kern_time.c revision 1.179.12.6 1 /* $NetBSD: kern_time.c,v 1.179.12.6 2019/02/24 10:55:24 martin Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1986, 1989, 1993
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
61 */
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.179.12.6 2019/02/24 10:55:24 martin Exp $");
65
66 #include <sys/param.h>
67 #include <sys/resourcevar.h>
68 #include <sys/kernel.h>
69 #include <sys/systm.h>
70 #include <sys/proc.h>
71 #include <sys/vnode.h>
72 #include <sys/signalvar.h>
73 #include <sys/syslog.h>
74 #include <sys/timetc.h>
75 #include <sys/timex.h>
76 #include <sys/kauth.h>
77 #include <sys/mount.h>
78 #include <sys/syscallargs.h>
79 #include <sys/cpu.h>
80
81 static void timer_intr(void *);
82 static void itimerfire(struct ptimer *);
83 static void itimerfree(struct ptimers *, int);
84
85 kmutex_t timer_lock;
86
87 static void *timer_sih;
88 static TAILQ_HEAD(, ptimer) timer_queue;
89
90 struct pool ptimer_pool, ptimers_pool;
91
92 #define CLOCK_VIRTUAL_P(clockid) \
93 ((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)
94
95 CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
96 CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
97 CTASSERT(ITIMER_PROF == CLOCK_PROF);
98 CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC);
99
100 /*
101 * Initialize timekeeping.
102 */
103 void
104 time_init(void)
105 {
106
107 pool_init(&ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
108 &pool_allocator_nointr, IPL_NONE);
109 pool_init(&ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
110 &pool_allocator_nointr, IPL_NONE);
111 }
112
113 void
114 time_init2(void)
115 {
116
117 TAILQ_INIT(&timer_queue);
118 mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
119 timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
120 timer_intr, NULL);
121 }
122
123 /* Time of day and interval timer support.
124 *
125 * These routines provide the kernel entry points to get and set
126 * the time-of-day and per-process interval timers. Subroutines
127 * here provide support for adding and subtracting timeval structures
128 * and decrementing interval timers, optionally reloading the interval
129 * timers when they expire.
130 */
131
132 /* This function is used by clock_settime and settimeofday */
133 static int
134 settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
135 {
136 struct timespec delta, now;
137 int s;
138
139 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
140 s = splclock();
141 nanotime(&now);
142 timespecsub(ts, &now, &delta);
143
144 if (check_kauth && kauth_authorize_system(kauth_cred_get(),
145 KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
146 &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
147 splx(s);
148 return (EPERM);
149 }
150
151 #ifdef notyet
152 if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
153 splx(s);
154 return (EPERM);
155 }
156 #endif
157
158 tc_setclock(ts);
159
160 timespecadd(&boottime, &delta, &boottime);
161
162 resettodr();
163 splx(s);
164
165 return (0);
166 }
167
168 int
169 settime(struct proc *p, struct timespec *ts)
170 {
171 return (settime1(p, ts, true));
172 }
173
174 /* ARGSUSED */
175 int
176 sys___clock_gettime50(struct lwp *l,
177 const struct sys___clock_gettime50_args *uap, register_t *retval)
178 {
179 /* {
180 syscallarg(clockid_t) clock_id;
181 syscallarg(struct timespec *) tp;
182 } */
183 int error;
184 struct timespec ats;
185
186 error = clock_gettime1(SCARG(uap, clock_id), &ats);
187 if (error != 0)
188 return error;
189
190 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
191 }
192
193 /* ARGSUSED */
194 int
195 sys___clock_settime50(struct lwp *l,
196 const struct sys___clock_settime50_args *uap, register_t *retval)
197 {
198 /* {
199 syscallarg(clockid_t) clock_id;
200 syscallarg(const struct timespec *) tp;
201 } */
202 int error;
203 struct timespec ats;
204
205 if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
206 return error;
207
208 return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
209 }
210
211
212 int
213 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
214 bool check_kauth)
215 {
216 int error;
217
218 switch (clock_id) {
219 case CLOCK_REALTIME:
220 if ((error = settime1(p, tp, check_kauth)) != 0)
221 return (error);
222 break;
223 case CLOCK_MONOTONIC:
224 return (EINVAL); /* read-only clock */
225 default:
226 return (EINVAL);
227 }
228
229 return 0;
230 }
231
232 int
233 sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
234 register_t *retval)
235 {
236 /* {
237 syscallarg(clockid_t) clock_id;
238 syscallarg(struct timespec *) tp;
239 } */
240 struct timespec ts;
