kern_time.c revision 1.181 1 /* $NetBSD: kern_time.c,v 1.181 2015/10/02 19:47:08 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1986, 1989, 1993
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
61 */
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.181 2015/10/02 19:47:08 christos Exp $");
65
66 #include <sys/param.h>
67 #include <sys/resourcevar.h>
68 #include <sys/kernel.h>
69 #include <sys/systm.h>
70 #include <sys/proc.h>
71 #include <sys/vnode.h>
72 #include <sys/signalvar.h>
73 #include <sys/syslog.h>
74 #include <sys/timetc.h>
75 #include <sys/timex.h>
76 #include <sys/kauth.h>
77 #include <sys/mount.h>
78 #include <sys/syscallargs.h>
79 #include <sys/cpu.h>
80
81 static void timer_intr(void *);
82 static void itimerfire(struct ptimer *);
83 static void itimerfree(struct ptimers *, int);
84
85 kmutex_t timer_lock;
86
87 static void *timer_sih;
88 static TAILQ_HEAD(, ptimer) timer_queue;
89
90 struct pool ptimer_pool, ptimers_pool;
91
92 #define CLOCK_VIRTUAL_P(clockid) \
93 ((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)
94
95 CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
96 CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
97 CTASSERT(ITIMER_PROF == CLOCK_PROF);
98 CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC);
99
100 /*
101 * Initialize timekeeping.
102 */
103 void
104 time_init(void)
105 {
106
107 pool_init(&ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
108 &pool_allocator_nointr, IPL_NONE);
109 pool_init(&ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
110 &pool_allocator_nointr, IPL_NONE);
111 }
112
113 void
114 time_init2(void)
115 {
116
117 TAILQ_INIT(&timer_queue);
118 mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
119 timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
120 timer_intr, NULL);
121 }
122
123 /* Time of day and interval timer support.
124 *
125 * These routines provide the kernel entry points to get and set
126 * the time-of-day and per-process interval timers. Subroutines
127 * here provide support for adding and subtracting timeval structures
128 * and decrementing interval timers, optionally reloading the interval
129 * timers when they expire.
130 */
131
132 /* This function is used by clock_settime and settimeofday */
133 static int
134 settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
135 {
136 struct timespec delta, now;
137 int s;
138
139 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
140 s = splclock();
141 nanotime(&now);
142 timespecsub(ts, &now, &delta);
143
144 if (check_kauth && kauth_authorize_system(kauth_cred_get(),
145 KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
146 &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
147 splx(s);
148 return (EPERM);
149 }
150
151 #ifdef notyet
152 if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
153 splx(s);
154 return (EPERM);
155 }
156 #endif
157
158 tc_setclock(ts);
159
160 timespecadd(&boottime, &delta, &boottime);
161
162 resettodr();
163 splx(s);
164
165 return (0);
166 }
167
168 int
169 settime(struct proc *p, struct timespec *ts)
170 {
171 return (settime1(p, ts, true));
172 }
173
174 /* ARGSUSED */
175 int
176 sys___clock_gettime50(struct lwp *l,
177 const struct sys___clock_gettime50_args *uap, register_t *retval)
178 {
179 /* {
180 syscallarg(clockid_t) clock_id;
181 syscallarg(struct timespec *) tp;
182 } */
183 int error;
184 struct timespec ats;
185
186 error = clock_gettime1(SCARG(uap, clock_id), &ats);
187 if (error != 0)
188 return error;
189
190 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
191 }
192
193 /* ARGSUSED */
194 int
195 sys___clock_settime50(struct lwp *l,
196 const struct sys___clock_settime50_args *uap, register_t *retval)
197 {
198 /* {
199 syscallarg(clockid_t) clock_id;
200 syscallarg(const struct timespec *) tp;
201 } */
202 int error;
203 struct timespec ats;
204
205 if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
206 return error;
207
208 return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
209 }
210
211
212 int
213 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
214 bool check_kauth)
215 {
216 int error;
217
218 switch (clock_id) {
219 case CLOCK_REALTIME:
220 if ((error = settime1(p, tp, check_kauth)) != 0)
221 return (error);
222 break;
223 case CLOCK_MONOTONIC:
224 return (EINVAL); /* read-only clock */
225 default:
226 return (EINVAL);
227 }
228
229 return 0;
230 }
231
232 int
233 sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
234 register_t *retval)
235 {
236 /* {
237 syscallarg(clockid_t) clock_id;
238 syscallarg(struct timespec *) tp;
239 } */
240 struct timespec ts;
241 int error;
242
243 if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
244 return error;
245
246 if (SCARG(uap, tp))
247 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
248
249 return error;
250 }
251
252 int
253 clock_getres1(clockid_t clock_id, struct timespec *ts)
254 {
255
256 switch (clock_id) {
257 case CLOCK_REALTIME:
258 case CLOCK_MONOTONIC:
259 ts->tv_sec = 0;
260 if (tc_getfrequency() > 1000000000)
261 ts->tv_nsec = 1;
262 else
263 ts->tv_nsec = 1000000000 / tc_getfrequency();
264 break;
265 default:
266 return EINVAL;
267 }
268
269 return 0;
270 }
271
272 /* ARGSUSED */
273 int
274 sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
275 register_t *retval)
276 {
277 /* {
278 syscallarg(struct timespec *) rqtp;
279 syscallarg(struct timespec *) rmtp;
280 } */
281 struct timespec rmt, rqt;
282 int error, error1;
283
284 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
285 if (error)
286 return (error);
287
288 error = nanosleep1(l, CLOCK_MONOTONIC, 0, &rqt,
289 SCARG(uap, rmtp) ? &rmt : NULL);
