pt_ch,
696 pt->pt_type == CLOCK_MONOTONIC ?
697 tshztoup(&pt->pt_time.it_value) :
698 tshzto(&pt->pt_time.it_value),
699 realtimerexpire, pt);
700 }
701 } else {
702 if (pt->pt_active) {
703 ptn = LIST_NEXT(pt, pt_list);
704 LIST_REMOVE(pt, pt_list);
705 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
706 timespecadd(&pt->pt_time.it_value,
707 &ptn->pt_time.it_value,
708 &ptn->pt_time.it_value);
709 }
710 if (timespecisset(&pt->pt_time.it_value)) {
711 if (pt->pt_type == CLOCK_VIRTUAL)
712 ptl = &pt->pt_proc->p_timers->pts_virtual;
713 else
714 ptl = &pt->pt_proc->p_timers->pts_prof;
715
716 for (ptn = LIST_FIRST(ptl), pptn = NULL;
717 ptn && timespeccmp(&pt->pt_time.it_value,
718 &ptn->pt_time.it_value, >);
719 pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
720 timespecsub(&pt->pt_time.it_value,
721 &ptn->pt_time.it_value,
722 &pt->pt_time.it_value);
723
724 if (pptn)
725 LIST_INSERT_AFTER(pptn, pt, pt_list);
726 else
727 LIST_INSERT_HEAD(ptl, pt, pt_list);
728
729 for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
730 timespecsub(&ptn->pt_time.it_value,
731 &pt->pt_time.it_value,
732 &ptn->pt_time.it_value);
733
734 pt->pt_active = 1;
735 } else
736 pt->pt_active = 0;
737 }
738 }
739
740 void
741 timer_gettime(struct ptimer *pt, struct itimerspec *aits)
742 {
743 struct timespec now;
744 struct ptimer *ptn;
745
746 KASSERT(mutex_owned(&timer_lock));
747
748 *aits = pt->pt_time;
749 if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
750 /*
751 * Convert from absolute to relative time in .it_value
752 * part of real time timer. If time for real time
753 * timer has passed return 0, else return difference
754 * between current time and time for the timer to go
755 * off.
756 */
757 if (timespecisset(&aits->it_value)) {
758 if (pt->pt_type == CLOCK_REALTIME) {
759 getnanotime(&now);
760 } else { /* CLOCK_MONOTONIC */
761 getnanouptime(&now);
762 }
763 if (timespeccmp(&aits->it_value, &now, <))
764 timespecclear(&aits->it_value);
765 else
766 timespecsub(&aits->it_value, &now,
767 &aits->it_value);
768 }
769 } else if (pt->pt_active) {
770 if (pt->pt_type == CLOCK_VIRTUAL)
771 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
772 else
773 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
774 for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
775 timespecadd(&aits->it_value,
776 &ptn->pt_time.it_value, &aits->it_value);
777 KASSERT(ptn != NULL); /* pt should be findable on the list */
778 } else
779 timespecclear(&aits->it_value);
780 }
781
782
783
784 /* Set and arm a POSIX realtime timer */
785 int
786 sys___timer_settime50(struct lwp *l,
787 const struct sys___timer_settime50_args *uap,
788 register_t *retval)
789 {
790 /* {
791 syscallarg(timer_t) timerid;
792 syscallarg(int) flags;
793 syscallarg(const struct itimerspec *) value;
794 syscallarg(struct itimerspec *) ovalue;
795 } */
796 int error;
797 struct itimerspec value, ovalue, *ovp = NULL;
798
799 if ((error = copyin(SCARG(uap, value), &value,
800 sizeof(struct itimerspec))) != 0)
801 return (error);
802
803 if (SCARG(uap, ovalue))
804 ovp = &ovalue;
805
806 if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
807 SCARG(uap, flags), l->l_proc)) != 0)
808 return error;
809
810 if (ovp)
811 return copyout(&ovalue, SCARG(uap, ovalue),
812 sizeof(struct itimerspec));
813 return 0;
814 }
815
816 int
817 dotimer_settime(int timerid, struct itimerspec *value,
818 struct itimerspec *ovalue, int flags, struct proc *p)
819 {
820 struct timespec now;
821 struct itimerspec val, oval;
822 struct ptimers *pts;
823 struct ptimer *pt;
824 int error;
825
826 pts = p->p_timers;
827
828 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
829 return EINVAL;
830 val = *value;
831 if ((error = itimespecfix(&val.it_value)) != 0 ||
832 (error = itimespecfix(&val.it_interval)) != 0)
833 return error;
834
835 mutex_spin_enter(&timer_lock);
836 if ((pt = pts->pts_timers[timerid]) == NULL) {
837 mutex_spin_exit(&timer_lock);
838 return EINVAL;
839 }
840
841 oval = pt->pt_time;
842 pt->pt_time = val;
843
844 /*
845 * If we've been passed a relative time for a realtime timer,
846 * convert it to absolute; if an absolute time for a virtual
847 * timer, convert it to relative and make sure we don't set it
848 * to zero, which would cancel the timer, or let it go
849 * negative, which would confuse the comparison tests.
