kern_time.c revision 1.179.12.3 1 /* $NetBSD: kern_time.c,v 1.179.12.3 2018/12/14 12:07:54 martin Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1986, 1989, 1993
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
61 */
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.179.12.3 2018/12/14 12:07:54 martin Exp $");
65
66 #include <sys/param.h>
67 #include <sys/resourcevar.h>
68 #include <sys/kernel.h>
69 #include <sys/systm.h>
70 #include <sys/proc.h>
71 #include <sys/vnode.h>
72 #include <sys/signalvar.h>
73 #include <sys/syslog.h>
74 #include <sys/timetc.h>
75 #include <sys/timex.h>
76 #include <sys/kauth.h>
77 #include <sys/mount.h>
78 #include <sys/syscallargs.h>
79 #include <sys/cpu.h>
80
81 static void timer_intr(void *);
82 static void itimerfire(struct ptimer *);
83 static void itimerfree(struct ptimers *, int);
84
85 kmutex_t timer_lock;
86
87 static void *timer_sih;
88 static TAILQ_HEAD(, ptimer) timer_queue;
89
90 struct pool ptimer_pool, ptimers_pool;
91
92 #define CLOCK_VIRTUAL_P(clockid) \
93 ((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)
94
95 CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
96 CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
97 CTASSERT(ITIMER_PROF == CLOCK_PROF);
98 CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC);
99
100 /*
101 * Initialize timekeeping.
102 */
103 void
104 time_init(void)
105 {
106
107 pool_init(&ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
108 &pool_allocator_nointr, IPL_NONE);
109 pool_init(&ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
110 &pool_allocator_nointr, IPL_NONE);
111 }
112
113 void
114 time_init2(void)
115 {
116
117 TAILQ_INIT(&timer_queue);
118 mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
119 timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
120 timer_intr, NULL);
121 }
122
123 /* Time of day and interval timer support.
124 *
125 * These routines provide the kernel entry points to get and set
126 * the time-of-day and per-process interval timers. Subroutines
127 * here provide support for adding and subtracting timeval structures
128 * and decrementing interval timers, optionally reloading the interval
129 * timers when they expire.
130 */
131
132 /* This function is used by clock_settime and settimeofday */
133 static int
134 settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
135 {
136 struct timespec delta, now;
137 int s;
138
139 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
140 s = splclock();
141 nanotime(&now);
142 timespecsub(ts, &now, &delta);
143
144 if (check_kauth && kauth_authorize_system(kauth_cred_get(),
145 KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
146 &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
147 splx(s);
148 return (EPERM);
149 }
150
151 #ifdef notyet
152 if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
153 splx(s);
154 return (EPERM);
155 }
156 #endif
157
158 tc_setclock(ts);
159
160 timespecadd(&boottime, &delta, &boottime);
161
162 resettodr();
163 splx(s);
164
165 return (0);
166 }
167
168 int
169 settime(struct proc *p, struct timespec *ts)
170 {
171 return (settime1(p, ts, true));
172 }
173
174 /* ARGSUSED */
175 int
176 sys___clock_gettime50(struct lwp *l,
177 const struct sys___clock_gettime50_args *uap, register_t *retval)
178 {
179 /* {
180 syscallarg(clockid_t) clock_id;
181 syscallarg(struct timespec *) tp;
182 } */
183 int error;
184 struct timespec ats;
185
186 error = clock_gettime1(SCARG(uap, clock_id), &ats);
187 if (error != 0)
188 return error;
189
190 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
191 }
192
193 /* ARGSUSED */
194 int
195 sys___clock_settime50(struct lwp *l,
196 const struct sys___clock_settime50_args *uap, register_t *retval)
197 {
198 /* {
199 syscallarg(clockid_t) clock_id;
200 syscallarg(const struct timespec *) tp;
201 } */
202 int error;
203 struct timespec ats;
204
205 if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
206 return error;
207
208 return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
209 }
210
211
212 int
213 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
214 bool check_kauth)
215 {
216 int error;
217
218 switch (clock_id) {
219 case CLOCK_REALTIME:
220 if ((error = settime1(p, tp, check_kauth)) != 0)
221 return (error);
222 break;
223 case CLOCK_MONOTONIC:
224 return (EINVAL); /* read-only clock */
225 default:
226 return (EINVAL);
227 }
228
229 return 0;
230 }
231
232 int
233 sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
234 register_t *retval)
235 {
236 /* {
237 syscallarg(clockid_t) clock_id;
238 syscallarg(struct timespec *) tp;
239 } */