290 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
291 return error;
292
293 error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
294 return error1 ? error1 : error;
295 }
296
297 /* ARGSUSED */
298 int
299 sys_clock_nanosleep(struct lwp *l, const struct sys_clock_nanosleep_args *uap,
300 register_t *retval)
301 {
302 /* {
303 syscallarg(clockid_t) clock_id;
304 syscallarg(int) flags;
305 syscallarg(struct timespec *) rqtp;
306 syscallarg(struct timespec *) rmtp;
307 } */
308 struct timespec rmt, rqt;
309 int error, error1;
310
311 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
312 if (error)
313 goto out;
314
315 error = nanosleep1(l, SCARG(uap, clock_id), SCARG(uap, flags), &rqt,
316 SCARG(uap, rmtp) ? &rmt : NULL);
317 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
318 goto out;
319 return error;
320
321 if ((error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt))) != 0)
322 error = error1;
323 out:
324 *retval = error;
325 return 0;
326 }
327
328 int
329 nanosleep1(struct lwp *l, clockid_t clock_id, int flags, struct timespec *rqt,
330 struct timespec *rmt)
331 {
332 struct timespec rmtstart;
333 int error, timo;
334
335 if ((error = ts2timo(clock_id, flags, rqt, &timo, &rmtstart)) != 0)
336 return error == ETIMEDOUT ? 0 : error;
337
338 /*
339 * Avoid inadvertently sleeping forever
340 */
341 if (timo == 0)
342 timo = 1;
343 again:
344 error = kpause("nanoslp", true, timo, NULL);
345 if (rmt != NULL || error == 0) {
346 struct timespec rmtend;
347 struct timespec t0;
348 struct timespec *t;
349
350 (void)clock_gettime1(clock_id, &rmtend);
351 t = (rmt != NULL) ? rmt : &t0;
352 if (flags & TIMER_ABSTIME) {
353 timespecsub(rqt, &rmtend, t);
354 } else {
355 timespecsub(&rmtend, &rmtstart, t);
356 timespecsub(rqt, t, t);
357 }
358 if (t->tv_sec < 0)
359 timespecclear(t);
360 if (error == 0) {
361 timo = tstohz(t);
362 if (timo > 0)
363 goto again;
364 }
365 }
366
367 if (error == ERESTART)
368 error = EINTR;
369 if (error == EWOULDBLOCK)
370 error = 0;
371
372 return error;
373 }
374
375 /* ARGSUSED */
376 int
377 sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
378 register_t *retval)
379 {
380 /* {
381 syscallarg(struct timeval *) tp;
382 syscallarg(void *) tzp; really "struct timezone *";
383 } */
384 struct timeval atv;
385 int error = 0;
386 struct timezone tzfake;
387
388 if (SCARG(uap, tp)) {
389 microtime(&atv);
390 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
391 if (error)
392 return (error);
393 }
394 if (SCARG(uap, tzp)) {
395 /*
396 * NetBSD has no kernel notion of time zone, so we just
397 * fake up a timezone struct and return it if demanded.
398 */
399 tzfake.tz_minuteswest = 0;
400 tzfake.tz_dsttime = 0;
401 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
402 }
403 return (error);
404 }
405
406 /* ARGSUSED */
407 int
408 sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
409 register_t *retval)
410 {
411 /* {
412 syscallarg(const struct timeval *) tv;
413 syscallarg(const void *) tzp; really "const struct timezone *";
414 } */
415
416 return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
417 }
418
419 int
420 settimeofday1(const struct timeval *utv, bool userspace,
421 const void *utzp, struct lwp *l, bool check_kauth)
422 {
423 struct timeval atv;
424 struct timespec ts;
425 int error;
426
427 /* Verify all parameters before changing time. */
428
429 /*
430 * NetBSD has no kernel notion of time zone, and only an
431 * obsolete program would try to set it, so we log a warning.
432 */
433 if (utzp)
434 log(LOG_WARNING, "pid %d attempted to set the "
435 "(obsolete) kernel time zone\n", l->l_proc->p_pid);
436
437 if (utv == NULL)
438 return 0;
439
440 if (userspace) {
441 if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
442 return error;
443 utv = &atv;
444 }
445
446 TIMEVAL_TO_TIMESPEC(utv, &ts);
447 return settime1(l->l_proc, &ts, check_kauth);
448 }
449
450 int time_adjusted; /* set if an adjustment is made */
451
452 /* ARGSUSED */
453 int
454 sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
455 register_t *retval)
456 {
457 /* {
458 syscallarg(const struct timeval *) delta;
459 syscallarg(struct timeval *) olddelta;
460 } */
461 int error;
462 struct timeval atv, oldatv;
463
464 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
465 KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
466 return error;
467
468 if (SCARG(uap, delta)) {
469 error = copyin(SCARG(uap, delta), &atv,
470 sizeof(*SCARG(uap, delta)));
471 if (error)
472 return (error);
473 }
474 adjtime1(SCARG(uap, delta) ? &atv : NULL,
475 SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
476 if (SCARG(uap, olddelta))
477 error = copyout(&oldatv, SCARG(uap, olddelta),
478 sizeof(*SCARG(uap, olddelta)));
479 return error;
480 }
481
482 void
483 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
484 {
485 extern int64_t time_adjtime; /* in kern_ntptime.c */
486
487 if (olddelta) {
488 mutex_spin_enter(&timecounter_lock);
489 olddelta->tv_sec = time_adjtime / 1000000;
490 olddelta->tv_usec = time_adjtime % 1000000;
491 if (olddelta->tv_usec < 0) {
492 olddelta->tv_usec += 1000000;
493 olddelta->tv_sec--;
494 }
495 mutex_spin_exit(&timecounter_lock);
496 }
497
498 if (delta) {
499 mutex_spin_enter(&timecounter_lock);
500 time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
501
502 if (time_adjtime) {
503 /* We need to save the system time during shutdown */
504 time_adjusted |= 1;
505 }
506 mutex_spin_exit(&timecounter_lock);
507 }
508 }
509
510 /*
511 * Interval timer support. Both the BSD getitimer() family and the POSIX
512 * timer_*() family of routines are supported.