850 */
851 if (timespecisset(&pt->pt_time.it_value)) {
852 if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
853 if ((flags & TIMER_ABSTIME) == 0) {
854 if (pt->pt_type == CLOCK_REALTIME) {
855 getnanotime(&now);
856 } else { /* CLOCK_MONOTONIC */
857 getnanouptime(&now);
858 }
859 timespecadd(&pt->pt_time.it_value, &now,
860 &pt->pt_time.it_value);
861 }
862 } else {
863 if ((flags & TIMER_ABSTIME) != 0) {
864 getnanotime(&now);
865 timespecsub(&pt->pt_time.it_value, &now,
866 &pt->pt_time.it_value);
867 if (!timespecisset(&pt->pt_time.it_value) ||
868 pt->pt_time.it_value.tv_sec < 0) {
869 pt->pt_time.it_value.tv_sec = 0;
870 pt->pt_time.it_value.tv_nsec = 1;
871 }
872 }
873 }
874 }
875
876 timer_settime(pt);
877 mutex_spin_exit(&timer_lock);
878
879 if (ovalue)
880 *ovalue = oval;
881
882 return (0);
883 }
884
885 /* Return the time remaining until a POSIX timer fires. */
886 int
887 sys___timer_gettime50(struct lwp *l,
888 const struct sys___timer_gettime50_args *uap, register_t *retval)
889 {
890 /* {
891 syscallarg(timer_t) timerid;
892 syscallarg(struct itimerspec *) value;
893 } */
894 struct itimerspec its;
895 int error;
896
897 if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
898 &its)) != 0)
899 return error;
900
901 return copyout(&its, SCARG(uap, value), sizeof(its));
902 }
903
904 int
905 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
906 {
907 struct ptimer *pt;
908 struct ptimers *pts;
909
910 pts = p->p_timers;
911 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
912 return (EINVAL);
913 mutex_spin_enter(&timer_lock);
914 if ((pt = pts->pts_timers[timerid]) == NULL) {
915 mutex_spin_exit(&timer_lock);
916 return (EINVAL);
917 }
918 timer_gettime(pt, its);
919 mutex_spin_exit(&timer_lock);
920
921 return 0;
922 }
923
924 /*
925 * Return the count of the number of times a periodic timer expired
926 * while a notification was already pending. The counter is reset when
927 * a timer expires and a notification can be posted.
928 */
929 int
930 sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
931 register_t *retval)
932 {
933 /* {
934 syscallarg(timer_t) timerid;
935 } */
936 struct proc *p = l->l_proc;
937 struct ptimers *pts;
938 int timerid;
939 struct ptimer *pt;
940
941 timerid = SCARG(uap, timerid);
942
943 pts = p->p_timers;
944 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
945 return (EINVAL);
946 mutex_spin_enter(&timer_lock);
947 if ((pt = pts->pts_timers[timerid]) == NULL) {
948 mutex_spin_exit(&timer_lock);
949 return (EINVAL);
950 }
951 *retval = pt->pt_poverruns;
952 mutex_spin_exit(&timer_lock);
953
954 return (0);
955 }
956
957 /*
958 * Real interval timer expired:
959 * send process whose timer expired an alarm signal.
960 * If time is not set up to reload, then just return.
961 * Else compute next time timer should go off which is > current time.