240 struct timespec ts;
241 int error = 0;
242
243 if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
244 return error;
245
246 if (SCARG(uap, tp))
247 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
248
249 return error;
250 }
251
252 int
253 clock_getres1(clockid_t clock_id, struct timespec *ts)
254 {
255
256 switch (clock_id) {
257 case CLOCK_REALTIME:
258 case CLOCK_MONOTONIC:
259 ts->tv_sec = 0;
260 if (tc_getfrequency() > 1000000000)
261 ts->tv_nsec = 1;
262 else
263 ts->tv_nsec = 1000000000 / tc_getfrequency();
264 break;
265 default:
266 return EINVAL;
267 }
268
269 return 0;
270 }
271
272 /* ARGSUSED */
273 int
274 sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
275 register_t *retval)
276 {
277 /* {
278 syscallarg(struct timespec *) rqtp;
279 syscallarg(struct timespec *) rmtp;
280 } */
281 struct timespec rmt, rqt;
282 int error, error1;
283
284 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
285 if (error)
286 return (error);
287
288 error = nanosleep1(l, CLOCK_MONOTONIC, 0, &rqt,
289 SCARG(uap, rmtp) ? &rmt : NULL);
290 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
291 return error;
292
293 error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
294 return error1 ? error1 : error;
295 }
296
297 /* ARGSUSED */
298 int
299 sys_clock_nanosleep(struct lwp *l, const struct sys_clock_nanosleep_args *uap,
300 register_t *retval)
301 {
302 /* {
303 syscallarg(clockid_t) clock_id;
304 syscallarg(int) flags;
305 syscallarg(struct timespec *) rqtp;
306 syscallarg(struct timespec *) rmtp;
307 } */
308 struct timespec rmt, rqt;
309 int error, error1;
310
311 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
312 if (error)
313 return (error);
314
315 error = nanosleep1(l, SCARG(uap, clock_id), SCARG(uap, flags), &rqt,
316 SCARG(uap, rmtp) ? &rmt : NULL);
317 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
318 return error;
319
320 error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
321 return error1 ? error1 : error;
322 }
323
324 int
325 nanosleep1(struct lwp *l, clockid_t clock_id, int flags, struct timespec *rqt,
326 struct timespec *rmt)
327 {
328 struct timespec rmtstart;
329 int error, timo;
330
331 if ((error = ts2timo(clock_id, flags, rqt, &timo, &rmtstart)) != 0) {
332 if (error == ETIMEDOUT) {
333 error = 0;
334 if (rmt != NULL)
335 rmt->tv_sec = rmt->tv_nsec = 0;
336 }
337 return error;
338 }
339
340 /*
341 * Avoid inadvertently sleeping forever
342 */
343 if (timo == 0)
344 timo = 1;
345 again:
346 error = kpause("nanoslp", true, timo, NULL);
347 if (rmt != NULL || error == 0) {
348 struct timespec rmtend;
349 struct timespec t0;
350 struct timespec *t;
351
352 (void)clock_gettime1(clock_id, &rmtend);
353 t = (rmt != NULL) ? rmt : &t0;
354 if (flags & TIMER_ABSTIME) {
355 timespecsub(rqt, &rmtend, t);
356 } else {
357 timespecsub(&rmtend, &rmtstart, t);
358 timespecsub(rqt, t, t);
359 }
360 if (t->tv_sec < 0)
361 timespecclear(t);
362 if (error == 0) {
363 timo = tstohz(t);
364 if (timo > 0)
365 goto again;
366 }
367 }
368
369 if (error == ERESTART)
370 error = EINTR;
371 if (error == EWOULDBLOCK)
372 error = 0;
373
374 return error;
375 }
376
377 /* ARGSUSED */
378 int
379 sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
380 register_t *retval)
381 {
382 /* {
383 syscallarg(struct timeval *) tp;
384 syscallarg(void *) tzp; really "struct timezone *";
385 } */
386 struct timeval atv;
387 int error = 0;
388 struct timezone tzfake;
389
390 if (SCARG(uap, tp)) {
391 microtime(&atv);
392 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
393 if (error)
394 return (error);
395 }
396 if (SCARG(uap, tzp)) {
397 /*
398 * NetBSD has no kernel notion of time zone, so we just
399 * fake up a timezone struct and return it if demanded.
400 */
401 tzfake.tz_minuteswest = 0;
402 tzfake.tz_dsttime = 0;
403 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
404 }
405 return (error);
406 }
407
408 /* ARGSUSED */
409 int
410 sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
411 register_t *retval)
412 {
413 /* {
414 syscallarg(const struct timeval *) tv;
415 syscallarg(const void *) tzp; really "const struct timezone *";
416 } */
417
418 return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
419 }
420
421 int
422 settimeofday1(const struct timeval *utv, bool userspace,
423 const void *utzp, struct lwp *l, bool check_kauth)
424 {
425 struct timeval atv;
426 struct timespec ts;
427 int error;
428
429 /* Verify all parameters before changing time. */
430
431 /*
432 * NetBSD has no kernel notion of time zone, and only an
433 * obsolete program would try to set it, so we log a warning.