241 int error = 0;
242
243 if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
244 return error;
245
246 if (SCARG(uap, tp))
247 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
248
249 return error;
250 }
251
252 int
253 clock_getres1(clockid_t clock_id, struct timespec *ts)
254 {
255
256 switch (clock_id) {
257 case CLOCK_REALTIME:
258 case CLOCK_MONOTONIC:
259 ts->tv_sec = 0;
260 if (tc_getfrequency() > 1000000000)
261 ts->tv_nsec = 1;
262 else
263 ts->tv_nsec = 1000000000 / tc_getfrequency();
264 break;
265 default:
266 return EINVAL;
267 }
268
269 return 0;
270 }
271
272 /* ARGSUSED */
273 int
274 sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
275 register_t *retval)
276 {
277 /* {
278 syscallarg(struct timespec *) rqtp;
279 syscallarg(struct timespec *) rmtp;
280 } */
281 struct timespec rmt, rqt;
282 int error, error1;
283
284 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
285 if (error)
286 return (error);
287
288 error = nanosleep1(l, CLOCK_MONOTONIC, 0, &rqt,
289 SCARG(uap, rmtp) ? &rmt : NULL);
290 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
291 return error;
292
293 error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
294 return error1 ? error1 : error;
295 }
296
297 /* ARGSUSED */
298 int
299 sys_clock_nanosleep(struct lwp *l, const struct sys_clock_nanosleep_args *uap,
300 register_t *retval)
301 {
302 /* {
303 syscallarg(clockid_t) clock_id;
304 syscallarg(int) flags;
305 syscallarg(struct timespec *) rqtp;
306 syscallarg(struct timespec *) rmtp;
307 } */
308 struct timespec rmt, rqt;
309 int error, error1;
310
311 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
312 if (error)
313 return (error);
314
315 error = nanosleep1(l, SCARG(uap, clock_id), SCARG(uap, flags), &rqt,
316 SCARG(uap, rmtp) ? &rmt : NULL);
317 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
318 return error;
319
320 error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
321 return error1 ? error1 : error;
322 }
323
324 int
325 nanosleep1(struct lwp *l, clockid_t clock_id, int flags, struct timespec *rqt,
326 struct timespec *rmt)
327 {
328 struct timespec rmtstart;
329 int error, timo;
330
331 if ((error = ts2timo(clock_id, flags, rqt, &timo, &rmtstart)) != 0) {
332 if (error == ETIMEDOUT) {
333 error = 0;
334 if (rmt != NULL)
335 rmt->tv_sec = rmt->tv_nsec = 0;
336 }
337 return error;
338 }
339
340 /*
341 * Avoid inadvertently sleeping forever
342 */
343 if (timo == 0)
344 timo = 1;
345 again:
346 error = kpause("nanoslp", true, timo, NULL);
347 if (rmt != NULL || error == 0) {
348 struct timespec rmtend;
349 struct timespec t0;
350 struct timespec *t;
351
352 (void)clock_gettime1(clock_id, &rmtend);
353 t = (rmt != NULL) ? rmt : &t0;
354 if (flags & TIMER_ABSTIME) {
355 timespecsub(rqt, &rmtend, t);
356 } else {
357 timespecsub(&rmtend, &rmtstart, t);
358 timespecsub(rqt, t, t);
359 }
360 if (t->tv_sec < 0)
361 timespecclear(t);
362 if (error == 0) {
363 timo = tstohz(t);
364 if (timo > 0)
365 goto again;
366 }
367 }
368
369 if (error == ERESTART)
370 error = EINTR;
371 if (error == EWOULDBLOCK)
372 error = 0;
373
374 return error;
375 }
376
377 /* ARGSUSED */
378 int
379 sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
380 register_t *retval)
381 {
382 /* {
383 syscallarg(struct timeval *) tp;
384 syscallarg(void *) tzp; really "struct timezone *";
385 } */
386 struct timeval atv;
387 int error = 0;
388 struct timezone tzfake;
389
390 if (SCARG(uap, tp)) {
391 memset(&atv, 0, sizeof(atv));
392 microtime(&atv);
393 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
394 if (error)
395 return (error);
396 }
397 if (SCARG(uap, tzp)) {
398 /*
399 * NetBSD has no kernel notion of time zone, so we just
400 * fake up a timezone struct and return it if demanded.
401 */
402 tzfake.tz_minuteswest = 0;
403 tzfake.tz_dsttime = 0;
404 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
405 }
406 return (error);
407 }
408
409 /* ARGSUSED */
410 int
411 sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
412 register_t *retval)
413 {
414 /* {
415 syscallarg(const struct timeval *) tv;
416 syscallarg(const void *) tzp; really "const struct timezone *";
417 } */
418
419 return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
420 }
421
422 int
423 settimeofday1(const struct timeval *utv, bool userspace,
424 const void *utzp, struct lwp *l, bool check_kauth)
425 {
426 struct timeval atv;
427 struct timespec ts;
428 int error;
429
430 /* Verify all parameters before changing time. */
431
432 /*
433 * NetBSD has no kernel notion of time zone, and only an
434 * obsolete program would try to set it, so we log a warning.