962 * This is where delay in processing this timeout causes multiple
963 * SIGALRM calls to be compressed into one.
964 */
965 void
966 realtimerexpire(void *arg)
967 {
968 uint64_t last_val, next_val, interval, now_ns;
969 struct timespec now, next;
970 struct ptimer *pt;
971 int backwards;
972
973 pt = arg;
974
975 mutex_spin_enter(&timer_lock);
976 itimerfire(pt);
977
978 if (!timespecisset(&pt->pt_time.it_interval)) {
979 timespecclear(&pt->pt_time.it_value);
980 mutex_spin_exit(&timer_lock);
981 return;
982 }
983
984 if (pt->pt_type == CLOCK_MONOTONIC) {
985 getnanouptime(&now);
986 } else {
987 getnanotime(&now);
988 }
989 backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
990 timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
991 /* Handle the easy case of non-overflown timers first. */
992 if (!backwards && timespeccmp(&next, &now, >)) {
993 pt->pt_time.it_value = next;
994 } else {
995 now_ns = timespec2ns(&now);
996 last_val = timespec2ns(&pt->pt_time.it_value);
997 interval = timespec2ns(&pt->pt_time.it_interval);
998
999 next_val = now_ns +
1000 (now_ns - last_val + interval - 1) % interval;
1001
1002 if (backwards)
1003 next_val += interval;
1004 else
1005 pt->pt_overruns += (now_ns - last_val) / interval;
1006
1007 pt->pt_time.it_value.tv_sec = next_val / 1000000000;
1008 pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
1009 }
1010
1011 /*
1012 * Don't need to check tshzto() return value, here.
1013 * callout_reset() does it for us.
1014 */
1015 callout_reset(&pt->pt_ch, pt->pt_type == CLOCK_MONOTONIC ?
1016 tshztoup(&pt->pt_time.it_value) : tshzto(&pt->pt_time.it_value),
1017 realtimerexpire, pt);
1018 mutex_spin_exit(&timer_lock);
1019 }
1020
1021 /* BSD routine to get the value of an interval timer. */
1022 /* ARGSUSED */
1023 int
1024 sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
1025 register_t *retval)
1026 {
1027 /* {
1028 syscallarg(int) which;
1029 syscallarg(struct itimerval *) itv;
1030 } */
1031 struct proc *p = l->l_proc;
1032 struct itimerval aitv;
1033 int error;
1034
1035 error = dogetitimer(p, SCARG(uap, which), &aitv);
1036 if (error)
1037 return error;
1038 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1039 }
1040
1041 int
1042 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1043 {
1044 struct ptimers *pts;
1045 struct ptimer *pt;
1046 struct itimerspec its;
1047
1048 if ((u_int)which > ITIMER_MONOTONIC)
1049 return (EINVAL);
1050
1051 mutex_spin_enter(&timer_lock);
1052 pts = p->p_timers;
1053 if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
1054 timerclear(&itvp->it_value);
1055 timerclear(&itvp->it_interval);
1056 } else {
1057 timer_gettime(pt, &its);
1058 TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
1059 TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
1060 }
1061 mutex_spin_exit(&timer_lock);
1062
1063 return 0;
1064 }
1065
1066 /* BSD routine to set/arm an interval timer. */
1067 /* ARGSUSED */
1068 int
1069 sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
1070 register_t *retval)
1071 {
1072 /* {
1073 syscallarg(int) which;
1074 syscallarg(const struct itimerval *) itv;
1075 syscallarg(struct itimerval *) oitv;
1076 } */
1077 struct proc *p = l->l_proc;
1078 int which = SCARG(uap, which);
1079 struct sys___getitimer50_args getargs;
1080 const struct itimerval *itvp;
1081 struct itimerval aitv;
1082 int error;
1083
1084 if ((u_int)which > ITIMER_MONOTONIC)
1085 return (EINVAL);
1086 itvp = SCARG(uap, itv);
1087 if (itvp &&
1088 (error = copyin(itvp, &aitv, sizeof(struct itimerval))) != 0)
1089 return (error);
1090 if (SCARG(uap, oitv) != NULL) {
1091 SCARG(&getargs, which) = which;
1092 SCARG(&getargs, itv) = SCARG(uap, oitv);
1093 if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
1094 return (error);
1095 }
1096 if (itvp == 0)
1097 return (0);
1098
1099 return dosetitimer(p, which, &aitv);
1100 }
1101
1102 int
1103 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1104 {
1105 struct timespec now;
1106 struct ptimers *pts;
1107 struct ptimer *pt, *spare;
1108
1109 KASSERT((u_int)which <= CLOCK_MONOTONIC);
1110 if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1111 return (EINVAL);
1112
1113 /*
1114 * Don't bother allocating data structures if the process just
1115 * wants to clear the timer.