434 */
435 if (utzp)
436 log(LOG_WARNING, "pid %d attempted to set the "
437 "(obsolete) kernel time zone\n", l->l_proc->p_pid);
438
439 if (utv == NULL)
440 return 0;
441
442 if (userspace) {
443 if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
444 return error;
445 utv = &atv;
446 }
447
448 TIMEVAL_TO_TIMESPEC(utv, &ts);
449 return settime1(l->l_proc, &ts, check_kauth);
450 }
451
452 int time_adjusted; /* set if an adjustment is made */
453
454 /* ARGSUSED */
455 int
456 sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
457 register_t *retval)
458 {
459 /* {
460 syscallarg(const struct timeval *) delta;
461 syscallarg(struct timeval *) olddelta;
462 } */
463 int error = 0;
464 struct timeval atv, oldatv;
465
466 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
467 KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
468 return error;
469
470 if (SCARG(uap, delta)) {
471 error = copyin(SCARG(uap, delta), &atv,
472 sizeof(*SCARG(uap, delta)));
473 if (error)
474 return (error);
475 }
476 adjtime1(SCARG(uap, delta) ? &atv : NULL,
477 SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
478 if (SCARG(uap, olddelta))
479 error = copyout(&oldatv, SCARG(uap, olddelta),
480 sizeof(*SCARG(uap, olddelta)));
481 return error;
482 }
483
484 void
485 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
486 {
487 extern int64_t time_adjtime; /* in kern_ntptime.c */
488
489 if (olddelta) {
490 mutex_spin_enter(&timecounter_lock);
491 olddelta->tv_sec = time_adjtime / 1000000;
492 olddelta->tv_usec = time_adjtime % 1000000;
493 if (olddelta->tv_usec < 0) {
494 olddelta->tv_usec += 1000000;
495 olddelta->tv_sec--;
496 }
497 mutex_spin_exit(&timecounter_lock);
498 }
499
500 if (delta) {
501 mutex_spin_enter(&timecounter_lock);
502 time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
503
504 if (time_adjtime) {
505 /* We need to save the system time during shutdown */
506 time_adjusted |= 1;
507 }
508 mutex_spin_exit(&timecounter_lock);
509 }
510 }
511
512 /*
513 * Interval timer support. Both the BSD getitimer() family and the POSIX
514 * timer_*() family of routines are supported.
515 *
516 * All timers are kept in an array pointed to by p_timers, which is
517 * allocated on demand - many processes don't use timers at all. The
518 * first three elements in this array are reserved for the BSD timers:
519 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element
520 * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be
521 * allocated by the timer_create() syscall.
522 *
523 * Realtime timers are kept in the ptimer structure as an absolute
524 * time; virtual time timers are kept as a linked list of deltas.
525 * Virtual time timers are processed in the hardclock() routine of
526 * kern_clock.c. The real time timer is processed by a callout
527 * routine, called from the softclock() routine. Since a callout may
528 * be delayed in real time due to interrupt processing in the system,
529 * it is possible for the real time timeout routine (realtimeexpire,
530 * given below), to be delayed in real time past when it is supposed
531 * to occur. It does not suffice, therefore, to reload the real timer
532 * .it_value from the real time timers .it_interval. Rather, we
533 * compute the next time in absolute time the timer should go off. */
534
535 /* Allocate a POSIX realtime timer. */
536 int
537 sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
538 register_t *retval)
539 {
540 /* {
541 syscallarg(clockid_t) clock_id;
542 syscallarg(struct sigevent *) evp;
543 syscallarg(timer_t *) timerid;
544 } */
545
546 return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
547 SCARG(uap, evp), copyin, l);
548 }
549
550 int
551 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
552 copyin_t fetch_event, struct lwp *l)
553 {
554 int error;
555 timer_t timerid;
556 struct ptimers *pts;
557 struct ptimer *pt;
558 struct proc *p;
559
560 p = l->l_proc;
561
562 if ((u_int)id > CLOCK_MONOTONIC)
563 return (EINVAL);
564
565 if ((pts = p->p_timers) == NULL)
566 pts = timers_alloc(p);
567
568 pt = pool_get(&ptimer_pool, PR_WAITOK);
569 memset(pt, 0, sizeof(*pt));
570 if (evp != NULL) {
571 if (((error =
572 (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
573 ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
574 (pt->pt_ev.sigev_notify > SIGEV_SA)) ||
575 (pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
576 (pt->pt_ev.sigev_signo <= 0 ||
577 pt->pt_ev.sigev_signo >= NSIG))) {
578 pool_put(&ptimer_pool, pt);
579 return (error ? error : EINVAL);
580 }
581 }
582
583 /* Find a free timer slot, skipping those reserved for setitimer(). */
584 mutex_spin_enter(&timer_lock);
585 for (timerid = 3; timerid < TIMER_MAX; timerid++)
586 if (pts->pts_timers[timerid] == NULL)
587 break;
588 if (timerid == TIMER_MAX) {
589 mutex_spin_exit(&timer_lock);
590 pool_put(&ptimer_pool, pt);
591 return EAGAIN;
592 }
593 if (evp == NULL) {
594 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
595 switch (id) {
596 case CLOCK_REALTIME:
597 case CLOCK_MONOTONIC:
598 pt->pt_ev.sigev_signo = SIGALRM;
599 break;
600 case CLOCK_VIRTUAL:
601 pt->pt_ev.sigev_signo = SIGVTALRM;
602 break;
603 case CLOCK_PROF:
604 pt->pt_ev.sigev_signo = SIGPROF;
605 break;
606 }
607 pt->pt_ev.sigev_value.sival_int = timerid;
608 }
609 pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
610 pt->pt_info.ksi_errno = 0;
611 pt->pt_info.ksi_code = 0;
612 pt->pt_info.ksi_pid = p->p_pid;
613 pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
614 pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
615 pt->pt_type = id;
616 pt->pt_proc = p;
617 pt->pt_overruns = 0;
618 pt->pt_poverruns = 0;
619 pt->pt_entry = timerid;
620 pt->pt_queued = false;
621 timespecclear(&pt->pt_time.it_value);
622 if (!CLOCK_VIRTUAL_P(id))
623 callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
624 else
625 pt->pt_active = 0;
626
627 pts->pts_timers[timerid] = pt;
628 mutex_spin_exit(&timer_lock);
629
630 return copyout(&timerid, tid, sizeof(timerid));
