kern_time.c revision 1.18 1 /* $NetBSD: kern_time.c,v 1.18 1996/02/09 18:59:53 christos Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * @(#)kern_time.c 8.1 (Berkeley) 6/10/93
36 */
37
38 #include <sys/param.h>
39 #include <sys/resourcevar.h>
40 #include <sys/kernel.h>
41 #include <sys/systm.h>
42 #include <sys/proc.h>
43 #include <sys/vnode.h>
44 #include <sys/signalvar.h>
45
46 #include <sys/mount.h>
47 #include <sys/syscallargs.h>
48
49 #include <machine/cpu.h>
50
51 /*
52 * Time of day and interval timer support.
53 *
54 * These routines provide the kernel entry points to get and set
55 * the time-of-day and per-process interval timers. Subroutines
56 * here provide support for adding and subtracting timeval structures
57 * and decrementing interval timers, optionally reloading the interval
58 * timers when they expire.
59 */
60
61 /* ARGSUSED */
62 int
63 sys_gettimeofday(p, v, retval)
64 struct proc *p;
65 void *v;
66 register_t *retval;
67 {
68 register struct sys_gettimeofday_args /* {
69 syscallarg(struct timeval *) tp;
70 syscallarg(struct timezone *) tzp;
71 } */ *uap = v;
72 struct timeval atv;
73 int error = 0;
74
75 if (SCARG(uap, tp)) {
76 microtime(&atv);
77 error = copyout((caddr_t)&atv, (caddr_t)SCARG(uap, tp),
78 sizeof (atv));
79 if (error)
80 return (error);
81 }
82 if (SCARG(uap, tzp))
83 error = copyout((caddr_t)&tz, (caddr_t)SCARG(uap, tzp),
84 sizeof (tz));
85 return (error);
86 }
87
88 /* ARGSUSED */
89 int
90 sys_settimeofday(p, v, retval)
91 struct proc *p;
92 void *v;
93 register_t *retval;
94 {
95 struct sys_settimeofday_args /* {
96 syscallarg(struct timeval *) tv;
97 syscallarg(struct timezone *) tzp;
98 } */ *uap = v;
99 struct timeval atv, delta;
100 struct timezone atz;
101 int error, s;
102
103 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
104 return (error);
105 /* Verify all parameters before changing time. */
106 if (SCARG(uap, tv) && (error = copyin((caddr_t)SCARG(uap, tv),
107 (caddr_t)&atv, sizeof(atv))))
108 return (error);
109 if (SCARG(uap, tzp) && (error = copyin((caddr_t)SCARG(uap, tzp),
110 (caddr_t)&atz, sizeof(atz))))
111 return (error);
112 if (SCARG(uap, tv)) {
113 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
114 s = splclock();
115 timersub(&atv, &time, &delta);
116 time = atv;
117 (void) splsoftclock();
118 timeradd(&boottime, &delta, &boottime);
119 timeradd(&runtime, &delta, &runtime);
120 # if defined(NFSCLIENT) || defined(NFSSERVER)
121 lease_updatetime(delta.tv_sec);
122 # endif
123 splx(s);
124 resettodr();
125 }
126 if (SCARG(uap, tzp))
127 tz = atz;
128 return (0);
129 }
130
131 int tickdelta; /* current clock skew, us. per tick */
132 long timedelta; /* unapplied time correction, us. */
133 long bigadj = 1000000; /* use 10x skew above bigadj us. */
134
135 /* ARGSUSED */
136 int
137 sys_adjtime(p, v, retval)
138 struct proc *p;
139 void *v;
140 register_t *retval;
141 {
142 register struct sys_adjtime_args /* {
143 syscallarg(struct timeval *) delta;
144 syscallarg(struct timeval *) olddelta;
145 } */ *uap = v;
146 struct timeval atv;
147 register long ndelta, ntickdelta, odelta;
148 int s, error;
149
150 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
151 return (error);
152
153 error = copyin((caddr_t)SCARG(uap, delta), (caddr_t)&atv,
154 sizeof(struct timeval));
155 if (error)
156 return (error);
157
158 /*
159 * Compute the total correction and the rate at which to apply it.