1116 */
1117 spare = NULL;
1118 pts = p->p_timers;
1119 retry:
1120 if (!timerisset(&itvp->it_value) && (pts == NULL ||
1121 pts->pts_timers[which] == NULL))
1122 return (0);
1123 if (pts == NULL)
1124 pts = timers_alloc(p);
1125 mutex_spin_enter(&timer_lock);
1126 pt = pts->pts_timers[which];
1127 if (pt == NULL) {
1128 if (spare == NULL) {
1129 mutex_spin_exit(&timer_lock);
1130 spare = pool_get(&ptimer_pool, PR_WAITOK);
1131 goto retry;
1132 }
1133 pt = spare;
1134 spare = NULL;
1135 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1136 pt->pt_ev.sigev_value.sival_int = which;
1137 pt->pt_overruns = 0;
1138 pt->pt_proc = p;
1139 pt->pt_type = which;
1140 pt->pt_entry = which;
1141 pt->pt_queued = false;
1142 if (pt->pt_type == CLOCK_REALTIME)
1143 callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
1144 else
1145 pt->pt_active = 0;
1146
1147 switch (which) {
1148 case ITIMER_REAL:
1149 case ITIMER_MONOTONIC:
1150 pt->pt_ev.sigev_signo = SIGALRM;
1151 break;
1152 case ITIMER_VIRTUAL:
1153 pt->pt_ev.sigev_signo = SIGVTALRM;
1154 break;
1155 case ITIMER_PROF:
1156 pt->pt_ev.sigev_signo = SIGPROF;
1157 break;
1158 }
1159 pts->pts_timers[which] = pt;
1160 }
1161
1162 TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
1163 TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
1164
1165 if (timespecisset(&pt->pt_time.it_value)) {
1166 /* Convert to absolute time */
1167 /* XXX need to wrap in splclock for timecounters case? */
1168 switch (which) {
1169 case ITIMER_REAL:
1170 getnanotime(&now);
1171 timespecadd(&pt->pt_time.it_value, &now,
1172 &pt->pt_time.it_value);
1173 break;
1174 case ITIMER_MONOTONIC:
1175 getnanouptime(&now);
1176 timespecadd(&pt->pt_time.it_value, &now,
1177 &pt->pt_time.it_value);
1178 break;
1179 default:
1180 break;
1181 }
1182 }
1183 timer_settime(pt);
1184 mutex_spin_exit(&timer_lock);
1185 if (spare != NULL)
1186 pool_put(&ptimer_pool, spare);
1187
1188 return (0);
1189 }
1190
1191 /* Utility routines to manage the array of pointers to timers. */
1192 struct ptimers *
1193 timers_alloc(struct proc *p)
1194 {
1195 struct ptimers *pts;
1196 int i;
1197
1198 pts = pool_get(&ptimers_pool, PR_WAITOK);
1199 LIST_INIT(&pts->pts_virtual);
1200 LIST_INIT(&pts->pts_prof);
1201 for (i = 0; i < TIMER_MAX; i++)
1202 pts->pts_timers[i] = NULL;
1203 mutex_spin_enter(&timer_lock);
1204 if (p->p_timers == NULL) {
1205 p->p_timers = pts;
1206 mutex_spin_exit(&timer_lock);
1207 return pts;
1208 }
1209 mutex_spin_exit(&timer_lock);
1210 pool_put(&ptimers_pool, pts);
1211 return p->p_timers;
1212 }
1213
1214 /*
1215 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1216 * then clean up all timers and free all the data structures. If
1217 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1218 * by timer_create(), not the BSD setitimer() timers, and only free the
1219 * structure if none of those remain.