435 */
436 if (utzp)
437 log(LOG_WARNING, "pid %d attempted to set the "
438 "(obsolete) kernel time zone\n", l->l_proc->p_pid);
439
440 if (utv == NULL)
441 return 0;
442
443 if (userspace) {
444 if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
445 return error;
446 utv = &atv;
447 }
448
449 TIMEVAL_TO_TIMESPEC(utv, &ts);
450 return settime1(l->l_proc, &ts, check_kauth);
451 }
452
453 int time_adjusted; /* set if an adjustment is made */
454
455 /* ARGSUSED */
456 int
457 sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
458 register_t *retval)
459 {
460 /* {
461 syscallarg(const struct timeval *) delta;
462 syscallarg(struct timeval *) olddelta;
463 } */
464 int error = 0;
465 struct timeval atv, oldatv;
466
467 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
468 KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
469 return error;
470
471 if (SCARG(uap, delta)) {
472 error = copyin(SCARG(uap, delta), &atv,
473 sizeof(*SCARG(uap, delta)));
474 if (error)
475 return (error);
476 }
477 adjtime1(SCARG(uap, delta) ? &atv : NULL,
478 SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
479 if (SCARG(uap, olddelta))
480 error = copyout(&oldatv, SCARG(uap, olddelta),
481 sizeof(*SCARG(uap, olddelta)));
482 return error;
483 }
484
485 void
486 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
487 {
488 extern int64_t time_adjtime; /* in kern_ntptime.c */
489
490 if (olddelta) {
491 memset(olddelta, 0, sizeof(*olddelta));
492 mutex_spin_enter(&timecounter_lock);
493 olddelta->tv_sec = time_adjtime / 1000000;
494 olddelta->tv_usec = time_adjtime % 1000000;
495 if (olddelta->tv_usec < 0) {
496 olddelta->tv_usec += 1000000;
497 olddelta->tv_sec--;
498 }
499 mutex_spin_exit(&timecounter_lock);
500 }
501
502 if (delta) {
503 mutex_spin_enter(&timecounter_lock);
504 time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
505
506 if (time_adjtime) {
507 /* We need to save the system time during shutdown */
508 time_adjusted |= 1;
509 }
510 mutex_spin_exit(&timecounter_lock);
511 }
512 }
513
514 /*
515 * Interval timer support. Both the BSD getitimer() family and the POSIX
516 * timer_*() family of routines are supported.
517 *
518 * All timers are kept in an array pointed to by p_timers, which is
519 * allocated on demand - many processes don't use timers at all. The
520 * first three elements in this array are reserved for the BSD timers:
521 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element
522 * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be
523 * allocated by the timer_create() syscall.
524 *
525 * Realtime timers are kept in the ptimer structure as an absolute
526 * time; virtual time timers are kept as a linked list of deltas.
527 * Virtual time timers are processed in the hardclock() routine of
528 * kern_clock.c. The real time timer is processed by a callout
529 * routine, called from the softclock() routine. Since a callout may
530 * be delayed in real time due to interrupt processing in the system,
531 * it is possible for the real time timeout routine (realtimeexpire,
532 * given below), to be delayed in real time past when it is supposed
533 * to occur. It does not suffice, therefore, to reload the real timer
534 * .it_value from the real time timers .it_interval. Rather, we
535 * compute the next time in absolute time the timer should go off. */
536
537 /* Allocate a POSIX realtime timer. */
538 int
539 sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
540 register_t *retval)
541 {
542 /* {
543 syscallarg(clockid_t) clock_id;
544 syscallarg(struct sigevent *) evp;
545 syscallarg(timer_t *) timerid;
546 } */
547
548 return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
549 SCARG(uap, evp), copyin, l);
550 }
551
552 int
553 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
554 copyin_t fetch_event, struct lwp *l)
555 {
556 int error;
557 timer_t timerid;
558 struct ptimers *pts;
559 struct ptimer *pt;
560 struct proc *p;
561
562 p = l->l_proc;
563
564 if ((u_int)id > CLOCK_MONOTONIC)
565 return (EINVAL);
566
567 if ((pts = p->p_timers) == NULL)
568 pts = timers_alloc(p);
569
570 pt = pool_get(&ptimer_pool, PR_WAITOK);
571 memset(pt, 0, sizeof(*pt));
572 if (evp != NULL) {
573 if (((error =
574 (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
575 ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
576 (pt->pt_ev.sigev_notify > SIGEV_SA)) ||
577 (pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
578 (pt->pt_ev.sigev_signo <= 0 ||
579 pt->pt_ev.sigev_signo >= NSIG))) {
580 pool_put(&ptimer_pool, pt);
581 return (error ? error : EINVAL);
582 }
583 }
584
585 /* Find a free timer slot, skipping those reserved for setitimer(). */
586 mutex_spin_enter(&timer_lock);
