kern_time.c revision 1.182 1 /* $NetBSD: kern_time.c,v 1.182 2015/10/06 15:03:34 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1986, 1989, 1993
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
61 */
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.182 2015/10/06 15:03:34 christos Exp $");
65
66 #include <sys/param.h>
67 #include <sys/resourcevar.h>
68 #include <sys/kernel.h>
69 #include <sys/systm.h>
70 #include <sys/proc.h>
71 #include <sys/vnode.h>
72 #include <sys/signalvar.h>
73 #include <sys/syslog.h>
74 #include <sys/timetc.h>
75 #include <sys/timex.h>
76 #include <sys/kauth.h>
77 #include <sys/mount.h>
78 #include <sys/syscallargs.h>
79 #include <sys/cpu.h>
80
81 static void timer_intr(void *);
82 static void itimerfire(struct ptimer *);
83 static void itimerfree(struct ptimers *, int);
84
85 kmutex_t timer_lock;
86
87 static void *timer_sih;
88 static TAILQ_HEAD(, ptimer) timer_queue;
89
90 struct pool ptimer_pool, ptimers_pool;
91
92 #define CLOCK_VIRTUAL_P(clockid) \
93 ((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)
94
95 CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
96 CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
97 CTASSERT(ITIMER_PROF == CLOCK_PROF);
98 CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC);
99
100 /*
101 * Initialize timekeeping.
102 */
103 void
104 time_init(void)
105 {
106
107 pool_init(&ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
108 &pool_allocator_nointr, IPL_NONE);
109 pool_init(&ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
110 &pool_allocator_nointr, IPL_NONE);
111 }
112
113 void
114 time_init2(void)
115 {
116
117 TAILQ_INIT(&timer_queue);
118 mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
119 timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
120 timer_intr, NULL);
121 }
122
123 /* Time of day and interval timer support.
124 *
125 * These routines provide the kernel entry points to get and set
126 * the time-of-day and per-process interval timers. Subroutines
127 * here provide support for adding and subtracting timeval structures
128 * and decrementing interval timers, optionally reloading the interval
129 * timers when they expire.
130 */
131
132 /* This function is used by clock_settime and settimeofday */
133 static int
134 settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
135 {
136 struct timespec delta, now;
137 int s;
138
139 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
140 s = splclock();
141 nanotime(&now);
142 timespecsub(ts, &now, &delta);
143
144 if (check_kauth && kauth_authorize_system(kauth_cred_get(),
145 KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
146 &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
147 splx(s);
148 return (EPERM);
149 }
150
151 #ifdef notyet
152 if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
153 splx(s);
154 return (EPERM);
155 }
156 #endif
157
158 tc_setclock(ts);
159
160 timespecadd(&boottime, &delta, &boottime);
161
162 resettodr();
163 splx(s);
164
165 return (0);
166 }
167
168 int
169 settime(struct proc *p, struct timespec *ts)
170 {
171 return (settime1(p, ts, true));
172 }
173
174 /* ARGSUSED */
175 int
176 sys___clock_gettime50(struct lwp *l,
177 const struct sys___clock_gettime50_args *uap, register_t *retval)
178 {
179 /* {
180 syscallarg(clockid_t) clock_id;
181 syscallarg(struct timespec *) tp;
182 } */
183 int error;
184 struct timespec ats;
185
186 error = clock_gettime1(SCARG(uap, clock_id), &ats);
187 if (error != 0)
188 return error;
189
190 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
191 }
192
193 /* ARGSUSED */
194 int
195 sys___clock_settime50(struct lwp *l,
196 const struct sys___clock_settime50_args *uap, register_t *retval)
197 {
198 /* {
199 syscallarg(clockid_t) clock_id;
200 syscallarg(const struct timespec *) tp;
201 } */
202 int error;
203 struct timespec ats;
204
205 if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
206 return error;
207
208 return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
209 }
210
211
212 int
213 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
214 bool check_kauth)
215 {
216 int error;
217
218 switch (clock_id) {
219 case CLOCK_REALTIME:
220 if ((error = settime1(p, tp, check_kauth)) != 0)
221 return (error);
222 break;
223 case CLOCK_MONOTONIC:
224 return (EINVAL); /* read-only clock */
225 default:
226 return (EINVAL);
227 }
228
229 return 0;
230 }
231
232 int
233 sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
234 register_t *retval)
235 {
236 /* {
237 syscallarg(clockid_t) clock_id;
238 syscallarg(struct timespec *) tp;
239 } */
240 struct timespec ts;
241 int error;
242
243 if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
244 return error;
245
246 if (SCARG(uap, tp))
247 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
248
249 return error;
250 }
251
252 int
253 clock_getres1(clockid_t clock_id, struct timespec *ts)
254 {
255
256 switch (clock_id) {
257 case CLOCK_REALTIME:
258 case CLOCK_MONOTONIC:
259 ts->tv_sec = 0;
260 if (tc_getfrequency() > 1000000000)
261 ts->tv_nsec = 1;
262 else
263 ts->tv_nsec = 1000000000 / tc_getfrequency();
264 break;
265 default:
266 return EINVAL;
267 }
268
269 return 0;
270 }
271
272 /* ARGSUSED */
273 int
274 sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
275 register_t *retval)
276 {
277 /* {
278 syscallarg(struct timespec *) rqtp;
279 syscallarg(struct timespec *) rmtp;
280 } */
281 struct timespec rmt, rqt;
282 int error, error1;
283
284 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
285 if (error)
286 return (error);
287
288 error = nanosleep1(l, CLOCK_MONOTONIC, 0, &rqt,
289 SCARG(uap, rmtp) ? &rmt : NULL);