631 }
632
633 /* Delete a POSIX realtime timer */
634 int
635 sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
636 register_t *retval)
637 {
638 /* {
639 syscallarg(timer_t) timerid;
640 } */
641 struct proc *p = l->l_proc;
642 timer_t timerid;
643 struct ptimers *pts;
644 struct ptimer *pt, *ptn;
645
646 timerid = SCARG(uap, timerid);
647 pts = p->p_timers;
648
649 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
650 return (EINVAL);
651
652 mutex_spin_enter(&timer_lock);
653 if ((pt = pts->pts_timers[timerid]) == NULL) {
654 mutex_spin_exit(&timer_lock);
655 return (EINVAL);
656 }
657 if (CLOCK_VIRTUAL_P(pt->pt_type)) {
658 if (pt->pt_active) {
659 ptn = LIST_NEXT(pt, pt_list);
660 LIST_REMOVE(pt, pt_list);
661 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
662 timespecadd(&pt->pt_time.it_value,
663 &ptn->pt_time.it_value,
664 &ptn->pt_time.it_value);
665 pt->pt_active = 0;
666 }
667 }
668 itimerfree(pts, timerid);
669
670 return (0);
671 }
672
673 /*
674 * Set up the given timer. The value in pt->pt_time.it_value is taken
675 * to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC timers and
676 * a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
677 */
678 void
679 timer_settime(struct ptimer *pt)
680 {
681 struct ptimer *ptn, *pptn;
682 struct ptlist *ptl;
683
684 KASSERT(mutex_owned(&timer_lock));
685
686 if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
687 callout_halt(&pt->pt_ch, &timer_lock);
688 if (timespecisset(&pt->pt_time.it_value)) {
689 /*
690 * Don't need to check tshzto() return value, here.
691 * callout_reset() does it for us.
692 */
693 callout_reset(&pt->pt_ch,
694 pt->pt_type == CLOCK_MONOTONIC ?
695 tshztoup(&pt->pt_time.it_value) :
696 tshzto(&pt->pt_time.it_value),
697 realtimerexpire, pt);
698 }
699 } else {
700 if (pt->pt_active) {
701 ptn = LIST_NEXT(pt, pt_list);
702 LIST_REMOVE(pt, pt_list);
703 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
704 timespecadd(&pt->pt_time.it_value,
705 &ptn->pt_time.it_value,
706 &ptn->pt_time.it_value);
707 }
708 if (timespecisset(&pt->pt_time.it_value)) {
709 if (pt->pt_type == CLOCK_VIRTUAL)
710 ptl = &pt->pt_proc->p_timers->pts_virtual;
711 else
712 ptl = &pt->pt_proc->p_timers->pts_prof;
713
714 for (ptn = LIST_FIRST(ptl), pptn = NULL;
715 ptn && timespeccmp(&pt->pt_time.it_value,
716 &ptn->pt_time.it_value, >);
717 pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
718 timespecsub(&pt->pt_time.it_value,
719 &ptn->pt_time.it_value,
720 &pt->pt_time.it_value);
721
722 if (pptn)
723 LIST_INSERT_AFTER(pptn, pt, pt_list);
724 else
725 LIST_INSERT_HEAD(ptl, pt, pt_list);
726
727 for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
728 timespecsub(&ptn->pt_time.it_value,
729 &pt->pt_time.it_value,
730 &ptn->pt_time.it_value);
731
732 pt->pt_active = 1;
733 } else
734 pt->pt_active = 0;
735 }
736 }
737
738 void
739 timer_gettime(struct ptimer *pt, struct itimerspec *aits)
740 {
741 struct timespec now;
742 struct ptimer *ptn;
743
744 KASSERT(mutex_owned(&timer_lock));
745
746 *aits = pt->pt_time;
747 if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
748 /*
749 * Convert from absolute to relative time in .it_value
750 * part of real time timer. If time for real time
751 * timer has passed return 0, else return difference
752 * between current time and time for the timer to go
753 * off.
754 */
755 if (timespecisset(&aits->it_value)) {
756 if (pt->pt_type == CLOCK_REALTIME) {
757 getnanotime(&now);
758 } else { /* CLOCK_MONOTONIC */
759 getnanouptime(&now);
760 }
761 if (timespeccmp(&aits->it_value, &now, <))
762 timespecclear(&aits->it_value);
763 else
764 timespecsub(&aits->it_value, &now,
765 &aits->it_value);
766 }
767 } else if (pt->pt_active) {
768 if (pt->pt_type == CLOCK_VIRTUAL)
769 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
770 else
771 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
772 for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
773 timespecadd(&aits->it_value,
774 &ptn->pt_time.it_value, &aits->it_value);
775 KASSERT(ptn != NULL); /* pt should be findable on the list */
776 } else
777 timespecclear(&aits->it_value);
778 }
779
780
781
782 /* Set and arm a POSIX realtime timer */
783 int
784 sys___timer_settime50(struct lwp *l,
785 const struct sys___timer_settime50_args *uap,
786 register_t *retval)
787 {
788 /* {
789 syscallarg(timer_t) timerid;
790 syscallarg(int) flags;
791 syscallarg(const struct itimerspec *) value;
792 syscallarg(struct itimerspec *) ovalue;
793 } */
794 int error;
795 struct itimerspec value, ovalue, *ovp = NULL;
796
797 if ((error = copyin(SCARG(uap, value), &value,
798 sizeof(struct itimerspec))) != 0)
799 return (error);
800
801 if (SCARG(uap, ovalue))
802 ovp = &ovalue;
803
804 if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
805 SCARG(uap, flags), l->l_proc)) != 0)
806 return error;
807
808 if (ovp)
809 return copyout(&ovalue, SCARG(uap, ovalue),
810 sizeof(struct itimerspec));
811 return 0;
812 }
813
814 int
815 dotimer_settime(int timerid, struct itimerspec *value,
816 struct itimerspec *ovalue, int flags, struct proc *p)
817 {
818 struct timespec now;
819 struct itimerspec val, oval;
820 struct ptimers *pts;
821 struct ptimer *pt;
822 int error;
823
824 pts = p->p_timers;
825
826 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
827 return EINVAL;
828 val = *value;
829 if ((error = itimespecfix(&val.it_value)) != 0 ||
830 (error = itimespecfix(&val.it_interval)) != 0)
831 return error;
832
833 mutex_spin_enter(&timer_lock);
834 if ((pt = pts->pts_timers[timerid]) == NULL) {
835 mutex_spin_exit(&timer_lock);
836 return EINVAL;
837 }
838
839 oval = pt->pt_time;
840 pt->pt_time = val;
841
842 /*
843 * If we've been passed a relative time for a realtime timer,
844 * convert it to absolute; if an absolute time for a virtual
845 * timer, convert it to relative and make sure we don't set it
846 * to zero, which would cancel the timer, or let it go
847 * negative, which would confuse the comparison tests.