587 for (timerid = 3; timerid < TIMER_MAX; timerid++)
588 if (pts->pts_timers[timerid] == NULL)
589 break;
590 if (timerid == TIMER_MAX) {
591 mutex_spin_exit(&timer_lock);
592 pool_put(&ptimer_pool, pt);
593 return EAGAIN;
594 }
595 if (evp == NULL) {
596 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
597 switch (id) {
598 case CLOCK_REALTIME:
599 case CLOCK_MONOTONIC:
600 pt->pt_ev.sigev_signo = SIGALRM;
601 break;
602 case CLOCK_VIRTUAL:
603 pt->pt_ev.sigev_signo = SIGVTALRM;
604 break;
605 case CLOCK_PROF:
606 pt->pt_ev.sigev_signo = SIGPROF;
607 break;
608 }
609 pt->pt_ev.sigev_value.sival_int = timerid;
610 }
611 pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
612 pt->pt_info.ksi_errno = 0;
613 pt->pt_info.ksi_code = 0;
614 pt->pt_info.ksi_pid = p->p_pid;
615 pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
616 pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
617 pt->pt_type = id;
618 pt->pt_proc = p;
619 pt->pt_overruns = 0;
620 pt->pt_poverruns = 0;
621 pt->pt_entry = timerid;
622 pt->pt_queued = false;
623 timespecclear(&pt->pt_time.it_value);
624 if (!CLOCK_VIRTUAL_P(id))
625 callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
626 else
627 pt->pt_active = 0;
628
629 pts->pts_timers[timerid] = pt;
630 mutex_spin_exit(&timer_lock);
631
632 return copyout(&timerid, tid, sizeof(timerid));
633 }
634
635 /* Delete a POSIX realtime timer */
636 int
637 sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
638 register_t *retval)
639 {
640 /* {
641 syscallarg(timer_t) timerid;
642 } */
643 struct proc *p = l->l_proc;
644 timer_t timerid;
645 struct ptimers *pts;
646 struct ptimer *pt, *ptn;
647
648 timerid = SCARG(uap, timerid);
649 pts = p->p_timers;
650
651 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
652 return (EINVAL);
653
654 mutex_spin_enter(&timer_lock);
655 if ((pt = pts->pts_timers[timerid]) == NULL) {
656 mutex_spin_exit(&timer_lock);
657 return (EINVAL);
658 }
659 if (CLOCK_VIRTUAL_P(pt->pt_type)) {
660 if (pt->pt_active) {
661 ptn = LIST_NEXT(pt, pt_list);
662 LIST_REMOVE(pt, pt_list);
663 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
664 timespecadd(&pt->pt_time.it_value,
665 &ptn->pt_time.it_value,
666 &ptn->pt_time.it_value);
667 pt->pt_active = 0;
668 }
669 }
670 itimerfree(pts, timerid);
671
672 return (0);
673 }
674
675 /*
676 * Set up the given timer. The value in pt->pt_time.it_value is taken
677 * to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC timers and
678 * a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
679 */
680 void
681 timer_settime(struct ptimer *pt)
682 {
683 struct ptimer *ptn, *pptn;
684 struct ptlist *ptl;
685
686 KASSERT(mutex_owned(&timer_lock));
687
688 if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
689 callout_halt(&pt->pt_ch, &timer_lock);
690 if (timespecisset(&pt->pt_time.it_value)) {
691 /*
692 * Don't need to check tshzto() return value, here.
693 * callout_reset() does it for us.
694 */
695 callout_reset(&pt->pt_ch,
696 pt->pt_type == CLOCK_MONOTONIC ?
697 tshztoup(&pt->pt_time.it_value) :
698 tshzto(&pt->pt_time.it_value),
699 realtimerexpire, pt);
700 }
701 } else {
702 if (pt->pt_active) {
703 ptn = LIST_NEXT(pt, pt_list);
704 LIST_REMOVE(pt, pt_list);
705 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
706 timespecadd(&pt->pt_time.it_value,
707 &ptn->pt_time.it_value,
708 &ptn->pt_time.it_value);
709 }
710 if (timespecisset(&pt->pt_time.it_value)) {
711 if (pt->pt_type == CLOCK_VIRTUAL)
712 ptl = &pt->pt_proc->p_timers->pts_virtual;
713 else
714 ptl = &pt->pt_proc->p_timers->pts_prof;
715
716 for (ptn = LIST_FIRST(ptl), pptn = NULL;
717 ptn && timespeccmp(&pt->pt_time.it_value,
718 &ptn->pt_time.it_value, >);
719 pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
720 timespecsub(&pt->pt_time.it_value,
721 &ptn->pt_time.it_value,
722 &pt->pt_time.it_value);
723
724 if (pptn)
725 LIST_INSERT_AFTER(pptn, pt, pt_list);
726 else
727 LIST_INSERT_HEAD(ptl, pt, pt_list);
728
729 for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
730 timespecsub(&ptn->pt_time.it_value,
731 &pt->pt_time.it_value,
732 &ptn->pt_time.it_value);
733
734 pt->pt_active = 1;
735 } else
736 pt->pt_active = 0;
737 }
738 }
739
740 void
741 timer_gettime(struct ptimer *pt, struct itimerspec *aits)
742 {
743 struct timespec now;
744 struct ptimer *ptn;
745
746 KASSERT(mutex_owned(&timer_lock));
747
748 *aits = pt->pt_time;
749 if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
750 /*
751 * Convert from absolute to relative time in .it_value
752 * part of real time timer. If time for real time
753 * timer has passed return 0, else return difference
754 * between current time and time for the timer to go
755 * off.