290 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
291 return error;
292
293 error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
294 return error1 ? error1 : error;
295 }
296
297 /* ARGSUSED */
298 int
299 sys_clock_nanosleep(struct lwp *l, const struct sys_clock_nanosleep_args *uap,
300 register_t *retval)
301 {
302 /* {
303 syscallarg(clockid_t) clock_id;
304 syscallarg(int) flags;
305 syscallarg(struct timespec *) rqtp;
306 syscallarg(struct timespec *) rmtp;
307 } */
308 struct timespec rmt, rqt;
309 int error, error1;
310
311 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
312 if (error)
313 goto out;
314
315 error = nanosleep1(l, SCARG(uap, clock_id), SCARG(uap, flags), &rqt,
316 SCARG(uap, rmtp) ? &rmt : NULL);
317 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
318 goto out;
319
320 if ((error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt))) != 0)
321 error = error1;
322 out:
323 *retval = error;
324 return 0;
325 }
326
327 int
328 nanosleep1(struct lwp *l, clockid_t clock_id, int flags, struct timespec *rqt,
329 struct timespec *rmt)
330 {
331 struct timespec rmtstart;
332 int error, timo;
333
334 if ((error = ts2timo(clock_id, flags, rqt, &timo, &rmtstart)) != 0)
335 return error == ETIMEDOUT ? 0 : error;
336
337 /*
338 * Avoid inadvertently sleeping forever
339 */
340 if (timo == 0)
341 timo = 1;
342 again:
343 error = kpause("nanoslp", true, timo, NULL);
344 if (rmt != NULL || error == 0) {
345 struct timespec rmtend;
346 struct timespec t0;
347 struct timespec *t;
348
349 (void)clock_gettime1(clock_id, &rmtend);
350 t = (rmt != NULL) ? rmt : &t0;
351 if (flags & TIMER_ABSTIME) {
352 timespecsub(rqt, &rmtend, t);
353 } else {
354 timespecsub(&rmtend, &rmtstart, t);
355 timespecsub(rqt, t, t);
356 }
357 if (t->tv_sec < 0)
358 timespecclear(t);
359 if (error == 0) {
360 timo = tstohz(t);
361 if (timo > 0)
362 goto again;
363 }
364 }
365
366 if (error == ERESTART)
367 error = EINTR;
368 if (error == EWOULDBLOCK)
369 error = 0;
370
371 return error;
372 }
373
374 /* ARGSUSED */
375 int
376 sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
377 register_t *retval)
378 {
379 /* {
380 syscallarg(struct timeval *) tp;
381 syscallarg(void *) tzp; really "struct timezone *";
382 } */
383 struct timeval atv;
384 int error = 0;
385 struct timezone tzfake;
386
387 if (SCARG(uap, tp)) {
388 microtime(&atv);
389 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
390 if (error)
391 return (error);
392 }
393 if (SCARG(uap, tzp)) {
394 /*
395 * NetBSD has no kernel notion of time zone, so we just
396 * fake up a timezone struct and return it if demanded.
397 */
398 tzfake.tz_minuteswest = 0;
399 tzfake.tz_dsttime = 0;
400 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
401 }
402 return (error);
403 }
404
405 /* ARGSUSED */
406 int
407 sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
408 register_t *retval)
409 {
410 /* {
411 syscallarg(const struct timeval *) tv;
412 syscallarg(const void *) tzp; really "const struct timezone *";
413 } */
414
415 return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
416 }
417
418 int
419 settimeofday1(const struct timeval *utv, bool userspace,
420 const void *utzp, struct lwp *l, bool check_kauth)
421 {
422 struct timeval atv;
423 struct timespec ts;
424 int error;
425
426 /* Verify all parameters before changing time. */
427
428 /*
429 * NetBSD has no kernel notion of time zone, and only an
430 * obsolete program would try to set it, so we log a warning.
431 */
432 if (utzp)
433 log(LOG_WARNING, "pid %d attempted to set the "
434 "(obsolete) kernel time zone\n", l->l_proc->p_pid);
435
436 if (utv == NULL)
437 return 0;
438
439 if (userspace) {
440 if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
441 return error;
442 utv = &atv;
443 }
444
445 TIMEVAL_TO_TIMESPEC(utv, &ts);
446 return settime1(l->l_proc, &ts, check_kauth);
447 }
448
449 int time_adjusted; /* set if an adjustment is made */
450
451 /* ARGSUSED */
452 int
453 sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
454 register_t *retval)
455 {
456 /* {
457 syscallarg(const struct timeval *) delta;
458 syscallarg(struct timeval *) olddelta;
459 } */
460 int error;
461 struct timeval atv, oldatv;
462
463 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
464 KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
465 return error;
466
467 if (SCARG(uap, delta)) {
468 error = copyin(SCARG(uap, delta), &atv,
469 sizeof(*SCARG(uap, delta)));
470 if (error)
471 return (error);
472 }
473 adjtime1(SCARG(uap, delta) ? &atv : NULL,
474 SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
475 if (SCARG(uap, olddelta))
476 error = copyout(&oldatv, SCARG(uap, olddelta),
477 sizeof(*SCARG(uap, olddelta)));
478 return error;
479 }
480
481 void
482 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
483 {
484 extern int64_t time_adjtime; /* in kern_ntptime.c */
485
486 if (olddelta) {
487 mutex_spin_enter(&timecounter_lock);
488 olddelta->tv_sec = time_adjtime / 1000000;
489 olddelta->tv_usec = time_adjtime % 1000000;
490 if (olddelta->tv_usec < 0) {
491 olddelta->tv_usec += 1000000;
492 olddelta->tv_sec--;
493 }
494 mutex_spin_exit(&timecounter_lock);
495 }
496
497 if (delta) {
498 mutex_spin_enter(&timecounter_lock);
499 time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
500
501 if (time_adjtime) {
502 /* We need to save the system time during shutdown */
503 time_adjusted |= 1;
504 }
505 mutex_spin_exit(&timecounter_lock);
506 }
507 }
508
509 /*
510 * Interval timer support. Both the BSD getitimer() family and the POSIX
511 * timer_*() family of routines are supported.