513 *
514 * All timers are kept in an array pointed to by p_timers, which is
515 * allocated on demand - many processes don't use timers at all. The
516 * first three elements in this array are reserved for the BSD timers:
517 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element
518 * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be
519 * allocated by the timer_create() syscall.
520 *
521 * Realtime timers are kept in the ptimer structure as an absolute
522 * time; virtual time timers are kept as a linked list of deltas.
523 * Virtual time timers are processed in the hardclock() routine of
524 * kern_clock.c. The real time timer is processed by a callout
525 * routine, called from the softclock() routine. Since a callout may
526 * be delayed in real time due to interrupt processing in the system,
527 * it is possible for the real time timeout routine (realtimeexpire,
528 * given below), to be delayed in real time past when it is supposed
529 * to occur. It does not suffice, therefore, to reload the real timer
530 * .it_value from the real time timers .it_interval. Rather, we
531 * compute the next time in absolute time the timer should go off. */
532
533 /* Allocate a POSIX realtime timer. */
534 int
535 sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
536 register_t *retval)
537 {
538 /* {
539 syscallarg(clockid_t) clock_id;
540 syscallarg(struct sigevent *) evp;
541 syscallarg(timer_t *) timerid;
542 } */
543
544 return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
545 SCARG(uap, evp), copyin, l);
546 }
547
548 int
549 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
550 copyin_t fetch_event, struct lwp *l)
551 {
552 int error;
553 timer_t timerid;
554 struct ptimers *pts;
555 struct ptimer *pt;
556 struct proc *p;
557
558 p = l->l_proc;
559
560 if ((u_int)id > CLOCK_MONOTONIC)
561 return (EINVAL);
562
563 if ((pts = p->p_timers) == NULL)
564 pts = timers_alloc(p);
565
566 pt = pool_get(&ptimer_pool, PR_WAITOK);
567 if (evp != NULL) {
568 if (((error =
569 (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
570 ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
571 (pt->pt_ev.sigev_notify > SIGEV_SA)) ||
572 (pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
573 (pt->pt_ev.sigev_signo <= 0 ||
574 pt->pt_ev.sigev_signo >= NSIG))) {
575 pool_put(&ptimer_pool, pt);
576 return (error ? error : EINVAL);
577 }
578 }
579
580 /* Find a free timer slot, skipping those reserved for setitimer(). */
581 mutex_spin_enter(&timer_lock);
582 for (timerid = 3; timerid < TIMER_MAX; timerid++)
583 if (pts->pts_timers[timerid] == NULL)
584 break;
585 if (timerid == TIMER_MAX) {
586 mutex_spin_exit(&timer_lock);
587 pool_put(&ptimer_pool, pt);
588 return EAGAIN;
589 }
590 if (evp == NULL) {
591 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
592 switch (id) {
593 case CLOCK_REALTIME:
594 case CLOCK_MONOTONIC:
595 pt->pt_ev.sigev_signo = SIGALRM;
596 break;
597 case CLOCK_VIRTUAL:
598 pt->pt_ev.sigev_signo = SIGVTALRM;
599 break;
600 case CLOCK_PROF:
601 pt->pt_ev.sigev_signo = SIGPROF;
602 break;
603 }
604 pt->pt_ev.sigev_value.sival_int = timerid;
605 }
606 pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
607 pt->pt_info.ksi_errno = 0;
608 pt->pt_info.ksi_code = 0;
609 pt->pt_info.ksi_pid = p->p_pid;
610 pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
611 pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
612 pt->pt_type = id;
613 pt->pt_proc = p;
614 pt->pt_overruns = 0;
615 pt->pt_poverruns = 0;
616 pt->pt_entry = timerid;
617 pt->pt_queued = false;
618 timespecclear(&pt->pt_time.it_value);
619 if (!CLOCK_VIRTUAL_P(id))
620 callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
621 else
622 pt->pt_active = 0;
623
624 pts->pts_timers[timerid] = pt;
625 mutex_spin_exit(&timer_lock);
626
627 return copyout(&timerid, tid, sizeof(timerid));
628 }
629
630 /* Delete a POSIX realtime timer */
631 int
632 sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
633 register_t *retval)
634 {
635 /* {
636 syscallarg(timer_t) timerid;
637 } */
638 struct proc *p = l->l_proc;
639 timer_t timerid;
640 struct ptimers *pts;
641 struct ptimer *pt, *ptn;
642
643 timerid = SCARG(uap, timerid);
644 pts = p->p_timers;
645
646 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
647 return (EINVAL);
648
649 mutex_spin_enter(&timer_lock);
650 if ((pt = pts->pts_timers[timerid]) == NULL) {
651 mutex_spin_exit(&timer_lock);
652 return (EINVAL);
653 }
654 if (CLOCK_VIRTUAL_P(pt->pt_type)) {
655 if (pt->pt_active) {
656 ptn = LIST_NEXT(pt, pt_list);
657 LIST_REMOVE(pt, pt_list);
658 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
659 timespecadd(&pt->pt_time.it_value,
660 &ptn->pt_time.it_value,
661 &ptn->pt_time.it_value);
662 pt->pt_active = 0;
663 }
664 }
665 itimerfree(pts, timerid);
666
667 return (0);
668 }
669
670 /*
671 * Set up the given timer. The value in pt->pt_time.it_value is taken
672 * to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC timers and
673 * a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
674 */
675 void
676 timer_settime(struct ptimer *pt)
677 {
678 struct ptimer *ptn, *pptn;
679 struct ptlist *ptl;
680
681 KASSERT(mutex_owned(&timer_lock));
682
683 if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
684 callout_halt(&pt->pt_ch, &timer_lock);
685 if (timespecisset(&pt->pt_time.it_value)) {
686 /*
687 * Don't need to check tshzto() return value, here.