756 */
757 if (timespecisset(&aits->it_value)) {
758 if (pt->pt_type == CLOCK_REALTIME) {
759 getnanotime(&now);
760 } else { /* CLOCK_MONOTONIC */
761 getnanouptime(&now);
762 }
763 if (timespeccmp(&aits->it_value, &now, <))
764 timespecclear(&aits->it_value);
765 else
766 timespecsub(&aits->it_value, &now,
767 &aits->it_value);
768 }
769 } else if (pt->pt_active) {
770 if (pt->pt_type == CLOCK_VIRTUAL)
771 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
772 else
773 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
774 for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
775 timespecadd(&aits->it_value,
776 &ptn->pt_time.it_value, &aits->it_value);
777 KASSERT(ptn != NULL); /* pt should be findable on the list */
778 } else
779 timespecclear(&aits->it_value);
780 }
781
782
783
784 /* Set and arm a POSIX realtime timer */
785 int
786 sys___timer_settime50(struct lwp *l,
787 const struct sys___timer_settime50_args *uap,
788 register_t *retval)
789 {
790 /* {
791 syscallarg(timer_t) timerid;
792 syscallarg(int) flags;
793 syscallarg(const struct itimerspec *) value;
794 syscallarg(struct itimerspec *) ovalue;
795 } */
796 int error;
797 struct itimerspec value, ovalue, *ovp = NULL;
798
799 if ((error = copyin(SCARG(uap, value), &value,
800 sizeof(struct itimerspec))) != 0)
801 return (error);
802
803 if (SCARG(uap, ovalue))
804 ovp = &ovalue;
805
806 if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
807 SCARG(uap, flags), l->l_proc)) != 0)
808 return error;
809
810 if (ovp)
811 return copyout(&ovalue, SCARG(uap, ovalue),
812 sizeof(struct itimerspec));
813 return 0;
814 }
815
816 int
817 dotimer_settime(int timerid, struct itimerspec *value,
818 struct itimerspec *ovalue, int flags, struct proc *p)
819 {
820 struct timespec now;
821 struct itimerspec val, oval;
822 struct ptimers *pts;
823 struct ptimer *pt;
824 int error;
825
826 pts = p->p_timers;
827
828 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
829 return EINVAL;
830 val = *value;
831 if ((error = itimespecfix(&val.it_value)) != 0 ||
832 (error = itimespecfix(&val.it_interval)) != 0)
833 return error;
834
835 mutex_spin_enter(&timer_lock);
836 if ((pt = pts->pts_timers[timerid]) == NULL) {
837 mutex_spin_exit(&timer_lock);
838 return EINVAL;
839 }
840
841 oval = pt->pt_time;
842 pt->pt_time = val;
843
844 /*
845 * If we've been passed a relative time for a realtime timer,
846 * convert it to absolute; if an absolute time for a virtual
847 * timer, convert it to relative and make sure we don't set it
848 * to zero, which would cancel the timer, or let it go
849 * negative, which would confuse the comparison tests.
850 */
851 if (timespecisset(&pt->pt_time.it_value)) {
852 if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
853 if ((flags & TIMER_ABSTIME) == 0) {
854 if (pt->pt_type == CLOCK_REALTIME) {
855 getnanotime(&now);
856 } else { /* CLOCK_MONOTONIC */
857 getnanouptime(&now);
858 }
859 timespecadd(&pt->pt_time.it_value, &now,
860 &pt->pt_time.it_value);
861 }
862 } else {
863 if ((flags & TIMER_ABSTIME) != 0) {
864 getnanotime(&now);
865 timespecsub(&pt->pt_time.it_value, &now,
866 &pt->pt_time.it_value);
867 if (!timespecisset(&pt->pt_time.it_value) ||
868 pt->pt_time.it_value.tv_sec < 0) {
869 pt->pt_time.it_value.tv_sec = 0;
870 pt->pt_time.it_value.tv_nsec = 1;
871 }
872 }
873 }
874 }
875
876 timer_settime(pt);
877 mutex_spin_exit(&timer_lock);
878
879 if (ovalue)
880 *ovalue = oval;
881
882 return (0);
883 }
884
885 /* Return the time remaining until a POSIX timer fires. */
886 int
887 sys___timer_gettime50(struct lwp *l,
888 const struct sys___timer_gettime50_args *uap, register_t *retval)
889 {
890 /* {
891 syscallarg(timer_t) timerid;
892 syscallarg(struct itimerspec *) value;
893 } */
894 struct itimerspec its;
895 int error;
896
897 if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
898 &its)) != 0)
899 return error;
900
901 return copyout(&its, SCARG(uap, value), sizeof(its));
902 }
903
904 int
905 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
906 {
907 struct ptimer *pt;
908 struct ptimers *pts;
909
910 pts = p->p_timers;
911 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
912 return (EINVAL);
913 mutex_spin_enter(&timer_lock);
914 if ((pt = pts->pts_timers[timerid]) == NULL) {
915 mutex_spin_exit(&timer_lock);
916 return (EINVAL);
917 }
918 timer_gettime(pt, its);
919 mutex_spin_exit(&timer_lock);
920
921 return 0;
922 }
923
924 /*
925 * Return the count of the number of times a periodic timer expired
926 * while a notification was already pending. The counter is reset when
927 * a timer expires and a notification can be posted.
928 */
929 int
930 sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
931 register_t *retval)
932 {
933 /* {
934 syscallarg(timer_t) timerid;
935 } */
936 struct proc *p = l->l_proc;
937 struct ptimers *pts;
938 int timerid;
939 struct ptimer *pt;
940
941 timerid = SCARG(uap, timerid);
942
943 pts = p->p_timers;
944 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
945 return (EINVAL);
946 mutex_spin_enter(&timer_lock);
947 if ((pt = pts->pts_timers[timerid]) == NULL) {
948 mutex_spin_exit(&timer_lock);
949 return (EINVAL);
950 }
951 *retval = pt->pt_poverruns;
952 mutex_spin_exit(&timer_lock);
953
954 return (0);
955 }
956
957 /*
958 * Real interval timer expired:
959 * send process whose timer expired an alarm signal.
960 * If time is not set up to reload, then just return.
961 * Else compute next time timer should go off which is > current time.
962 * This is where delay in processing this timeout causes multiple
963 * SIGALRM calls to be compressed into one.