512 *
513 * All timers are kept in an array pointed to by p_timers, which is
514 * allocated on demand - many processes don't use timers at all. The
515 * first three elements in this array are reserved for the BSD timers:
516 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element
517 * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be
518 * allocated by the timer_create() syscall.
519 *
520 * Realtime timers are kept in the ptimer structure as an absolute
521 * time; virtual time timers are kept as a linked list of deltas.
522 * Virtual time timers are processed in the hardclock() routine of
523 * kern_clock.c. The real time timer is processed by a callout
524 * routine, called from the softclock() routine. Since a callout may
525 * be delayed in real time due to interrupt processing in the system,
526 * it is possible for the real time timeout routine (realtimeexpire,
527 * given below), to be delayed in real time past when it is supposed
528 * to occur. It does not suffice, therefore, to reload the real timer
529 * .it_value from the real time timers .it_interval. Rather, we
530 * compute the next time in absolute time the timer should go off. */
531
532 /* Allocate a POSIX realtime timer. */
533 int
534 sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
535 register_t *retval)
536 {
537 /* {
538 syscallarg(clockid_t) clock_id;
539 syscallarg(struct sigevent *) evp;
540 syscallarg(timer_t *) timerid;
541 } */
542
543 return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
544 SCARG(uap, evp), copyin, l);
545 }
546
547 int
548 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
549 copyin_t fetch_event, struct lwp *l)
550 {
551 int error;
552 timer_t timerid;
553 struct ptimers *pts;
554 struct ptimer *pt;
555 struct proc *p;
556
557 p = l->l_proc;
558
559 if ((u_int)id > CLOCK_MONOTONIC)
560 return (EINVAL);
561
562 if ((pts = p->p_timers) == NULL)
563 pts = timers_alloc(p);
564
565 pt = pool_get(&ptimer_pool, PR_WAITOK);
566 if (evp != NULL) {
567 if (((error =
568 (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
569 ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
570 (pt->pt_ev.sigev_notify > SIGEV_SA)) ||
571 (pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
572 (pt->pt_ev.sigev_signo <= 0 ||
573 pt->pt_ev.sigev_signo >= NSIG))) {
574 pool_put(&ptimer_pool, pt);
575 return (error ? error : EINVAL);
576 }
577 }
578
579 /* Find a free timer slot, skipping those reserved for setitimer(). */
580 mutex_spin_enter(&timer_lock);
581 for (timerid = 3; timerid < TIMER_MAX; timerid++)
582 if (pts->pts_timers[timerid] == NULL)
583 break;
584 if (timerid == TIMER_MAX) {
585 mutex_spin_exit(&timer_lock);
586 pool_put(&ptimer_pool, pt);
587 return EAGAIN;
588 }
589 if (evp == NULL) {
590 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
591 switch (id) {
592 case CLOCK_REALTIME:
593 case CLOCK_MONOTONIC:
594 pt->pt_ev.sigev_signo = SIGALRM;
595 break;
596 case CLOCK_VIRTUAL:
597 pt->pt_ev.sigev_signo = SIGVTALRM;
598 break;
599 case CLOCK_PROF:
600 pt->pt_ev.sigev_signo = SIGPROF;
601 break;
602 }
603 pt->pt_ev.sigev_value.sival_int = timerid;
604 }
605 pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
606 pt->pt_info.ksi_errno = 0;
607 pt->pt_info.ksi_code = 0;
608 pt->pt_info.ksi_pid = p->p_pid;
609 pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
610 pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
611 pt->pt_type = id;
612 pt->pt_proc = p;
613 pt->pt_overruns = 0;
614 pt->pt_poverruns = 0;
615 pt->pt_entry = timerid;
616 pt->pt_queued = false;
617 timespecclear(&pt->pt_time.it_value);
618 if (!CLOCK_VIRTUAL_P(id))
619 callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
620 else
621 pt->pt_active = 0;
622
623 pts->pts_timers[timerid] = pt;
624 mutex_spin_exit(&timer_lock);
625
626 return copyout(&timerid, tid, sizeof(timerid));
627 }
628
629 /* Delete a POSIX realtime timer */
630 int
631 sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
632 register_t *retval)
633 {
634 /* {
635 syscallarg(timer_t) timerid;
636 } */
637 struct proc *p = l->l_proc;
638 timer_t timerid;
639 struct ptimers *pts;
640 struct ptimer *pt, *ptn;
641
642 timerid = SCARG(uap, timerid);
643 pts = p->p_timers;
644
645 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
646 return (EINVAL);
647
648 mutex_spin_enter(&timer_lock);
649 if ((pt = pts->pts_timers[timerid]) == NULL) {
650 mutex_spin_exit(&timer_lock);
651 return (EINVAL);
652 }
653 if (CLOCK_VIRTUAL_P(pt->pt_type)) {
654 if (pt->pt_active) {
655 ptn = LIST_NEXT(pt, pt_list);
656 LIST_REMOVE(pt, pt_list);
657 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
658 timespecadd(&pt->pt_time.it_value,
659 &ptn->pt_time.it_value,
660 &ptn->pt_time.it_value);
661 pt->pt_active = 0;
662 }
663 }
664 itimerfree(pts, timerid);
665
666 return (0);
667 }
668
669 /*
670 * Set up the given timer. The value in pt->pt_time.it_value is taken
671 * to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC timers and
672 * a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
673 */
674 void
675 timer_settime(struct ptimer *pt)
676 {
677 struct ptimer *ptn, *pptn;
678 struct ptlist *ptl;
679
680 KASSERT(mutex_owned(&timer_lock));
681
682 if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
683 callout_halt(&pt->pt_ch, &timer_lock);
684 if (timespecisset(&pt->pt_time.it_value)) {
685 /*
686 * Don't need to check tshzto() return value, here.