160 * Round the adjustment down to a whole multiple of the per-tick
161 * delta, so that after some number of incremental changes in
162 * hardclock(), tickdelta will become zero, lest the correction
163 * overshoot and start taking us away from the desired final time.
164 */
165 ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
166 if (ndelta > bigadj)
167 ntickdelta = 10 * tickadj;
168 else
169 ntickdelta = tickadj;
170 if (ndelta % ntickdelta)
171 ndelta = ndelta / ntickdelta * ntickdelta;
172
173 /*
174 * To make hardclock()'s job easier, make the per-tick delta negative
175 * if we want time to run slower; then hardclock can simply compute
176 * tick + tickdelta, and subtract tickdelta from timedelta.
177 */
178 if (ndelta < 0)
179 ntickdelta = -ntickdelta;
180 s = splclock();
181 odelta = timedelta;
182 timedelta = ndelta;
183 tickdelta = ntickdelta;
184 splx(s);
185
186 if (SCARG(uap, olddelta)) {
187 atv.tv_sec = odelta / 1000000;
188 atv.tv_usec = odelta % 1000000;
189 (void) copyout((caddr_t)&atv, (caddr_t)SCARG(uap, olddelta),
190 sizeof(struct timeval));
191 }
192 return (0);
193 }
194
195 /*
196 * Get value of an interval timer. The process virtual and
197 * profiling virtual time timers are kept in the p_stats area, since
198 * they can be swapped out. These are kept internally in the
199 * way they are specified externally: in time until they expire.
200 *
201 * The real time interval timer is kept in the process table slot
202 * for the process, and its value (it_value) is kept as an
203 * absolute time rather than as a delta, so that it is easy to keep
204 * periodic real-time signals from drifting.
205 *
206 * Virtual time timers are processed in the hardclock() routine of
207 * kern_clock.c. The real time timer is processed by a timeout
208 * routine, called from the softclock() routine. Since a callout
209 * may be delayed in real time due to interrupt processing in the system,
210 * it is possible for the real time timeout routine (realitexpire, given below),
211 * to be delayed in real time past when it is supposed to occur. It
212 * does not suffice, therefore, to reload the real timer .it_value from the
213 * real time timers .it_interval. Rather, we compute the next time in
214 * absolute time the timer should go off.
215 */
216 /* ARGSUSED */
217 int
218 sys_getitimer(p, v, retval)
219 struct proc *p;
220 void *v;
221 register_t *retval;
222 {
223 register struct sys_getitimer_args /* {
224 syscallarg(u_int) which;
225 syscallarg(struct itimerval *) itv;
226 } */ *uap = v;
227 struct itimerval aitv;
228 int s;
229
230 if (SCARG(uap, which) > ITIMER_PROF)
231 return (EINVAL);
232 s = splclock();
233 if (SCARG(uap, which) == ITIMER_REAL) {
234 /*
235 * Convert from absolute to relative time in .it_value
236 * part of real time timer. If time for real time timer
237 * has passed return 0, else return difference between
238 * current time and time for the timer to go off.