964 */
965 void
966 realtimerexpire(void *arg)
967 {
968 uint64_t last_val, next_val, interval, now_ns;
969 struct timespec now, next;
970 struct ptimer *pt;
971 int backwards;
972
973 pt = arg;
974
975 mutex_spin_enter(&timer_lock);
976 itimerfire(pt);
977
978 if (!timespecisset(&pt->pt_time.it_interval)) {
979 timespecclear(&pt->pt_time.it_value);
980 mutex_spin_exit(&timer_lock);
981 return;
982 }
983
984 if (pt->pt_type == CLOCK_MONOTONIC) {
985 getnanouptime(&now);
986 } else {
987 getnanotime(&now);
988 }
989 backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
990 timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
991 /* Handle the easy case of non-overflown timers first. */
992 if (!backwards && timespeccmp(&next, &now, >)) {
993 pt->pt_time.it_value = next;
994 } else {
995 now_ns = timespec2ns(&now);
996 last_val = timespec2ns(&pt->pt_time.it_value);
997 interval = timespec2ns(&pt->pt_time.it_interval);
998
999 next_val = now_ns +
1000 (now_ns - last_val + interval - 1) % interval;
1001
1002 if (backwards)
1003 next_val += interval;
1004 else
1005 pt->pt_overruns += (now_ns - last_val) / interval;
1006
1007 pt->pt_time.it_value.tv_sec = next_val / 1000000000;
1008 pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
1009 }
1010
1011 /*
1012 * Don't need to check tshzto() return value, here.
1013 * callout_reset() does it for us.
1014 */
1015 callout_reset(&pt->pt_ch, pt->pt_type == CLOCK_MONOTONIC ?
1016 tshztoup(&pt->pt_time.it_value) : tshzto(&pt->pt_time.it_value),
1017 realtimerexpire, pt);
1018 mutex_spin_exit(&timer_lock);
1019 }
1020
1021 /* BSD routine to get the value of an interval timer. */
1022 /* ARGSUSED */
1023 int
1024 sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
1025 register_t *retval)
1026 {
1027 /* {
1028 syscallarg(int) which;
1029 syscallarg(struct itimerval *) itv;
1030 } */
1031 struct proc *p = l->l_proc;
1032 struct itimerval aitv;
1033 int error;
1034
1035 memset(&aitv, 0, sizeof(aitv));
1036 error = dogetitimer(p, SCARG(uap, which), &aitv);
1037 if (error)
1038 return error;
1039 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1040 }
1041
1042 int
1043 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1044 {
1045 struct ptimers *pts;
1046 struct ptimer *pt;
1047 struct itimerspec its;
1048
1049 if ((u_int)which > ITIMER_MONOTONIC)
1050 return (EINVAL);
1051
1052 mutex_spin_enter(&timer_lock);
1053 pts = p->p_timers;
1054 if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
1055 timerclear(&itvp->it_value);
1056 timerclear(&itvp->it_interval);
1057 } else {
1058 timer_gettime(pt, &its);
1059 TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
1060 TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
1061 }
1062 mutex_spin_exit(&timer_lock);
1063
1064 return 0;
1065 }
1066
1067 /* BSD routine to set/arm an interval timer. */
1068 /* ARGSUSED */
1069 int
1070 sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
1071 register_t *retval)
1072 {
1073 /* {
1074 syscallarg(int) which;
1075 syscallarg(const struct itimerval *) itv;
1076 syscallarg(struct itimerval *) oitv;
1077 } */
1078 struct proc *p = l->l_proc;
1079 int which = SCARG(uap, which);
1080 struct sys___getitimer50_args getargs;
1081 const struct itimerval *itvp;
1082 struct itimerval aitv;
1083 int error;
1084
1085 if ((u_int)which > ITIMER_MONOTONIC)
1086 return (EINVAL);
1087 itvp = SCARG(uap, itv);
1088 if (itvp &&
1089 (error = copyin(itvp, &aitv, sizeof(struct itimerval))) != 0)
1090 return (error);
1091 if (SCARG(uap, oitv) != NULL) {
1092 SCARG(&getargs, which) = which;
1093 SCARG(&getargs, itv) = SCARG(uap, oitv);
1094 if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
1095 return (error);
1096 }
1097 if (itvp == 0)
1098 return (0);
1099
1100 return dosetitimer(p, which, &aitv);
1101 }
1102
1103 int
1104 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1105 {
1106 struct timespec now;
1107 struct ptimers *pts;
1108 struct ptimer *pt, *spare;
1109
1110 KASSERT((u_int)which <= CLOCK_MONOTONIC);
1111 if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1112 return (EINVAL);
1113
1114 /*
1115 * Don't bother allocating data structures if the process just
1116 * wants to clear the timer.