687 * callout_reset() does it for us.
688 */
689 callout_reset(&pt->pt_ch,
690 pt->pt_type == CLOCK_MONOTONIC ?
691 tshztoup(&pt->pt_time.it_value) :
692 tshzto(&pt->pt_time.it_value),
693 realtimerexpire, pt);
694 }
695 } else {
696 if (pt->pt_active) {
697 ptn = LIST_NEXT(pt, pt_list);
698 LIST_REMOVE(pt, pt_list);
699 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
700 timespecadd(&pt->pt_time.it_value,
701 &ptn->pt_time.it_value,
702 &ptn->pt_time.it_value);
703 }
704 if (timespecisset(&pt->pt_time.it_value)) {
705 if (pt->pt_type == CLOCK_VIRTUAL)
706 ptl = &pt->pt_proc->p_timers->pts_virtual;
707 else
708 ptl = &pt->pt_proc->p_timers->pts_prof;
709
710 for (ptn = LIST_FIRST(ptl), pptn = NULL;
711 ptn && timespeccmp(&pt->pt_time.it_value,
712 &ptn->pt_time.it_value, >);
713 pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
714 timespecsub(&pt->pt_time.it_value,
715 &ptn->pt_time.it_value,
716 &pt->pt_time.it_value);
717
718 if (pptn)
719 LIST_INSERT_AFTER(pptn, pt, pt_list);
720 else
721 LIST_INSERT_HEAD(ptl, pt, pt_list);
722
723 for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
724 timespecsub(&ptn->pt_time.it_value,
725 &pt->pt_time.it_value,
726 &ptn->pt_time.it_value);
727
728 pt->pt_active = 1;
729 } else
730 pt->pt_active = 0;
731 }
732 }
733
734 void
735 timer_gettime(struct ptimer *pt, struct itimerspec *aits)
736 {
737 struct timespec now;
738 struct ptimer *ptn;
739
740 KASSERT(mutex_owned(&timer_lock));
741
742 *aits = pt->pt_time;
743 if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
744 /*
745 * Convert from absolute to relative time in .it_value
746 * part of real time timer. If time for real time
747 * timer has passed return 0, else return difference
748 * between current time and time for the timer to go
749 * off.
750 */
751 if (timespecisset(&aits->it_value)) {
752 if (pt->pt_type == CLOCK_REALTIME) {
753 getnanotime(&now);
754 } else { /* CLOCK_MONOTONIC */
755 getnanouptime(&now);
756 }
757 if (timespeccmp(&aits->it_value, &now, <))
758 timespecclear(&aits->it_value);
759 else
760 timespecsub(&aits->it_value, &now,
761 &aits->it_value);
762 }
763 } else if (pt->pt_active) {
764 if (pt->pt_type == CLOCK_VIRTUAL)
765 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
766 else
767 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
768 for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
769 timespecadd(&aits->it_value,
770 &ptn->pt_time.it_value, &aits->it_value);
771 KASSERT(ptn != NULL); /* pt should be findable on the list */
772 } else
773 timespecclear(&aits->it_value);
774 }
775
776
777
778 /* Set and arm a POSIX realtime timer */
779 int
780 sys___timer_settime50(struct lwp *l,
781 const struct sys___timer_settime50_args *uap,
782 register_t *retval)
783 {
784 /* {
785 syscallarg(timer_t) timerid;
786 syscallarg(int) flags;
787 syscallarg(const struct itimerspec *) value;
788 syscallarg(struct itimerspec *) ovalue;
789 } */
790 int error;
791 struct itimerspec value, ovalue, *ovp = NULL;
792
793 if ((error = copyin(SCARG(uap, value), &value,
794 sizeof(struct itimerspec))) != 0)
795 return (error);
796
797 if (SCARG(uap, ovalue))
798 ovp = &ovalue;
799
800 if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
801 SCARG(uap, flags), l->l_proc)) != 0)
802 return error;
803
804 if (ovp)
805 return copyout(&ovalue, SCARG(uap, ovalue),
806 sizeof(struct itimerspec));
807 return 0;
808 }
809
810 int
811 dotimer_settime(int timerid, struct itimerspec *value,
812 struct itimerspec *ovalue, int flags, struct proc *p)
813 {
814 struct timespec now;
815 struct itimerspec val, oval;
816 struct ptimers *pts;
817 struct ptimer *pt;
818 int error;
819
820 pts = p->p_timers;
821
822 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
823 return EINVAL;
824 val = *value;
825 if ((error = itimespecfix(&val.it_value)) != 0 ||
826 (error = itimespecfix(&val.it_interval)) != 0)
827 return error;
828
829 mutex_spin_enter(&timer_lock);
830 if ((pt = pts->pts_timers[timerid]) == NULL) {
831 mutex_spin_exit(&timer_lock);
832 return EINVAL;
833 }
834
835 oval = pt->pt_time;
836 pt->pt_time = val;
837
838 /*
839 * If we've been passed a relative time for a realtime timer,
840 * convert it to absolute; if an absolute time for a virtual
841 * timer, convert it to relative and make sure we don't set it
842 * to zero, which would cancel the timer, or let it go
843 * negative, which would confuse the comparison tests.