688 * callout_reset() does it for us.
689 */
690 callout_reset(&pt->pt_ch,
691 pt->pt_type == CLOCK_MONOTONIC ?
692 tshztoup(&pt->pt_time.it_value) :
693 tshzto(&pt->pt_time.it_value),
694 realtimerexpire, pt);
695 }
696 } else {
697 if (pt->pt_active) {
698 ptn = LIST_NEXT(pt, pt_list);
699 LIST_REMOVE(pt, pt_list);
700 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
701 timespecadd(&pt->pt_time.it_value,
702 &ptn->pt_time.it_value,
703 &ptn->pt_time.it_value);
704 }
705 if (timespecisset(&pt->pt_time.it_value)) {
706 if (pt->pt_type == CLOCK_VIRTUAL)
707 ptl = &pt->pt_proc->p_timers->pts_virtual;
708 else
709 ptl = &pt->pt_proc->p_timers->pts_prof;
710
711 for (ptn = LIST_FIRST(ptl), pptn = NULL;
712 ptn && timespeccmp(&pt->pt_time.it_value,
713 &ptn->pt_time.it_value, >);
714 pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
715 timespecsub(&pt->pt_time.it_value,
716 &ptn->pt_time.it_value,
717 &pt->pt_time.it_value);
718
719 if (pptn)
720 LIST_INSERT_AFTER(pptn, pt, pt_list);
721 else
722 LIST_INSERT_HEAD(ptl, pt, pt_list);
723
724 for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
725 timespecsub(&ptn->pt_time.it_value,
726 &pt->pt_time.it_value,
727 &ptn->pt_time.it_value);
728
729 pt->pt_active = 1;
730 } else
731 pt->pt_active = 0;
732 }
733 }
734
735 void
736 timer_gettime(struct ptimer *pt, struct itimerspec *aits)
737 {
738 struct timespec now;
739 struct ptimer *ptn;
740
741 KASSERT(mutex_owned(&timer_lock));
742
743 *aits = pt->pt_time;
744 if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
745 /*
746 * Convert from absolute to relative time in .it_value
747 * part of real time timer. If time for real time
748 * timer has passed return 0, else return difference
749 * between current time and time for the timer to go
750 * off.
751 */
752 if (timespecisset(&aits->it_value)) {
753 if (pt->pt_type == CLOCK_REALTIME) {
754 getnanotime(&now);
755 } else { /* CLOCK_MONOTONIC */
756 getnanouptime(&now);
757 }
758 if (timespeccmp(&aits->it_value, &now, <))
759 timespecclear(&aits->it_value);
760 else
761 timespecsub(&aits->it_value, &now,
762 &aits->it_value);
763 }
764 } else if (pt->pt_active) {
765 if (pt->pt_type == CLOCK_VIRTUAL)
766 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
767 else
768 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
769 for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
770 timespecadd(&aits->it_value,
771 &ptn->pt_time.it_value, &aits->it_value);
772 KASSERT(ptn != NULL); /* pt should be findable on the list */
773 } else
774 timespecclear(&aits->it_value);
775 }
776
777
778
779 /* Set and arm a POSIX realtime timer */
780 int
781 sys___timer_settime50(struct lwp *l,
782 const struct sys___timer_settime50_args *uap,
783 register_t *retval)
784 {
785 /* {
786 syscallarg(timer_t) timerid;
787 syscallarg(int) flags;
788 syscallarg(const struct itimerspec *) value;
789 syscallarg(struct itimerspec *) ovalue;
790 } */
791 int error;
792 struct itimerspec value, ovalue, *ovp = NULL;
793
794 if ((error = copyin(SCARG(uap, value), &value,
795 sizeof(struct itimerspec))) != 0)
796 return (error);
797
798 if (SCARG(uap, ovalue))
799 ovp = &ovalue;
800
801 if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
802 SCARG(uap, flags), l->l_proc)) != 0)
803 return error;
804
805 if (ovp)
806 return copyout(&ovalue, SCARG(uap, ovalue),
807 sizeof(struct itimerspec));
808 return 0;
809 }
810
811 int
812 dotimer_settime(int timerid, struct itimerspec *value,
813 struct itimerspec *ovalue, int flags, struct proc *p)
814 {
815 struct timespec now;
816 struct itimerspec val, oval;
817 struct ptimers *pts;
818 struct ptimer *pt;
819 int error;
820
821 pts = p->p_timers;
822
823 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
824 return EINVAL;
825 val = *value;
826 if ((error = itimespecfix(&val.it_value)) != 0 ||
827 (error = itimespecfix(&val.it_interval)) != 0)
828 return error;
829
830 mutex_spin_enter(&timer_lock);
831 if ((pt = pts->pts_timers[timerid]) == NULL) {
832 mutex_spin_exit(&timer_lock);
833 return EINVAL;
834 }
835
836 oval = pt->pt_time;
837 pt->pt_time = val;
838
839 /*
840 * If we've been passed a relative time for a realtime timer,
841 * convert it to absolute; if an absolute time for a virtual
842 * timer, convert it to relative and make sure we don't set it
843 * to zero, which would cancel the timer, or let it go
844 * negative, which would confuse the comparison tests.