1117 */
1118 spare = NULL;
1119 pts = p->p_timers;
1120 retry:
1121 if (!timerisset(&itvp->it_value) && (pts == NULL ||
1122 pts->pts_timers[which] == NULL))
1123 return (0);
1124 if (pts == NULL)
1125 pts = timers_alloc(p);
1126 mutex_spin_enter(&timer_lock);
1127 pt = pts->pts_timers[which];
1128 if (pt == NULL) {
1129 if (spare == NULL) {
1130 mutex_spin_exit(&timer_lock);
1131 spare = pool_get(&ptimer_pool, PR_WAITOK);
1132 memset(spare, 0, sizeof(*spare));
1133 goto retry;
1134 }
1135 pt = spare;
1136 spare = NULL;
1137 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1138 pt->pt_ev.sigev_value.sival_int = which;
1139 pt->pt_overruns = 0;
1140 pt->pt_proc = p;
1141 pt->pt_type = which;
1142 pt->pt_entry = which;
1143 pt->pt_queued = false;
1144 if (!CLOCK_VIRTUAL_P(which))
1145 callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
1146 else
1147 pt->pt_active = 0;
1148
1149 switch (which) {
1150 case ITIMER_REAL:
1151 case ITIMER_MONOTONIC:
1152 pt->pt_ev.sigev_signo = SIGALRM;
1153 break;
1154 case ITIMER_VIRTUAL:
1155 pt->pt_ev.sigev_signo = SIGVTALRM;
1156 break;
1157 case ITIMER_PROF:
1158 pt->pt_ev.sigev_signo = SIGPROF;
1159 break;
1160 }
1161 pts->pts_timers[which] = pt;
1162 }
1163
1164 TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
1165 TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
1166
1167 if (timespecisset(&pt->pt_time.it_value)) {
1168 /* Convert to absolute time */
1169 /* XXX need to wrap in splclock for timecounters case? */
1170 switch (which) {
1171 case ITIMER_REAL:
1172 getnanotime(&now);
1173 timespecadd(&pt->pt_time.it_value, &now,
1174 &pt->pt_time.it_value);
1175 break;
1176 case ITIMER_MONOTONIC:
1177 getnanouptime(&now);
1178 timespecadd(&pt->pt_time.it_value, &now,
1179 &pt->pt_time.it_value);
1180 break;
1181 default:
1182 break;
1183 }
1184 }
1185 timer_settime(pt);
1186 mutex_spin_exit(&timer_lock);
1187 if (spare != NULL)
1188 pool_put(&ptimer_pool, spare);
1189
1190 return (0);
1191 }
1192
1193 /* Utility routines to manage the array of pointers to timers. */
1194 struct ptimers *
1195 timers_alloc(struct proc *p)
1196 {
1197 struct ptimers *pts;
1198 int i;
1199
1200 pts = pool_get(&ptimers_pool, PR_WAITOK);
1201 LIST_INIT(&pts->pts_virtual);
1202 LIST_INIT(&pts->pts_prof);
1203 for (i = 0; i < TIMER_MAX; i++)
1204 pts->pts_timers[i] = NULL;
1205 pts->pts_fired = 0;
1206 mutex_spin_enter(&timer_lock);
1207 if (p->p_timers == NULL) {
1208 p->p_timers = pts;
1209 mutex_spin_exit(&timer_lock);
1210 return pts;
1211 }
1212 mutex_spin_exit(&timer_lock);
1213 pool_put(&ptimers_pool, pts);
1214 return p->p_timers;
1215 }
1216
1217 /*
1218 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1219 * then clean up all timers and free all the data structures. If
1220 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1221 * by timer_create(), not the BSD setitimer() timers, and only free the
1222 * structure if none of those remain.
1223 */
1224 void
1225 timers_free(struct proc *p, int which)
1226 {
1227 struct ptimers *pts;
1228 struct ptimer *ptn;
1229 struct timespec ts;
1230 int i;
1231
1232 if (p->p_timers == NULL)
1233 return;
1234
1235 pts = p->p_timers;
1236 mutex_spin_enter(&timer_lock);
1237 if (which == TIMERS_ALL) {
1238 p->p_timers = NULL;
1239 i = 0;
1240 } else {
1241 timespecclear(&ts);
1242 for (ptn = LIST_FIRST(&pts->pts_virtual);
1243 ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1244 ptn = LIST_NEXT(ptn, pt_list)) {
1245 KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1246 timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1247 }
1248 LIST_FIRST(&pts->pts_virtual) = NULL;
1249 if (ptn) {
1250 KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1251 timespecadd(&ts, &ptn->pt_time.it_value,
1252 &ptn->pt_time.it_value);
1253 LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
1254 }
1255 timespecclear(&ts);
1256 for (ptn = LIST_FIRST(&pts->pts_prof);
1257 ptn && ptn != pts->pts_timers[ITIMER_PROF];
1258 ptn = LIST_NEXT(ptn, pt_list)) {
1259 KASSERT(ptn->pt_type == CLOCK_PROF);
1260 timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1261 }
1262 LIST_FIRST(&pts->pts_prof) = NULL;
1263 if (ptn) {
1264 KASSERT(ptn->pt_type == CLOCK_PROF);
1265 timespecadd(&ts, &ptn->pt_time.it_value,
1266 &ptn->pt_time.it_value);
1267 LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
1268 }
1269 i = 3;
1270 }
1271 for ( ; i < TIMER_MAX; i++) {
1272 if (pts->pts_timers[i] != NULL) {
1273 itimerfree(pts, i);
1274 mutex_spin_enter(&timer_lock);
1275 }
1276 }
1277 if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
1278 pts->pts_timers[2] == NULL) {
1279 p->p_timers = NULL;
1280 mutex_spin_exit(&timer_lock);
1281 pool_put(&ptimers_pool, pts);
1282 } else
1283 mutex_spin_exit(&timer_lock);
1284 }
1285
1286 static void
1287 itimerfree(struct ptimers *pts, int index)
1288 {
1289 struct ptimer *pt;
1290
1291 KASSERT(mutex_owned(&timer_lock));
1292
1293 pt = pts->pts_timers[index];
1294 pts->pts_timers[index] = NULL;
1295 if (!CLOCK_VIRTUAL_P(pt->pt_type))
1296 callout_halt(&pt->pt_ch, &timer_lock);
1297 if (pt->pt_queued)
1298 TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1299 mutex_spin_exit(&timer_lock);
1300 if (!CLOCK_VIRTUAL_P(pt->pt_type))
1301 callout_destroy(&pt->pt_ch);
1302 pool_put(&ptimer_pool, pt);
1303 }
1304
1305 /*
1306 * Decrement an interval timer by a specified number
1307 * of nanoseconds, which must be less than a second,
1308 * i.e. < 1000000000. If the timer expires, then reload
1309 * it. In this case, carry over (nsec - old value) to
1310 * reduce the value reloaded into the timer so that
1311 * the timer does not drift. This routine assumes
1312 * that it is called in a context where the timers
1313 * on which it is operating cannot change in value.