239 */
240 aitv = p->p_realtimer;
241 if (timerisset(&aitv.it_value))
242 if (timercmp(&aitv.it_value, &time, <))
243 timerclear(&aitv.it_value);
244 else
245 timersub(&aitv.it_value, &time, &aitv.it_value);
246 } else
247 aitv = p->p_stats->p_timer[SCARG(uap, which)];
248 splx(s);
249 return (copyout((caddr_t)&aitv, (caddr_t)SCARG(uap, itv),
250 sizeof (struct itimerval)));
251 }
252
253 /* ARGSUSED */
254 int
255 sys_setitimer(p, v, retval)
256 struct proc *p;
257 register void *v;
258 register_t *retval;
259 {
260 register struct sys_setitimer_args /* {
261 syscallarg(u_int) which;
262 syscallarg(struct itimerval *) itv;
263 syscallarg(struct itimerval *) oitv;
264 } */ *uap = v;
265 struct itimerval aitv;
266 register struct itimerval *itvp;
267 int s, error;
268
269 if (SCARG(uap, which) > ITIMER_PROF)
270 return (EINVAL);
271 itvp = SCARG(uap, itv);
272 if (itvp && (error = copyin((caddr_t)itvp, (caddr_t)&aitv,
273 sizeof(struct itimerval))))
274 return (error);
275 if ((SCARG(uap, itv) = SCARG(uap, oitv)) &&
276 (error = sys_getitimer(p, uap, retval)))
277 return (error);
278 if (itvp == 0)
279 return (0);
280 if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
281 return (EINVAL);
282 s = splclock();
283 if (SCARG(uap, which) == ITIMER_REAL) {
284 untimeout(realitexpire, p);
285 if (timerisset(&aitv.it_value)) {
286 timeradd(&aitv.it_value, &time, &aitv.it_value);
287 timeout(realitexpire, p, hzto(&aitv.it_value));
288 }
289 p->p_realtimer = aitv;
290 } else
291 p->p_stats->p_timer[SCARG(uap, which)] = aitv;
292 splx(s);
293 return (0);
294 }
295
296 /*
297 * Real interval timer expired:
298 * send process whose timer expired an alarm signal.
299 * If time is not set up to reload, then just return.
300 * Else compute next time timer should go off which is > current time.
301 * This is where delay in processing this timeout causes multiple
302 * SIGALRM calls to be compressed into one.
303 */
304 void
305 realitexpire(arg)
306 void *arg;
307 {
308 register struct proc *p;
309 int s;
310
311 p = (struct proc *)arg;
312 psignal(p, SIGALRM);
313 if (!timerisset(&p->p_realtimer.it_interval)) {
314 timerclear(&p->p_realtimer.it_value);
315 return;
316 }
317 for (;;) {
318 s = splclock();
319 timeradd(&p->p_realtimer.it_value,
320 &p->p_realtimer.it_interval, &p->p_realtimer.it_value);
321 if (timercmp(&p->p_realtimer.it_value, &time, >)) {
322 timeout(realitexpire, p,
323 hzto(&p->p_realtimer.it_value));
324 splx(s);
325 return;
326 }
327 splx(s);
328 }
329 }
330
331 /*
332 * Check that a proposed value to load into the .it_value or
333 * .it_interval part of an interval timer is acceptable, and
334 * fix it to have at least minimal value (i.e. if it is less
335 * than the resolution of the clock, round it up.)
336 */
337 int
338 itimerfix(tv)
339 struct timeval *tv;
340 {
341
342 if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
343 tv->tv_usec < 0 || tv->tv_usec >= 1000000)
344 return (EINVAL);
345 if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
346 tv->tv_usec = tick;
347 return (0);
348 }
349
350 /*
351 * Decrement an interval timer by a specified number
352 * of microseconds, which must be less than a second,
353 * i.e. < 1000000. If the timer expires, then reload
354 * it. In this case, carry over (usec - old value) to
355 * reduce the value reloaded into the timer so that
356 * the timer does not drift. This routine assumes
357 * that it is called in a context where the timers
358 * on which it is operating cannot change in value.
359 */
360 int
361 itimerdecr(itp, usec)
362 register struct itimerval *itp;
363 int usec;
364 {
365
366 if (itp->it_value.tv_usec < usec) {
367 if (itp->it_value.tv_sec == 0) {
368 /* expired, and already in next interval */
369 usec -= itp->it_value.tv_usec;
370 goto expire;
371 }
372 itp->it_value.tv_usec += 1000000;
373 itp->it_value.tv_sec--;
374 }
375 itp->it_value.tv_usec -= usec;
376 usec = 0;
377 if (timerisset(&itp->it_value))
378 return (1);
379 /* expired, exactly at end of interval */
380 expire:
381 if (timerisset(&itp->it_interval)) {
382 itp->it_value = itp->it_interval;
383 itp->it_value.tv_usec -= usec;
384 if (itp->it_value.tv_usec < 0) {
385 itp->it_value.tv_usec += 1000000;
386 itp->it_value.tv_sec--;
387 }
388 } else
389 itp->it_value.tv_usec = 0; /* sec is already 0 */
390 return (0);
391 }
392