845 */
846 if (timespecisset(&pt->pt_time.it_value)) {
847 if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
848 if ((flags & TIMER_ABSTIME) == 0) {
849 if (pt->pt_type == CLOCK_REALTIME) {
850 getnanotime(&now);
851 } else { /* CLOCK_MONOTONIC */
852 getnanouptime(&now);
853 }
854 timespecadd(&pt->pt_time.it_value, &now,
855 &pt->pt_time.it_value);
856 }
857 } else {
858 if ((flags & TIMER_ABSTIME) != 0) {
859 getnanotime(&now);
860 timespecsub(&pt->pt_time.it_value, &now,
861 &pt->pt_time.it_value);
862 if (!timespecisset(&pt->pt_time.it_value) ||
863 pt->pt_time.it_value.tv_sec < 0) {
864 pt->pt_time.it_value.tv_sec = 0;
865 pt->pt_time.it_value.tv_nsec = 1;
866 }
867 }
868 }
869 }
870
871 timer_settime(pt);
872 mutex_spin_exit(&timer_lock);
873
874 if (ovalue)
875 *ovalue = oval;
876
877 return (0);
878 }
879
880 /* Return the time remaining until a POSIX timer fires. */
881 int
882 sys___timer_gettime50(struct lwp *l,
883 const struct sys___timer_gettime50_args *uap, register_t *retval)
884 {
885 /* {
886 syscallarg(timer_t) timerid;
887 syscallarg(struct itimerspec *) value;
888 } */
889 struct itimerspec its;
890 int error;
891
892 if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
893 &its)) != 0)
894 return error;
895
896 return copyout(&its, SCARG(uap, value), sizeof(its));
897 }
898
899 int
900 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
901 {
902 struct ptimer *pt;
903 struct ptimers *pts;
904
905 pts = p->p_timers;
906 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
907 return (EINVAL);
908 mutex_spin_enter(&timer_lock);
909 if ((pt = pts->pts_timers[timerid]) == NULL) {
910 mutex_spin_exit(&timer_lock);
911 return (EINVAL);
912 }
913 timer_gettime(pt, its);
914 mutex_spin_exit(&timer_lock);
915
916 return 0;
917 }
918
919 /*
920 * Return the count of the number of times a periodic timer expired
921 * while a notification was already pending. The counter is reset when
922 * a timer expires and a notification can be posted.
923 */
924 int
925 sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
926 register_t *retval)
927 {
928 /* {
929 syscallarg(timer_t) timerid;
930 } */
931 struct proc *p = l->l_proc;
932 struct ptimers *pts;
933 int timerid;
934 struct ptimer *pt;
935
936 timerid = SCARG(uap, timerid);
937
938 pts = p->p_timers;
939 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
940 return (EINVAL);
941 mutex_spin_enter(&timer_lock);
942 if ((pt = pts->pts_timers[timerid]) == NULL) {
943 mutex_spin_exit(&timer_lock);
944 return (EINVAL);
945 }
946 *retval = pt->pt_poverruns;
947 mutex_spin_exit(&timer_lock);
948
949 return (0);
950 }
951
952 /*
953 * Real interval timer expired:
954 * send process whose timer expired an alarm signal.
955 * If time is not set up to reload, then just return.
956 * Else compute next time timer should go off which is > current time.
957 * This is where delay in processing this timeout causes multiple
958 * SIGALRM calls to be compressed into one.