1220 */
1221 void
1222 timers_free(struct proc *p, int which)
1223 {
1224 struct ptimers *pts;
1225 struct ptimer *ptn;
1226 struct timespec ts;
1227 int i;
1228
1229 if (p->p_timers == NULL)
1230 return;
1231
1232 pts = p->p_timers;
1233 mutex_spin_enter(&timer_lock);
1234 if (which == TIMERS_ALL) {
1235 p->p_timers = NULL;
1236 i = 0;
1237 } else {
1238 timespecclear(&ts);
1239 for (ptn = LIST_FIRST(&pts->pts_virtual);
1240 ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1241 ptn = LIST_NEXT(ptn, pt_list)) {
1242 KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1243 timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1244 }
1245 LIST_FIRST(&pts->pts_virtual) = NULL;
1246 if (ptn) {
1247 KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1248 timespecadd(&ts, &ptn->pt_time.it_value,
1249 &ptn->pt_time.it_value);
1250 LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
1251 }
1252 timespecclear(&ts);
1253 for (ptn = LIST_FIRST(&pts->pts_prof);
1254 ptn && ptn != pts->pts_timers[ITIMER_PROF];
1255 ptn = LIST_NEXT(ptn, pt_list)) {
1256 KASSERT(ptn->pt_type == CLOCK_PROF);
1257 timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1258 }
1259 LIST_FIRST(&pts->pts_prof) = NULL;
1260 if (ptn) {
1261 KASSERT(ptn->pt_type == CLOCK_PROF);
1262 timespecadd(&ts, &ptn->pt_time.it_value,
1263 &ptn->pt_time.it_value);
1264 LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
1265 }
1266 i = TIMER_MIN;
1267 }
1268 for ( ; i < TIMER_MAX; i++) {
1269 if (pts->pts_timers[i] != NULL) {
1270 itimerfree(pts, i);
1271 mutex_spin_enter(&timer_lock);
1272 }
1273 }
1274 if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
1275 pts->pts_timers[2] == NULL && pts->pts_timers[3] == NULL) {
1276 p->p_timers = NULL;
1277 mutex_spin_exit(&timer_lock);
1278 pool_put(&ptimers_pool, pts);
1279 } else
1280 mutex_spin_exit(&timer_lock);
1281 }
1282
1283 static void
1284 itimerfree(struct ptimers *pts, int index)
1285 {
1286 struct ptimer *pt;
1287
1288 KASSERT(mutex_owned(&timer_lock));
1289
1290 pt = pts->pts_timers[index];
1291 pts->pts_timers[index] = NULL;
1292 if (!CLOCK_VIRTUAL_P(pt->pt_type))
1293 callout_halt(&pt->pt_ch, &timer_lock);
1294 if (pt->pt_queued)
1295 TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1296 mutex_spin_exit(&timer_lock);
1297 if (!CLOCK_VIRTUAL_P(pt->pt_type))
1298 callout_destroy(&pt->pt_ch);
1299 pool_put(&ptimer_pool, pt);
1300 }
1301
1302 /*
1303 * Decrement an interval timer by a specified number
1304 * of nanoseconds, which must be less than a second,
1305 * i.e. < 1000000000. If the timer expires, then reload
1306 * it. In this case, carry over (nsec - old value) to
1307 * reduce the value reloaded into the timer so that
1308 * the timer does not drift. This routine assumes
1309 * that it is called in a context where the timers
1310 * on which it is operating cannot change in value.