844 */
845 if (timespecisset(&pt->pt_time.it_value)) {
846 if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
847 if ((flags & TIMER_ABSTIME) == 0) {
848 if (pt->pt_type == CLOCK_REALTIME) {
849 getnanotime(&now);
850 } else { /* CLOCK_MONOTONIC */
851 getnanouptime(&now);
852 }
853 timespecadd(&pt->pt_time.it_value, &now,
854 &pt->pt_time.it_value);
855 }
856 } else {
857 if ((flags & TIMER_ABSTIME) != 0) {
858 getnanotime(&now);
859 timespecsub(&pt->pt_time.it_value, &now,
860 &pt->pt_time.it_value);
861 if (!timespecisset(&pt->pt_time.it_value) ||
862 pt->pt_time.it_value.tv_sec < 0) {
863 pt->pt_time.it_value.tv_sec = 0;
864 pt->pt_time.it_value.tv_nsec = 1;
865 }
866 }
867 }
868 }
869
870 timer_settime(pt);
871 mutex_spin_exit(&timer_lock);
872
873 if (ovalue)
874 *ovalue = oval;
875
876 return (0);
877 }
878
879 /* Return the time remaining until a POSIX timer fires. */
880 int
881 sys___timer_gettime50(struct lwp *l,
882 const struct sys___timer_gettime50_args *uap, register_t *retval)
883 {
884 /* {
885 syscallarg(timer_t) timerid;
886 syscallarg(struct itimerspec *) value;
887 } */
888 struct itimerspec its;
889 int error;
890
891 if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
892 &its)) != 0)
893 return error;
894
895 return copyout(&its, SCARG(uap, value), sizeof(its));
896 }
897
898 int
899 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
900 {
901 struct ptimer *pt;
902 struct ptimers *pts;
903
904 pts = p->p_timers;
905 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
906 return (EINVAL);
907 mutex_spin_enter(&timer_lock);
908 if ((pt = pts->pts_timers[timerid]) == NULL) {
909 mutex_spin_exit(&timer_lock);
910 return (EINVAL);
911 }
912 timer_gettime(pt, its);
913 mutex_spin_exit(&timer_lock);
914
915 return 0;
916 }
917
918 /*
919 * Return the count of the number of times a periodic timer expired
920 * while a notification was already pending. The counter is reset when
921 * a timer expires and a notification can be posted.
922 */
923 int
924 sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
925 register_t *retval)
926 {
927 /* {
928 syscallarg(timer_t) timerid;
929 } */
930 struct proc *p = l->l_proc;
931 struct ptimers *pts;
932 int timerid;
933 struct ptimer *pt;
934
935 timerid = SCARG(uap, timerid);
936
937 pts = p->p_timers;
938 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
939 return (EINVAL);
940 mutex_spin_enter(&timer_lock);
941 if ((pt = pts->pts_timers[timerid]) == NULL) {
942 mutex_spin_exit(&timer_lock);
943 return (EINVAL);
944 }
945 *retval = pt->pt_poverruns;
946 mutex_spin_exit(&timer_lock);
947
948 return (0);
949 }
950
951 /*
952 * Real interval timer expired:
953 * send process whose timer expired an alarm signal.
954 * If time is not set up to reload, then just return.
955 * Else compute next time timer should go off which is > current time.
956 * This is where delay in processing this timeout causes multiple
957 * SIGALRM calls to be compressed into one.