1314 */
1315 static int
1316 itimerdecr(struct ptimer *pt, int nsec)
1317 {
1318 struct itimerspec *itp;
1319
1320 KASSERT(mutex_owned(&timer_lock));
1321 KASSERT(CLOCK_VIRTUAL_P(pt->pt_type));
1322
1323 itp = &pt->pt_time;
1324 if (itp->it_value.tv_nsec < nsec) {
1325 if (itp->it_value.tv_sec == 0) {
1326 /* expired, and already in next interval */
1327 nsec -= itp->it_value.tv_nsec;
1328 goto expire;
1329 }
1330 itp->it_value.tv_nsec += 1000000000;
1331 itp->it_value.tv_sec--;
1332 }
1333 itp->it_value.tv_nsec -= nsec;
1334 nsec = 0;
1335 if (timespecisset(&itp->it_value))
1336 return (1);
1337 /* expired, exactly at end of interval */
1338 expire:
1339 if (timespecisset(&itp->it_interval)) {
1340 itp->it_value = itp->it_interval;
1341 itp->it_value.tv_nsec -= nsec;
1342 if (itp->it_value.tv_nsec < 0) {
1343 itp->it_value.tv_nsec += 1000000000;
1344 itp->it_value.tv_sec--;
1345 }
1346 timer_settime(pt);
1347 } else
1348 itp->it_value.tv_nsec = 0; /* sec is already 0 */
1349 return (0);
1350 }
1351
1352 static void
1353 itimerfire(struct ptimer *pt)
1354 {
1355
1356 KASSERT(mutex_owned(&timer_lock));
1357
1358 /*
1359 * XXX Can overrun, but we don't do signal queueing yet, anyway.
1360 * XXX Relying on the clock interrupt is stupid.
1361 */
1362 if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL || pt->pt_queued) {
1363 return;
1364 }
1365 TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
1366 pt->pt_queued = true;
1367 softint_schedule(timer_sih);
1368 }
1369
1370 void
1371 timer_tick(lwp_t *l, bool user)
1372 {
1373 struct ptimers *pts;
1374 struct ptimer *pt;
1375 proc_t *p;
1376
1377 p = l->l_proc;
1378 if (p->p_timers == NULL)
1379 return;
1380
1381 mutex_spin_enter(&timer_lock);
1382 if ((pts = l->l_proc->p_timers) != NULL) {
1383 /*
1384 * Run current process's virtual and profile time, as needed.
1385 */
1386 if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
1387 if (itimerdecr(pt, tick * 1000) == 0)
1388 itimerfire(pt);
1389 if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
1390 if (itimerdecr(pt, tick * 1000) == 0)
1391 itimerfire(pt);
1392 }
1393 mutex_spin_exit(&timer_lock);
1394 }
1395
1396 static void
1397 timer_intr(void *cookie)
1398 {
1399 ksiginfo_t ksi;
1400 struct ptimer *pt;
1401 proc_t *p;
1402
1403 mutex_enter(proc_lock);
1404 mutex_spin_enter(&timer_lock);
1405 while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
1406 TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1407 KASSERT(pt->pt_queued);
1408 pt->pt_queued = false;
1409
1410 if (pt->pt_proc->p_timers == NULL) {
1411 /* Process is dying. */
1412 continue;
1413 }
1414 p = pt->pt_proc;
1415 if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
1416 continue;
1417 }
1418 if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
1419 pt->pt_overruns++;
1420 continue;
1421 }
1422
1423 KSI_INIT(&ksi);
1424 ksi.ksi_signo = pt->pt_ev.sigev_signo;
1425 ksi.ksi_code = SI_TIMER;
1426 ksi.ksi_value = pt->pt_ev.sigev_value;
1427 pt->pt_poverruns = pt->pt_overruns;
1428 pt->pt_overruns = 0;
1429 mutex_spin_exit(&timer_lock);
1430 kpsignal(p, &ksi, NULL);
1431 mutex_spin_enter(&timer_lock);
1432 }
1433 mutex_spin_exit(&timer_lock);
1434 mutex_exit(proc_lock);
1435 }
1436
1437 /*
1438 * Check if the time will wrap if set to ts.
1439 *
1440 * ts - timespec describing the new time
1441 * delta - the delta between the current time and ts
1442 */
1443 bool
1444 time_wraps(struct timespec *ts, struct timespec *delta)
1445 {
1446
1447 /*
1448 * Don't allow the time to be set forward so far it
1449 * will wrap and become negative, thus allowing an
1450 * attacker to bypass the next check below. The
1451 * cutoff is 1 year before rollover occurs, so even
1452 * if the attacker uses adjtime(2) to move the time
1453 * past the cutoff, it will take a very long time
1454 * to get to the wrap point.
1455 */
1456 if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
1457 (delta->tv_sec < 0 || delta->tv_nsec < 0))
1458 return true;
1459
1460 return false;
1461 }
1462