1311 */
1312 static int
1313 itimerdecr(struct ptimer *pt, int nsec)
1314 {
1315 struct itimerspec *itp;
1316
1317 KASSERT(mutex_owned(&timer_lock));
1318 KASSERT(CLOCK_VIRTUAL_P(pt->pt_type));
1319
1320 itp = &pt->pt_time;
1321 if (itp->it_value.tv_nsec < nsec) {
1322 if (itp->it_value.tv_sec == 0) {
1323 /* expired, and already in next interval */
1324 nsec -= itp->it_value.tv_nsec;
1325 goto expire;
1326 }
1327 itp->it_value.tv_nsec += 1000000000;
1328 itp->it_value.tv_sec--;
1329 }
1330 itp->it_value.tv_nsec -= nsec;
1331 nsec = 0;
1332 if (timespecisset(&itp->it_value))
1333 return (1);
1334 /* expired, exactly at end of interval */
1335 expire:
1336 if (timespecisset(&itp->it_interval)) {
1337 itp->it_value = itp->it_interval;
1338 itp->it_value.tv_nsec -= nsec;
1339 if (itp->it_value.tv_nsec < 0) {
1340 itp->it_value.tv_nsec += 1000000000;
1341 itp->it_value.tv_sec--;
1342 }
1343 timer_settime(pt);
1344 } else
1345 itp->it_value.tv_nsec = 0; /* sec is already 0 */
1346 return (0);
1347 }
1348
1349 static void
1350 itimerfire(struct ptimer *pt)
1351 {
1352
1353 KASSERT(mutex_owned(&timer_lock));
1354
1355 /*
1356 * XXX Can overrun, but we don't do signal queueing yet, anyway.
1357 * XXX Relying on the clock interrupt is stupid.
1358 */
1359 if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL || pt->pt_queued) {
1360 return;
1361 }
1362 TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
1363 pt->pt_queued = true;
1364 softint_schedule(timer_sih);
1365 }
1366
1367 void
1368 timer_tick(lwp_t *l, bool user)
1369 {
1370 struct ptimers *pts;
1371 struct ptimer *pt;
1372 proc_t *p;
1373
1374 p = l->l_proc;
1375 if (p->p_timers == NULL)
1376 return;
1377
1378 mutex_spin_enter(&timer_lock);
1379 if ((pts = l->l_proc->p_timers) != NULL) {
1380 /*
1381 * Run current process's virtual and profile time, as needed.
1382 */
1383 if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
1384 if (itimerdecr(pt, tick * 1000) == 0)
1385 itimerfire(pt);
1386 if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
1387 if (itimerdecr(pt, tick * 1000) == 0)
1388 itimerfire(pt);
1389 }
1390 mutex_spin_exit(&timer_lock);
1391 }
1392
1393 static void
1394 timer_intr(void *cookie)
1395 {
1396 ksiginfo_t ksi;
1397 struct ptimer *pt;
1398 proc_t *p;
1399
1400 mutex_enter(proc_lock);
1401 mutex_spin_enter(&timer_lock);
1402 while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
1403 TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1404 KASSERT(pt->pt_queued);
1405 pt->pt_queued = false;
1406
1407 if (pt->pt_proc->p_timers == NULL) {
1408 /* Process is dying. */
1409 continue;
1410 }
1411 p = pt->pt_proc;
1412 if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
1413 continue;
1414 }
1415 if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
1416 pt->pt_overruns++;
1417 continue;
1418 }
1419
1420 KSI_INIT(&ksi);
1421 ksi.ksi_signo = pt->pt_ev.sigev_signo;
1422 ksi.ksi_code = SI_TIMER;
1423 ksi.ksi_value = pt->pt_ev.sigev_value;
1424 pt->pt_poverruns = pt->pt_overruns;
1425 pt->pt_overruns = 0;
1426 mutex_spin_exit(&timer_lock);
1427 kpsignal(p, &ksi, NULL);
1428 mutex_spin_enter(&timer_lock);
1429 }
1430 mutex_spin_exit(&timer_lock);
1431 mutex_exit(proc_lock);
1432 }
1433
1434 /*
1435 * Check if the time will wrap if set to ts.
1436 *
1437 * ts - timespec describing the new time
1438 * delta - the delta between the current time and ts
1439 */
1440 bool
1441 time_wraps(struct timespec *ts, struct timespec *delta)
1442 {
1443
1444 /*
1445 * Don't allow the time to be set forward so far it
1446 * will wrap and become negative, thus allowing an
1447 * attacker to bypass the next check below. The
1448 * cutoff is 1 year before rollover occurs, so even
1449 * if the attacker uses adjtime(2) to move the time
1450 * past the cutoff, it will take a very long time
1451 * to get to the wrap point.
1452 */
1453 if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
1454 (delta->tv_sec < 0 || delta->tv_nsec < 0))
1455 return true;
1456
1457 return false;
1458 }
1459