958 */
959 void
960 realtimerexpire(void *arg)
961 {
962 uint64_t last_val, next_val, interval, now_ns;
963 struct timespec now, next;
964 struct ptimer *pt;
965 int backwards;
966
967 pt = arg;
968
969 mutex_spin_enter(&timer_lock);
970 itimerfire(pt);
971
972 if (!timespecisset(&pt->pt_time.it_interval)) {
973 timespecclear(&pt->pt_time.it_value);
974 mutex_spin_exit(&timer_lock);
975 return;
976 }
977
978 if (pt->pt_type == CLOCK_MONOTONIC) {
979 getnanouptime(&now);
980 } else {
981 getnanotime(&now);
982 }
983 backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
984 timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
985 /* Handle the easy case of non-overflown timers first. */
986 if (!backwards && timespeccmp(&next, &now, >)) {
987 pt->pt_time.it_value = next;
988 } else {
989 now_ns = timespec2ns(&now);
990 last_val = timespec2ns(&pt->pt_time.it_value);
991 interval = timespec2ns(&pt->pt_time.it_interval);
992
993 next_val = now_ns +
994 (now_ns - last_val + interval - 1) % interval;
995
996 if (backwards)
997 next_val += interval;
998 else
999 pt->pt_overruns += (now_ns - last_val) / interval;
1000
1001 pt->pt_time.it_value.tv_sec = next_val / 1000000000;
1002 pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
1003 }
1004
1005 /*
1006 * Don't need to check tshzto() return value, here.
1007 * callout_reset() does it for us.
1008 */
1009 callout_reset(&pt->pt_ch, pt->pt_type == CLOCK_MONOTONIC ?
1010 tshztoup(&pt->pt_time.it_value) : tshzto(&pt->pt_time.it_value),
1011 realtimerexpire, pt);
1012 mutex_spin_exit(&timer_lock);
1013 }
1014
1015 /* BSD routine to get the value of an interval timer. */
1016 /* ARGSUSED */
1017 int
1018 sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
1019 register_t *retval)
1020 {
1021 /* {
1022 syscallarg(int) which;
1023 syscallarg(struct itimerval *) itv;
1024 } */
1025 struct proc *p = l->l_proc;
1026 struct itimerval aitv;
1027 int error;
1028
1029 error = dogetitimer(p, SCARG(uap, which), &aitv);
1030 if (error)
1031 return error;
1032 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1033 }
1034
1035 int
1036 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1037 {
1038 struct ptimers *pts;
1039 struct ptimer *pt;
1040 struct itimerspec its;
1041
1042 if ((u_int)which > ITIMER_MONOTONIC)
1043 return (EINVAL);
1044
1045 mutex_spin_enter(&timer_lock);
1046 pts = p->p_timers;
1047 if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
1048 timerclear(&itvp->it_value);
1049 timerclear(&itvp->it_interval);
1050 } else {
1051 timer_gettime(pt, &its);
1052 TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
1053 TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
1054 }
1055 mutex_spin_exit(&timer_lock);
1056
1057 return 0;
1058 }
1059
1060 /* BSD routine to set/arm an interval timer. */
1061 /* ARGSUSED */
1062 int
1063 sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
1064 register_t *retval)
1065 {
1066 /* {
1067 syscallarg(int) which;
1068 syscallarg(const struct itimerval *) itv;
1069 syscallarg(struct itimerval *) oitv;
1070 } */
1071 struct proc *p = l->l_proc;
1072 int which = SCARG(uap, which);
1073 struct sys___getitimer50_args getargs;
1074 const struct itimerval *itvp;
1075 struct itimerval aitv;
1076 int error;
1077
1078 if ((u_int)which > ITIMER_MONOTONIC)
1079 return (EINVAL);
1080 itvp = SCARG(uap, itv);
1081 if (itvp &&
1082 (error = copyin(itvp, &aitv, sizeof(struct itimerval))) != 0)
1083 return (error);
1084 if (SCARG(uap, oitv) != NULL) {
1085 SCARG(&getargs, which) = which;
1086 SCARG(&getargs, itv) = SCARG(uap, oitv);
1087 if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
1088 return (error);
1089 }
1090 if (itvp == 0)
1091 return (0);
1092
1093 return dosetitimer(p, which, &aitv);
1094 }
1095
1096 int
1097 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1098 {
1099 struct timespec now;
1100 struct ptimers *pts;
1101 struct ptimer *pt, *spare;
1102
1103 KASSERT((u_int)which <= CLOCK_MONOTONIC);
1104 if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1105 return (EINVAL);
1106
1107 /*
1108 * Don't bother allocating data structures if the process just
1109 * wants to clear the timer.