848 */
849 if (timespecisset(&pt->pt_time.it_value)) {
850 if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
851 if ((flags & TIMER_ABSTIME) == 0) {
852 if (pt->pt_type == CLOCK_REALTIME) {
853 getnanotime(&now);
854 } else { /* CLOCK_MONOTONIC */
855 getnanouptime(&now);
856 }
857 timespecadd(&pt->pt_time.it_value, &now,
858 &pt->pt_time.it_value);
859 }
860 } else {
861 if ((flags & TIMER_ABSTIME) != 0) {
862 getnanotime(&now);
863 timespecsub(&pt->pt_time.it_value, &now,
864 &pt->pt_time.it_value);
865 if (!timespecisset(&pt->pt_time.it_value) ||
866 pt->pt_time.it_value.tv_sec < 0) {
867 pt->pt_time.it_value.tv_sec = 0;
868 pt->pt_time.it_value.tv_nsec = 1;
869 }
870 }
871 }
872 }
873
874 timer_settime(pt);
875 mutex_spin_exit(&timer_lock);
876
877 if (ovalue)
878 *ovalue = oval;
879
880 return (0);
881 }
882
883 /* Return the time remaining until a POSIX timer fires. */
884 int
885 sys___timer_gettime50(struct lwp *l,
886 const struct sys___timer_gettime50_args *uap, register_t *retval)
887 {
888 /* {
889 syscallarg(timer_t) timerid;
890 syscallarg(struct itimerspec *) value;
891 } */
892 struct itimerspec its;
893 int error;
894
895 if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
896 &its)) != 0)
897 return error;
898
899 return copyout(&its, SCARG(uap, value), sizeof(its));
900 }
901
902 int
903 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
904 {
905 struct ptimer *pt;
906 struct ptimers *pts;
907
908 pts = p->p_timers;
909 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
910 return (EINVAL);
911 mutex_spin_enter(&timer_lock);
912 if ((pt = pts->pts_timers[timerid]) == NULL) {
913 mutex_spin_exit(&timer_lock);
914 return (EINVAL);
915 }
916 timer_gettime(pt, its);
917 mutex_spin_exit(&timer_lock);
918
919 return 0;
920 }
921
922 /*
923 * Return the count of the number of times a periodic timer expired
924 * while a notification was already pending. The counter is reset when
925 * a timer expires and a notification can be posted.
926 */
927 int
928 sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
929 register_t *retval)
930 {
931 /* {
932 syscallarg(timer_t) timerid;
933 } */
934 struct proc *p = l->l_proc;
935 struct ptimers *pts;
936 int timerid;
937 struct ptimer *pt;
938
939 timerid = SCARG(uap, timerid);
940
941 pts = p->p_timers;
942 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
943 return (EINVAL);
944 mutex_spin_enter(&timer_lock);
945 if ((pt = pts->pts_timers[timerid]) == NULL) {
946 mutex_spin_exit(&timer_lock);
947 return (EINVAL);
948 }
949 *retval = pt->pt_poverruns;
950 mutex_spin_exit(&timer_lock);
951
952 return (0);
953 }
954
955 /*
956 * Real interval timer expired:
957 * send process whose timer expired an alarm signal.
958 * If time is not set up to reload, then just return.
959 * Else compute next time timer should go off which is > current time.
960 * This is where delay in processing this timeout causes multiple
961 * SIGALRM calls to be compressed into one.