959 */
960 void
961 realtimerexpire(void *arg)
962 {
963 uint64_t last_val, next_val, interval, now_ns;
964 struct timespec now, next;
965 struct ptimer *pt;
966 int backwards;
967
968 pt = arg;
969
970 mutex_spin_enter(&timer_lock);
971 itimerfire(pt);
972
973 if (!timespecisset(&pt->pt_time.it_interval)) {
974 timespecclear(&pt->pt_time.it_value);
975 mutex_spin_exit(&timer_lock);
976 return;
977 }
978
979 if (pt->pt_type == CLOCK_MONOTONIC) {
980 getnanouptime(&now);
981 } else {
982 getnanotime(&now);
983 }
984 backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
985 timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
986 /* Handle the easy case of non-overflown timers first. */
987 if (!backwards && timespeccmp(&next, &now, >)) {
988 pt->pt_time.it_value = next;
989 } else {
990 now_ns = timespec2ns(&now);
991 last_val = timespec2ns(&pt->pt_time.it_value);
992 interval = timespec2ns(&pt->pt_time.it_interval);
993
994 next_val = now_ns +
995 (now_ns - last_val + interval - 1) % interval;
996
997 if (backwards)
998 next_val += interval;
999 else
1000 pt->pt_overruns += (now_ns - last_val) / interval;
1001
1002 pt->pt_time.it_value.tv_sec = next_val / 1000000000;
1003 pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
1004 }
1005
1006 /*
1007 * Don't need to check tshzto() return value, here.
1008 * callout_reset() does it for us.
1009 */
1010 callout_reset(&pt->pt_ch, pt->pt_type == CLOCK_MONOTONIC ?
1011 tshztoup(&pt->pt_time.it_value) : tshzto(&pt->pt_time.it_value),
1012 realtimerexpire, pt);
1013 mutex_spin_exit(&timer_lock);
1014 }
1015
1016 /* BSD routine to get the value of an interval timer. */
1017 /* ARGSUSED */
1018 int
1019 sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
1020 register_t *retval)
1021 {
1022 /* {
1023 syscallarg(int) which;
1024 syscallarg(struct itimerval *) itv;
1025 } */
1026 struct proc *p = l->l_proc;
1027 struct itimerval aitv;
1028 int error;
1029
1030 error = dogetitimer(p, SCARG(uap, which), &aitv);
1031 if (error)
1032 return error;
1033 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1034 }
1035
1036 int
1037 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1038 {
1039 struct ptimers *pts;
1040 struct ptimer *pt;
1041 struct itimerspec its;
1042
1043 if ((u_int)which > ITIMER_MONOTONIC)
1044 return (EINVAL);
1045
1046 mutex_spin_enter(&timer_lock);
1047 pts = p->p_timers;
1048 if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
1049 timerclear(&itvp->it_value);
1050 timerclear(&itvp->it_interval);
1051 } else {
1052 timer_gettime(pt, &its);
1053 TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
1054 TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
1055 }
1056 mutex_spin_exit(&timer_lock);
1057
1058 return 0;
1059 }
1060
1061 /* BSD routine to set/arm an interval timer. */
1062 /* ARGSUSED */
1063 int
1064 sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
1065 register_t *retval)
1066 {
1067 /* {
1068 syscallarg(int) which;
1069 syscallarg(const struct itimerval *) itv;
1070 syscallarg(struct itimerval *) oitv;
1071 } */
1072 struct proc *p = l->l_proc;
1073 int which = SCARG(uap, which);
1074 struct sys___getitimer50_args getargs;
1075 const struct itimerval *itvp;
1076 struct itimerval aitv;
1077 int error;
1078
1079 if ((u_int)which > ITIMER_MONOTONIC)
1080 return (EINVAL);
1081 itvp = SCARG(uap, itv);
1082 if (itvp &&
1083 (error = copyin(itvp, &aitv, sizeof(struct itimerval))) != 0)
1084 return (error);
1085 if (SCARG(uap, oitv) != NULL) {
1086 SCARG(&getargs, which) = which;
1087 SCARG(&getargs, itv) = SCARG(uap, oitv);
1088 if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
1089 return (error);
1090 }
1091 if (itvp == 0)
1092 return (0);
1093
1094 return dosetitimer(p, which, &aitv);
1095 }
1096
1097 int
1098 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1099 {
1100 struct timespec now;
1101 struct ptimers *pts;
1102 struct ptimer *pt, *spare;
1103
1104 KASSERT((u_int)which <= CLOCK_MONOTONIC);
1105 if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1106 return (EINVAL);
1107
1108 /*
1109 * Don't bother allocating data structures if the process just
1110 * wants to clear the timer.