1110 */
1111 spare = NULL;
1112 pts = p->p_timers;
1113 retry:
1114 if (!timerisset(&itvp->it_value) && (pts == NULL ||
1115 pts->pts_timers[which] == NULL))
1116 return (0);
1117 if (pts == NULL)
1118 pts = timers_alloc(p);
1119 mutex_spin_enter(&timer_lock);
1120 pt = pts->pts_timers[which];
1121 if (pt == NULL) {
1122 if (spare == NULL) {
1123 mutex_spin_exit(&timer_lock);
1124 spare = pool_get(&ptimer_pool, PR_WAITOK);
1125 goto retry;
1126 }
1127 pt = spare;
1128 spare = NULL;
1129 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1130 pt->pt_ev.sigev_value.sival_int = which;
1131 pt->pt_overruns = 0;
1132 pt->pt_proc = p;
1133 pt->pt_type = which;
1134 pt->pt_entry = which;
1135 pt->pt_queued = false;
1136 if (pt->pt_type == CLOCK_REALTIME)
1137 callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
1138 else
1139 pt->pt_active = 0;
1140
1141 switch (which) {
1142 case ITIMER_REAL:
1143 case ITIMER_MONOTONIC:
1144 pt->pt_ev.sigev_signo = SIGALRM;
1145 break;
1146 case ITIMER_VIRTUAL:
1147 pt->pt_ev.sigev_signo = SIGVTALRM;
1148 break;
1149 case ITIMER_PROF:
1150 pt->pt_ev.sigev_signo = SIGPROF;
1151 break;
1152 }
1153 pts->pts_timers[which] = pt;
1154 }
1155
1156 TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
1157 TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
1158
1159 if (timespecisset(&pt->pt_time.it_value)) {
1160 /* Convert to absolute time */
1161 /* XXX need to wrap in splclock for timecounters case? */
1162 switch (which) {
1163 case ITIMER_REAL:
1164 getnanotime(&now);
1165 timespecadd(&pt->pt_time.it_value, &now,
1166 &pt->pt_time.it_value);
1167 break;
1168 case ITIMER_MONOTONIC:
1169 getnanouptime(&now);
1170 timespecadd(&pt->pt_time.it_value, &now,
1171 &pt->pt_time.it_value);
1172 break;
1173 default:
1174 break;
1175 }
1176 }
1177 timer_settime(pt);
1178 mutex_spin_exit(&timer_lock);
1179 if (spare != NULL)
1180 pool_put(&ptimer_pool, spare);
1181
1182 return (0);
1183 }
1184
1185 /* Utility routines to manage the array of pointers to timers. */
1186 struct ptimers *
1187 timers_alloc(struct proc *p)
1188 {
1189 struct ptimers *pts;
1190 int i;
1191
1192 pts = pool_get(&ptimers_pool, PR_WAITOK);
1193 LIST_INIT(&pts->pts_virtual);
1194 LIST_INIT(&pts->pts_prof);
1195 for (i = 0; i < TIMER_MAX; i++)
1196 pts->pts_timers[i] = NULL;
1197 pts->pts_fired = 0;
1198 mutex_spin_enter(&timer_lock);
1199 if (p->p_timers == NULL) {
1200 p->p_timers = pts;
1201 mutex_spin_exit(&timer_lock);
1202 return pts;
1203 }
1204 mutex_spin_exit(&timer_lock);
1205 pool_put(&ptimers_pool, pts);
1206 return p->p_timers;
1207 }
1208
1209 /*
1210 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1211 * then clean up all timers and free all the data structures. If
1212 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1213 * by timer_create(), not the BSD setitimer() timers, and only free the
1214 * structure if none of those remain.
1215 */
1216 void
1217 timers_free(struct proc *p, int which)
1218 {
1219 struct ptimers *pts;
1220 struct ptimer *ptn;
1221 struct timespec ts;
1222 int i;
1223
1224 if (p->p_timers == NULL)
1225 return;
1226
1227 pts = p->p_timers;
1228 mutex_spin_enter(&timer_lock);
1229 if (which == TIMERS_ALL) {
1230 p->p_timers = NULL;
1231 i = 0;
1232 } else {
1233 timespecclear(&ts);
1234 for (ptn = LIST_FIRST(&pts->pts_virtual);
1235 ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1236 ptn = LIST_NEXT(ptn, pt_list)) {
1237 KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1238 timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1239 }
1240 LIST_FIRST(&pts->pts_virtual) = NULL;
1241 if (ptn) {
1242 KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1243 timespecadd(&ts, &ptn->pt_time.it_value,
1244 &ptn->pt_time.it_value);
1245 LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
1246 }
1247 timespecclear(&ts);
1248 for (ptn = LIST_FIRST(&pts->pts_prof);
1249 ptn && ptn != pts->pts_timers[ITIMER_PROF];
1250 ptn = LIST_NEXT(ptn, pt_list)) {
1251 KASSERT(ptn->pt_type == CLOCK_PROF);
1252 timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1253 }
1254 LIST_FIRST(&pts->pts_prof) = NULL;
1255 if (ptn) {
1256 KASSERT(ptn->pt_type == CLOCK_PROF);
1257 timespecadd(&ts, &ptn->pt_time.it_value,
1258 &ptn->pt_time.it_value);
1259 LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
1260 }
1261 i = 3;
1262 }
1263 for ( ; i < TIMER_MAX; i++) {
1264 if (pts->pts_timers[i] != NULL) {
1265 itimerfree(pts, i);
1266 mutex_spin_enter(&timer_lock);
1267 }
1268 }
1269 if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
1270 pts->pts_timers[2] == NULL) {
1271 p->p_timers = NULL;
1272 mutex_spin_exit(&timer_lock);
1273 pool_put(&ptimers_pool, pts);
1274 } else
1275 mutex_spin_exit(&timer_lock);
1276 }
1277
1278 static void
1279 itimerfree(struct ptimers *pts, int index)
1280 {
1281 struct ptimer *pt;
1282
1283 KASSERT(mutex_owned(&timer_lock));
1284
1285 pt = pts->pts_timers[index];
1286 pts->pts_timers[index] = NULL;
1287 if (!CLOCK_VIRTUAL_P(pt->pt_type))
1288 callout_halt(&pt->pt_ch, &timer_lock);
1289 if (pt->pt_queued)
1290 TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1291 mutex_spin_exit(&timer_lock);
1292 if (!CLOCK_VIRTUAL_P(pt->pt_type))
1293 callout_destroy(&pt->pt_ch);
1294 pool_put(&ptimer_pool, pt);
1295 }
1296
1297 /*
1298 * Decrement an interval timer by a specified number
1299 * of nanoseconds, which must be less than a second,
1300 * i.e. < 1000000000. If the timer expires, then reload
1301 * it. In this case, carry over (nsec - old value) to
1302 * reduce the value reloaded into the timer so that
1303 * the timer does not drift. This routine assumes
1304 * that it is called in a context where the timers
1305 * on which it is operating cannot change in value.