962 */
963 void
964 realtimerexpire(void *arg)
965 {
966 uint64_t last_val, next_val, interval, now_ns;
967 struct timespec now, next;
968 struct ptimer *pt;
969 int backwards;
970
971 pt = arg;
972
973 mutex_spin_enter(&timer_lock);
974 itimerfire(pt);
975
976 if (!timespecisset(&pt->pt_time.it_interval)) {
977 timespecclear(&pt->pt_time.it_value);
978 mutex_spin_exit(&timer_lock);
979 return;
980 }
981
982 if (pt->pt_type == CLOCK_MONOTONIC) {
983 getnanouptime(&now);
984 } else {
985 getnanotime(&now);
986 }
987 backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
988 timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
989 /* Handle the easy case of non-overflown timers first. */
990 if (!backwards && timespeccmp(&next, &now, >)) {
991 pt->pt_time.it_value = next;
992 } else {
993 now_ns = timespec2ns(&now);
994 last_val = timespec2ns(&pt->pt_time.it_value);
995 interval = timespec2ns(&pt->pt_time.it_interval);
996
997 next_val = now_ns +
998 (now_ns - last_val + interval - 1) % interval;
999
1000 if (backwards)
1001 next_val += interval;
1002 else
1003 pt->pt_overruns += (now_ns - last_val) / interval;
1004
1005 pt->pt_time.it_value.tv_sec = next_val / 1000000000;
1006 pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
1007 }
1008
1009 /*
1010 * Don't need to check tshzto() return value, here.
1011 * callout_reset() does it for us.
1012 */
1013 callout_reset(&pt->pt_ch, pt->pt_type == CLOCK_MONOTONIC ?
1014 tshztoup(&pt->pt_time.it_value) : tshzto(&pt->pt_time.it_value),
1015 realtimerexpire, pt);
1016 mutex_spin_exit(&timer_lock);
1017 }
1018
1019 /* BSD routine to get the value of an interval timer. */
1020 /* ARGSUSED */
1021 int
1022 sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
1023 register_t *retval)
1024 {
1025 /* {
1026 syscallarg(int) which;
1027 syscallarg(struct itimerval *) itv;
1028 } */
1029 struct proc *p = l->l_proc;
1030 struct itimerval aitv;
1031 int error;
1032
1033 error = dogetitimer(p, SCARG(uap, which), &aitv);
1034 if (error)
1035 return error;
1036 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1037 }
1038
1039 int
1040 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1041 {
1042 struct ptimers *pts;
1043 struct ptimer *pt;
1044 struct itimerspec its;
1045
1046 if ((u_int)which > ITIMER_MONOTONIC)
1047 return (EINVAL);
1048
1049 mutex_spin_enter(&timer_lock);
1050 pts = p->p_timers;
1051 if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
1052 timerclear(&itvp->it_value);
1053 timerclear(&itvp->it_interval);
1054 } else {
1055 timer_gettime(pt, &its);
1056 TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
1057 TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
1058 }
1059 mutex_spin_exit(&timer_lock);
1060
1061 return 0;
1062 }
1063
1064 /* BSD routine to set/arm an interval timer. */
1065 /* ARGSUSED */
1066 int
1067 sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
1068 register_t *retval)
1069 {
1070 /* {
1071 syscallarg(int) which;
1072 syscallarg(const struct itimerval *) itv;
1073 syscallarg(struct itimerval *) oitv;
1074 } */
1075 struct proc *p = l->l_proc;
1076 int which = SCARG(uap, which);
1077 struct sys___getitimer50_args getargs;
1078 const struct itimerval *itvp;
1079 struct itimerval aitv;
1080 int error;
1081
1082 if ((u_int)which > ITIMER_MONOTONIC)
1083 return (EINVAL);
1084 itvp = SCARG(uap, itv);
1085 if (itvp &&
1086 (error = copyin(itvp, &aitv, sizeof(struct itimerval))) != 0)
1087 return (error);
1088 if (SCARG(uap, oitv) != NULL) {
1089 SCARG(&getargs, which) = which;
1090 SCARG(&getargs, itv) = SCARG(uap, oitv);
1091 if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
1092 return (error);
1093 }
1094 if (itvp == 0)
1095 return (0);
1096
1097 return dosetitimer(p, which, &aitv);
1098 }
1099
1100 int
1101 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1102 {
1103 struct timespec now;
1104 struct ptimers *pts;
1105 struct ptimer *pt, *spare;
1106
1107 KASSERT((u_int)which <= CLOCK_MONOTONIC);
1108 if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1109 return (EINVAL);
1110
1111 /*
1112 * Don't bother allocating data structures if the process just
1113 * wants to clear the timer.