1111 */
1112 spare = NULL;
1113 pts = p->p_timers;
1114 retry:
1115 if (!timerisset(&itvp->it_value) && (pts == NULL ||
1116 pts->pts_timers[which] == NULL))
1117 return (0);
1118 if (pts == NULL)
1119 pts = timers_alloc(p);
1120 mutex_spin_enter(&timer_lock);
1121 pt = pts->pts_timers[which];
1122 if (pt == NULL) {
1123 if (spare == NULL) {
1124 mutex_spin_exit(&timer_lock);
1125 spare = pool_get(&ptimer_pool, PR_WAITOK);
1126 goto retry;
1127 }
1128 pt = spare;
1129 spare = NULL;
1130 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1131 pt->pt_ev.sigev_value.sival_int = which;
1132 pt->pt_overruns = 0;
1133 pt->pt_proc = p;
1134 pt->pt_type = which;
1135 pt->pt_entry = which;
1136 pt->pt_queued = false;
1137 if (pt->pt_type == CLOCK_REALTIME)
1138 callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
1139 else
1140 pt->pt_active = 0;
1141
1142 switch (which) {
1143 case ITIMER_REAL:
1144 case ITIMER_MONOTONIC:
1145 pt->pt_ev.sigev_signo = SIGALRM;
1146 break;
1147 case ITIMER_VIRTUAL:
1148 pt->pt_ev.sigev_signo = SIGVTALRM;
1149 break;
1150 case ITIMER_PROF:
1151 pt->pt_ev.sigev_signo = SIGPROF;
1152 break;
1153 }
1154 pts->pts_timers[which] = pt;
1155 }
1156
1157 TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
1158 TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
1159
1160 if (timespecisset(&pt->pt_time.it_value)) {
1161 /* Convert to absolute time */
1162 /* XXX need to wrap in splclock for timecounters case? */
1163 switch (which) {
1164 case ITIMER_REAL:
1165 getnanotime(&now);
1166 timespecadd(&pt->pt_time.it_value, &now,
1167 &pt->pt_time.it_value);
1168 break;
1169 case ITIMER_MONOTONIC:
1170 getnanouptime(&now);
1171 timespecadd(&pt->pt_time.it_value, &now,
1172 &pt->pt_time.it_value);
1173 break;
1174 default:
1175 break;
1176 }
1177 }
1178 timer_settime(pt);
1179 mutex_spin_exit(&timer_lock);
1180 if (spare != NULL)
1181 pool_put(&ptimer_pool, spare);
1182
1183 return (0);
1184 }
1185
1186 /* Utility routines to manage the array of pointers to timers. */
1187 struct ptimers *
1188 timers_alloc(struct proc *p)
1189 {
1190 struct ptimers *pts;
1191 int i;
1192
1193 pts = pool_get(&ptimers_pool, PR_WAITOK);
1194 LIST_INIT(&pts->pts_virtual);
1195 LIST_INIT(&pts->pts_prof);
1196 for (i = 0; i < TIMER_MAX; i++)
1197 pts->pts_timers[i] = NULL;
1198 pts->pts_fired = 0;
1199 mutex_spin_enter(&timer_lock);
1200 if (p->p_timers == NULL) {
1201 p->p_timers = pts;
1202 mutex_spin_exit(&timer_lock);
1203 return pts;
1204 }
1205 mutex_spin_exit(&timer_lock);
1206 pool_put(&ptimers_pool, pts);
1207 return p->p_timers;
1208 }
1209
1210 /*
1211 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1212 * then clean up all timers and free all the data structures. If
1213 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1214 * by timer_create(), not the BSD setitimer() timers, and only free the
1215 * structure if none of those remain.
1216 */
1217 void
1218 timers_free(struct proc *p, int which)
1219 {
1220 struct ptimers *pts;
1221 struct ptimer *ptn;
1222 struct timespec ts;
1223 int i;
1224
1225 if (p->p_timers == NULL)
1226 return;
1227
1228 pts = p->p_timers;
1229 mutex_spin_enter(&timer_lock);
1230 if (which == TIMERS_ALL) {
1231 p->p_timers = NULL;
1232 i = 0;
1233 } else {
1234 timespecclear(&ts);
1235 for (ptn = LIST_FIRST(&pts->pts_virtual);
1236 ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1237 ptn = LIST_NEXT(ptn, pt_list)) {
1238 KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1239 timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1240 }
1241 LIST_FIRST(&pts->pts_virtual) = NULL;
1242 if (ptn) {
1243 KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1244 timespecadd(&ts, &ptn->pt_time.it_value,
1245 &ptn->pt_time.it_value);
1246 LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
1247 }
1248 timespecclear(&ts);
1249 for (ptn = LIST_FIRST(&pts->pts_prof);
1250 ptn && ptn != pts->pts_timers[ITIMER_PROF];
1251 ptn = LIST_NEXT(ptn, pt_list)) {
1252 KASSERT(ptn->pt_type == CLOCK_PROF);
1253 timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1254 }
1255 LIST_FIRST(&pts->pts_prof) = NULL;
1256 if (ptn) {
1257 KASSERT(ptn->pt_type == CLOCK_PROF);
1258 timespecadd(&ts, &ptn->pt_time.it_value,
1259 &ptn->pt_time.it_value);
1260 LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
1261 }
1262 i = 3;
1263 }
1264 for ( ; i < TIMER_MAX; i++) {
1265 if (pts->pts_timers[i] != NULL) {
1266 itimerfree(pts, i);
1267 mutex_spin_enter(&timer_lock);
1268 }
1269 }
1270 if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
1271 pts->pts_timers[2] == NULL) {
1272 p->p_timers = NULL;
1273 mutex_spin_exit(&timer_lock);
1274 pool_put(&ptimers_pool, pts);
1275 } else
1276 mutex_spin_exit(&timer_lock);
1277 }
1278
1279 static void
1280 itimerfree(struct ptimers *pts, int index)
1281 {
1282 struct ptimer *pt;
1283
1284 KASSERT(mutex_owned(&timer_lock));
1285
1286 pt = pts->pts_timers[index];
1287 pts->pts_timers[index] = NULL;
1288 if (!CLOCK_VIRTUAL_P(pt->pt_type))
1289 callout_halt(&pt->pt_ch, &timer_lock);
1290 if (pt->pt_queued)
1291 TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1292 mutex_spin_exit(&timer_lock);
1293 if (!CLOCK_VIRTUAL_P(pt->pt_type))
1294 callout_destroy(&pt->pt_ch);
1295 pool_put(&ptimer_pool, pt);
1296 }
1297
1298 /*
1299 * Decrement an interval timer by a specified number
1300 * of nanoseconds, which must be less than a second,
1301 * i.e. < 1000000000. If the timer expires, then reload
1302 * it. In this case, carry over (nsec - old value) to
1303 * reduce the value reloaded into the timer so that
1304 * the timer does not drift. This routine assumes
1305 * that it is called in a context where the timers
1306 * on which it is operating cannot change in value.