1306 */
1307 static int
1308 itimerdecr(struct ptimer *pt, int nsec)
1309 {
1310 struct itimerspec *itp;
1311
1312 KASSERT(mutex_owned(&timer_lock));
1313 KASSERT(CLOCK_VIRTUAL_P(pt->pt_type));
1314
1315 itp = &pt->pt_time;
1316 if (itp->it_value.tv_nsec < nsec) {
1317 if (itp->it_value.tv_sec == 0) {
1318 /* expired, and already in next interval */
1319 nsec -= itp->it_value.tv_nsec;
1320 goto expire;
1321 }
1322 itp->it_value.tv_nsec += 1000000000;
1323 itp->it_value.tv_sec--;
1324 }
1325 itp->it_value.tv_nsec -= nsec;
1326 nsec = 0;
1327 if (timespecisset(&itp->it_value))
1328 return (1);
1329 /* expired, exactly at end of interval */
1330 expire:
1331 if (timespecisset(&itp->it_interval)) {
1332 itp->it_value = itp->it_interval;
1333 itp->it_value.tv_nsec -= nsec;
1334 if (itp->it_value.tv_nsec < 0) {
1335 itp->it_value.tv_nsec += 1000000000;
1336 itp->it_value.tv_sec--;
1337 }
1338 timer_settime(pt);
1339 } else
1340 itp->it_value.tv_nsec = 0; /* sec is already 0 */
1341 return (0);
1342 }
1343
1344 static void
1345 itimerfire(struct ptimer *pt)
1346 {
1347
1348 KASSERT(mutex_owned(&timer_lock));
1349
1350 /*
1351 * XXX Can overrun, but we don't do signal queueing yet, anyway.
1352 * XXX Relying on the clock interrupt is stupid.
1353 */
1354 if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL || pt->pt_queued) {
1355 return;
1356 }
1357 TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
1358 pt->pt_queued = true;
1359 softint_schedule(timer_sih);
1360 }
1361
1362 void
1363 timer_tick(lwp_t *l, bool user)
1364 {
1365 struct ptimers *pts;
1366 struct ptimer *pt;
1367 proc_t *p;
1368
1369 p = l->l_proc;
1370 if (p->p_timers == NULL)
1371 return;
1372
1373 mutex_spin_enter(&timer_lock);
1374 if ((pts = l->l_proc->p_timers) != NULL) {
1375 /*
1376 * Run current process's virtual and profile time, as needed.
1377 */
1378 if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
1379 if (itimerdecr(pt, tick * 1000) == 0)
1380 itimerfire(pt);
1381 if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
1382 if (itimerdecr(pt, tick * 1000) == 0)
1383 itimerfire(pt);
1384 }
1385 mutex_spin_exit(&timer_lock);
1386 }
1387
1388 static void
1389 timer_intr(void *cookie)
1390 {
1391 ksiginfo_t ksi;
1392 struct ptimer *pt;
1393 proc_t *p;
1394
1395 mutex_enter(proc_lock);
1396 mutex_spin_enter(&timer_lock);
1397 while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
1398 TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1399 KASSERT(pt->pt_queued);
1400 pt->pt_queued = false;
1401
1402 if (pt->pt_proc->p_timers == NULL) {
1403 /* Process is dying. */
1404 continue;
1405 }
1406 p = pt->pt_proc;
1407 if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
1408 continue;
1409 }
1410 if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
1411 pt->pt_overruns++;
1412 continue;
1413 }
1414
1415 KSI_INIT(&ksi);
1416 ksi.ksi_signo = pt->pt_ev.sigev_signo;
1417 ksi.ksi_code = SI_TIMER;
1418 ksi.ksi_value = pt->pt_ev.sigev_value;
1419 pt->pt_poverruns = pt->pt_overruns;
1420 pt->pt_overruns = 0;
1421 mutex_spin_exit(&timer_lock);
1422 kpsignal(p, &ksi, NULL);
1423 mutex_spin_enter(&timer_lock);
1424 }
1425 mutex_spin_exit(&timer_lock);
1426 mutex_exit(proc_lock);
1427 }
1428
1429 /*
1430 * Check if the time will wrap if set to ts.
1431 *
1432 * ts - timespec describing the new time
1433 * delta - the delta between the current time and ts
1434 */
1435 bool
1436 time_wraps(struct timespec *ts, struct timespec *delta)
1437 {
1438
1439 /*
1440 * Don't allow the time to be set forward so far it
1441 * will wrap and become negative, thus allowing an
1442 * attacker to bypass the next check below. The
1443 * cutoff is 1 year before rollover occurs, so even
1444 * if the attacker uses adjtime(2) to move the time
1445 * past the cutoff, it will take a very long time
1446 * to get to the wrap point.
1447 */
1448 if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
1449 (delta->tv_sec < 0 || delta->tv_nsec < 0))
1450 return true;
1451
1452 return false;
1453 }
1454