1114 */
1115 spare = NULL;
1116 pts = p->p_timers;
1117 retry:
1118 if (!timerisset(&itvp->it_value) && (pts == NULL ||
1119 pts->pts_timers[which] == NULL))
1120 return (0);
1121 if (pts == NULL)
1122 pts = timers_alloc(p);
1123 mutex_spin_enter(&timer_lock);
1124 pt = pts->pts_timers[which];
1125 if (pt == NULL) {
1126 if (spare == NULL) {
1127 mutex_spin_exit(&timer_lock);
1128 spare = pool_get(&ptimer_pool, PR_WAITOK);
1129 memset(spare, 0, sizeof(*spare));
1130 goto retry;
1131 }
1132 pt = spare;
1133 spare = NULL;
1134 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1135 pt->pt_ev.sigev_value.sival_int = which;
1136 pt->pt_overruns = 0;
1137 pt->pt_proc = p;
1138 pt->pt_type = which;
1139 pt->pt_entry = which;
1140 pt->pt_queued = false;
1141 if (pt->pt_type == CLOCK_REALTIME)
1142 callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
1143 else
1144 pt->pt_active = 0;
1145
1146 switch (which) {
1147 case ITIMER_REAL:
1148 case ITIMER_MONOTONIC:
1149 pt->pt_ev.sigev_signo = SIGALRM;
1150 break;
1151 case ITIMER_VIRTUAL:
1152 pt->pt_ev.sigev_signo = SIGVTALRM;
1153 break;
1154 case ITIMER_PROF:
1155 pt->pt_ev.sigev_signo = SIGPROF;
1156 break;
1157 }
1158 pts->pts_timers[which] = pt;
1159 }
1160
1161 TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
1162 TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
1163
1164 if (timespecisset(&pt->pt_time.it_value)) {
1165 /* Convert to absolute time */
1166 /* XXX need to wrap in splclock for timecounters case? */
1167 switch (which) {
1168 case ITIMER_REAL:
1169 getnanotime(&now);
1170 timespecadd(&pt->pt_time.it_value, &now,
1171 &pt->pt_time.it_value);
1172 break;
1173 case ITIMER_MONOTONIC:
1174 getnanouptime(&now);
1175 timespecadd(&pt->pt_time.it_value, &now,
1176 &pt->pt_time.it_value);
1177 break;
1178 default:
1179 break;
1180 }
1181 }
1182 timer_settime(pt);
1183 mutex_spin_exit(&timer_lock);
1184 if (spare != NULL)
1185 pool_put(&ptimer_pool, spare);
1186
1187 return (0);
1188 }
1189
1190 /* Utility routines to manage the array of pointers to timers. */
1191 struct ptimers *
1192 timers_alloc(struct proc *p)
1193 {
1194 struct ptimers *pts;
1195 int i;
1196
1197 pts = pool_get(&ptimers_pool, PR_WAITOK);
1198 LIST_INIT(&pts->pts_virtual);
1199 LIST_INIT(&pts->pts_prof);
1200 for (i = 0; i < TIMER_MAX; i++)
1201 pts->pts_timers[i] = NULL;
1202 pts->pts_fired = 0;
1203 mutex_spin_enter(&timer_lock);
1204 if (p->p_timers == NULL) {
1205 p->p_timers = pts;
1206 mutex_spin_exit(&timer_lock);
1207 return pts;
1208 }
1209 mutex_spin_exit(&timer_lock);
1210 pool_put(&ptimers_pool, pts);
1211 return p->p_timers;
1212 }
1213
1214 /*
1215 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1216 * then clean up all timers and free all the data structures. If
1217 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1218 * by timer_create(), not the BSD setitimer() timers, and only free the
1219 * structure if none of those remain.
1220 */
1221 void
1222 timers_free(struct proc *p, int which)
1223 {
1224 struct ptimers *pts;
1225 struct ptimer *ptn;
1226 struct timespec ts;
1227 int i;
1228
1229 if (p->p_timers == NULL)
1230 return;
1231
1232 pts = p->p_timers;
1233 mutex_spin_enter(&timer_lock);
1234 if (which == TIMERS_ALL) {
1235 p->p_timers = NULL;
1236 i = 0;
1237 } else {
1238 timespecclear(&ts);
1239 for (ptn = LIST_FIRST(&pts->pts_virtual);
1240 ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1241 ptn = LIST_NEXT(ptn, pt_list)) {
1242 KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1243 timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1244 }
1245 LIST_FIRST(&pts->pts_virtual) = NULL;
1246 if (ptn) {
1247 KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1248 timespecadd(&ts, &ptn->pt_time.it_value,
1249 &ptn->pt_time.it_value);
1250 LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
1251 }
1252 timespecclear(&ts);
1253 for (ptn = LIST_FIRST(&pts->pts_prof);
1254 ptn && ptn != pts->pts_timers[ITIMER_PROF];
1255 ptn = LIST_NEXT(ptn, pt_list)) {
1256 KASSERT(ptn->pt_type == CLOCK_PROF);
1257 timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1258 }
1259 LIST_FIRST(&pts->pts_prof) = NULL;
1260 if (ptn) {
1261 KASSERT(ptn->pt_type == CLOCK_PROF);
1262 timespecadd(&ts, &ptn->pt_time.it_value,
1263 &ptn->pt_time.it_value);
1264 LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
1265 }
1266 i = 3;
1267 }
1268 for ( ; i < TIMER_MAX; i++) {
1269 if (pts->pts_timers[i] != NULL) {
1270 itimerfree(pts, i);
1271 mutex_spin_enter(&timer_lock);
1272 }
1273 }
1274 if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
1275 pts->pts_timers[2] == NULL) {
1276 p->p_timers = NULL;
1277 mutex_spin_exit(&timer_lock);
1278 pool_put(&ptimers_pool, pts);
1279 } else
1280 mutex_spin_exit(&timer_lock);
1281 }
1282
1283 static void
1284 itimerfree(struct ptimers *pts, int index)
1285 {
1286 struct ptimer *pt;
1287
1288 KASSERT(mutex_owned(&timer_lock));
1289
1290 pt = pts->pts_timers[index];
1291 pts->pts_timers[index] = NULL;
1292 if (!CLOCK_VIRTUAL_P(pt->pt_type))
1293 callout_halt(&pt->pt_ch, &timer_lock);
1294 if (pt->pt_queued)
1295 TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1296 mutex_spin_exit(&timer_lock);
1297 if (!CLOCK_VIRTUAL_P(pt->pt_type))
1298 callout_destroy(&pt->pt_ch);
1299 pool_put(&ptimer_pool, pt);
1300 }
1301
1302 /*
1303 * Decrement an interval timer by a specified number
1304 * of nanoseconds, which must be less than a second,
1305 * i.e. < 1000000000. If the timer expires, then reload
1306 * it. In this case, carry over (nsec - old value) to
1307 * reduce the value reloaded into the timer so that
1308 * the timer does not drift. This routine assumes
1309 * that it is called in a context where the timers
1310 * on which it is operating cannot change in value.