1307 */
1308 static int
1309 itimerdecr(struct ptimer *pt, int nsec)
1310 {
1311 struct itimerspec *itp;
1312
1313 KASSERT(mutex_owned(&timer_lock));
1314 KASSERT(CLOCK_VIRTUAL_P(pt->pt_type));
1315
1316 itp = &pt->pt_time;
1317 if (itp->it_value.tv_nsec < nsec) {
1318 if (itp->it_value.tv_sec == 0) {
1319 /* expired, and already in next interval */
1320 nsec -= itp->it_value.tv_nsec;
1321 goto expire;
1322 }
1323 itp->it_value.tv_nsec += 1000000000;
1324 itp->it_value.tv_sec--;
1325 }
1326 itp->it_value.tv_nsec -= nsec;
1327 nsec = 0;
1328 if (timespecisset(&itp->it_value))
1329 return (1);
1330 /* expired, exactly at end of interval */
1331 expire:
1332 if (timespecisset(&itp->it_interval)) {
1333 itp->it_value = itp->it_interval;
1334 itp->it_value.tv_nsec -= nsec;
1335 if (itp->it_value.tv_nsec < 0) {
1336 itp->it_value.tv_nsec += 1000000000;
1337 itp->it_value.tv_sec--;
1338 }
1339 timer_settime(pt);
1340 } else
1341 itp->it_value.tv_nsec = 0; /* sec is already 0 */
1342 return (0);
1343 }
1344
1345 static void
1346 itimerfire(struct ptimer *pt)
1347 {
1348
1349 KASSERT(mutex_owned(&timer_lock));
1350
1351 /*
1352 * XXX Can overrun, but we don't do signal queueing yet, anyway.
1353 * XXX Relying on the clock interrupt is stupid.
1354 */
1355 if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL || pt->pt_queued) {
1356 return;
1357 }
1358 TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
1359 pt->pt_queued = true;
1360 softint_schedule(timer_sih);
1361 }
1362
1363 void
1364 timer_tick(lwp_t *l, bool user)
1365 {
1366 struct ptimers *pts;
1367 struct ptimer *pt;
1368 proc_t *p;
1369
1370 p = l->l_proc;
1371 if (p->p_timers == NULL)
1372 return;
1373
1374 mutex_spin_enter(&timer_lock);
1375 if ((pts = l->l_proc->p_timers) != NULL) {
1376 /*
1377 * Run current process's virtual and profile time, as needed.
1378 */
1379 if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
1380 if (itimerdecr(pt, tick * 1000) == 0)
1381 itimerfire(pt);
1382 if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
1383 if (itimerdecr(pt, tick * 1000) == 0)
1384 itimerfire(pt);
1385 }
1386 mutex_spin_exit(&timer_lock);
1387 }
1388
1389 static void
1390 timer_intr(void *cookie)
1391 {
1392 ksiginfo_t ksi;
1393 struct ptimer *pt;
1394 proc_t *p;
1395
1396 mutex_enter(proc_lock);
1397 mutex_spin_enter(&timer_lock);
1398 while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
1399 TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1400 KASSERT(pt->pt_queued);
1401 pt->pt_queued = false;
1402
1403 if (pt->pt_proc->p_timers == NULL) {
1404 /* Process is dying. */
1405 continue;
1406 }
1407 p = pt->pt_proc;
1408 if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
1409 continue;
1410 }
1411 if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
1412 pt->pt_overruns++;
1413 continue;
1414 }
1415
1416 KSI_INIT(&ksi);
1417 ksi.ksi_signo = pt->pt_ev.sigev_signo;
1418 ksi.ksi_code = SI_TIMER;
1419 ksi.ksi_value = pt->pt_ev.sigev_value;
1420 pt->pt_poverruns = pt->pt_overruns;
1421 pt->pt_overruns = 0;
1422 mutex_spin_exit(&timer_lock);
1423 kpsignal(p, &ksi, NULL);
1424 mutex_spin_enter(&timer_lock);
1425 }
1426 mutex_spin_exit(&timer_lock);
1427 mutex_exit(proc_lock);
1428 }
1429
1430 /*
1431 * Check if the time will wrap if set to ts.
1432 *
1433 * ts - timespec describing the new time
1434 * delta - the delta between the current time and ts
1435 */
1436 bool
1437 time_wraps(struct timespec *ts, struct timespec *delta)
1438 {
1439
1440 /*
1441 * Don't allow the time to be set forward so far it
1442 * will wrap and become negative, thus allowing an
1443 * attacker to bypass the next check below. The
1444 * cutoff is 1 year before rollover occurs, so even
1445 * if the attacker uses adjtime(2) to move the time
1446 * past the cutoff, it will take a very long time
1447 * to get to the wrap point.
1448 */
1449 if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
1450 (delta->tv_sec < 0 || delta->tv_nsec < 0))
1451 return true;
1452
1453 return false;
1454 }
1455