1311 */
1312 static int
1313 itimerdecr(struct ptimer *pt, int nsec)
1314 {
1315 struct itimerspec *itp;
1316
1317 KASSERT(mutex_owned(&timer_lock));
1318 KASSERT(CLOCK_VIRTUAL_P(pt->pt_type));
1319
1320 itp = &pt->pt_time;
1321 if (itp->it_value.tv_nsec < nsec) {
1322 if (itp->it_value.tv_sec == 0) {
1323 /* expired, and already in next interval */
1324 nsec -= itp->it_value.tv_nsec;
1325 goto expire;
1326 }
1327 itp->it_value.tv_nsec += 1000000000;
1328 itp->it_value.tv_sec--;
1329 }
1330 itp->it_value.tv_nsec -= nsec;
1331 nsec = 0;
1332 if (timespecisset(&itp->it_value))
1333 return (1);
1334 /* expired, exactly at end of interval */
1335 expire:
1336 if (timespecisset(&itp->it_interval)) {
1337 itp->it_value = itp->it_interval;
1338 itp->it_value.tv_nsec -= nsec;
1339 if (itp->it_value.tv_nsec < 0) {
1340 itp->it_value.tv_nsec += 1000000000;
1341 itp->it_value.tv_sec--;
1342 }
1343 timer_settime(pt);
1344 } else
1345 itp->it_value.tv_nsec = 0; /* sec is already 0 */
1346 return (0);
1347 }
1348
1349 static void
1350 itimerfire(struct ptimer *pt)
1351 {
1352
1353 KASSERT(mutex_owned(&timer_lock));
1354
1355 /*
1356 * XXX Can overrun, but we don't do signal queueing yet, anyway.
1357 * XXX Relying on the clock interrupt is stupid.
1358 */
1359 if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL || pt->pt_queued) {
1360 return;
1361 }
1362 TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
1363 pt->pt_queued = true;
1364 softint_schedule(timer_sih);
1365 }
1366
1367 void
1368 timer_tick(lwp_t *l, bool user)
1369 {
1370 struct ptimers *pts;
1371 struct ptimer *pt;
1372 proc_t *p;
1373
1374 p = l->l_proc;
1375 if (p->p_timers == NULL)
1376 return;
1377
1378 mutex_spin_enter(&timer_lock);
1379 if ((pts = l->l_proc->p_timers) != NULL) {
1380 /*
1381 * Run current process's virtual and profile time, as needed.
1382 */
1383 if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
1384 if (itimerdecr(pt, tick * 1000) == 0)
1385 itimerfire(pt);
1386 if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
1387 if (itimerdecr(pt, tick * 1000) == 0)
1388 itimerfire(pt);
1389 }
1390 mutex_spin_exit(&timer_lock);
1391 }
1392
1393 static void
1394 timer_intr(void *cookie)
1395 {
1396 ksiginfo_t ksi;
1397 struct ptimer *pt;
1398 proc_t *p;
1399
1400 mutex_enter(proc_lock);
1401 mutex_spin_enter(&timer_lock);
1402 while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
1403 TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1404 KASSERT(pt->pt_queued);
1405 pt->pt_queued = false;
1406
1407 if (pt->pt_proc->p_timers == NULL) {
1408 /* Process is dying. */
1409 continue;
1410 }
1411 p = pt->pt_proc;
1412 if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
1413 continue;
1414 }
1415 if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
1416 pt->pt_overruns++;
1417 continue;
1418 }
1419
1420 KSI_INIT(&ksi);
1421 ksi.ksi_signo = pt->pt_ev.sigev_signo;
1422 ksi.ksi_code = SI_TIMER;
1423 ksi.ksi_value = pt->pt_ev.sigev_value;
1424 pt->pt_poverruns = pt->pt_overruns;
1425 pt->pt_overruns = 0;
1426 mutex_spin_exit(&timer_lock);
1427 kpsignal(p, &ksi, NULL);
1428 mutex_spin_enter(&timer_lock);
1429 }
1430 mutex_spin_exit(&timer_lock);
1431 mutex_exit(proc_lock);
1432 }
1433
1434 /*
1435 * Check if the time will wrap if set to ts.
1436 *
1437 * ts - timespec describing the new time
1438 * delta - the delta between the current time and ts
1439 */
1440 bool
1441 time_wraps(struct timespec *ts, struct timespec *delta)
1442 {
1443
1444 /*
1445 * Don't allow the time to be set forward so far it
1446 * will wrap and become negative, thus allowing an
1447 * attacker to bypass the next check below. The
1448 * cutoff is 1 year before rollover occurs, so even
1449 * if the attacker uses adjtime(2) to move the time
1450 * past the cutoff, it will take a very long time
1451 * to get to the wrap point.
1452 */
1453 if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
1454 (delta->tv_sec < 0 || delta->tv_nsec < 0))
1455 return true;
1456
1457 return false;
1458 }
1459