Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.186
      1 /*	$NetBSD: kern_time.c,v 1.186 2016/04/23 23:08:26 christos Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Christopher G. Demetriou, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1982, 1986, 1989, 1993
     34  *	The Regents of the University of California.  All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. Neither the name of the University nor the names of its contributors
     45  *    may be used to endorse or promote products derived from this software
     46  *    without specific prior written permission.
     47  *
     48  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58  * SUCH DAMAGE.
     59  *
     60  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     61  */
     62 
     63 #include <sys/cdefs.h>
     64 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.186 2016/04/23 23:08:26 christos Exp $");
     65 
     66 #include <sys/param.h>
     67 #include <sys/resourcevar.h>
     68 #include <sys/kernel.h>
     69 #include <sys/systm.h>
     70 #include <sys/proc.h>
     71 #include <sys/vnode.h>
     72 #include <sys/signalvar.h>
     73 #include <sys/syslog.h>
     74 #include <sys/timetc.h>
     75 #include <sys/timex.h>
     76 #include <sys/kauth.h>
     77 #include <sys/mount.h>
     78 #include <sys/syscallargs.h>
     79 #include <sys/cpu.h>
     80 
     81 static void	timer_intr(void *);
     82 static void	itimerfire(struct ptimer *);
     83 static void	itimerfree(struct ptimers *, int);
     84 
     85 kmutex_t	timer_lock;
     86 
     87 static void	*timer_sih;
     88 static TAILQ_HEAD(, ptimer) timer_queue;
     89 
     90 struct pool ptimer_pool, ptimers_pool;
     91 
     92 #define	CLOCK_VIRTUAL_P(clockid)	\
     93 	((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)
     94 
     95 CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
     96 CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
     97 CTASSERT(ITIMER_PROF == CLOCK_PROF);
     98 CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC);
     99 
    100 
    101 /*
    102  * Initialize timekeeping.
    103  */
    104 void
    105 time_init(void)
    106 {
    107 
    108 	pool_init(&ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
    109 	    &pool_allocator_nointr, IPL_NONE);
    110 	pool_init(&ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
    111 	    &pool_allocator_nointr, IPL_NONE);
    112 }
    113 
    114 void
    115 time_init2(void)
    116 {
    117 
    118 	TAILQ_INIT(&timer_queue);
    119 	mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
    120 	timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
    121 	    timer_intr, NULL);
    122 }
    123 
    124 /* Time of day and interval timer support.
    125  *
    126  * These routines provide the kernel entry points to get and set
    127  * the time-of-day and per-process interval timers.  Subroutines
    128  * here provide support for adding and subtracting timeval structures
    129  * and decrementing interval timers, optionally reloading the interval
    130  * timers when they expire.
    131  */
    132 
    133 /* This function is used by clock_settime and settimeofday */
    134 static int
    135 settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
    136 {
    137 	struct timespec delta, now;
    138 	int s;
    139 
    140 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    141 	s = splclock();
    142 	nanotime(&now);
    143 	timespecsub(ts, &now, &delta);
    144 
    145 	if (check_kauth && kauth_authorize_system(kauth_cred_get(),
    146 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
    147 	    &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
    148 		splx(s);
    149 		return (EPERM);
    150 	}
    151 
    152 #ifdef notyet
    153 	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
    154 		splx(s);
    155 		return (EPERM);
    156 	}
    157 #endif
    158 
    159 	tc_setclock(ts);
    160 
    161 	timespecadd(&boottime, &delta, &boottime);
    162 
    163 	resettodr();
    164 	splx(s);
    165 
    166 	return (0);
    167 }
    168 
    169 int
    170 settime(struct proc *p, struct timespec *ts)
    171 {
    172 	return (settime1(p, ts, true));
    173 }
    174 
    175 /* ARGSUSED */
    176 int
    177 sys___clock_gettime50(struct lwp *l,
    178     const struct sys___clock_gettime50_args *uap, register_t *retval)
    179 {
    180 	/* {
    181 		syscallarg(clockid_t) clock_id;
    182 		syscallarg(struct timespec *) tp;
    183 	} */
    184 	int error;
    185 	struct timespec ats;
    186 
    187 	error = clock_gettime1(SCARG(uap, clock_id), &ats);
    188 	if (error != 0)
    189 		return error;
    190 
    191 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    192 }
    193 
    194 /* ARGSUSED */
    195 int
    196 sys___clock_settime50(struct lwp *l,
    197     const struct sys___clock_settime50_args *uap, register_t *retval)
    198 {
    199 	/* {
    200 		syscallarg(clockid_t) clock_id;
    201 		syscallarg(const struct timespec *) tp;
    202 	} */
    203 	int error;
    204 	struct timespec ats;
    205 
    206 	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
    207 		return error;
    208 
    209 	return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
    210 }
    211 
    212 
    213 int
    214 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
    215     bool check_kauth)
    216 {
    217 	int error;
    218 
    219 	switch (clock_id) {
    220 	case CLOCK_REALTIME:
    221 		if ((error = settime1(p, tp, check_kauth)) != 0)
    222 			return (error);
    223 		break;
    224 	case CLOCK_MONOTONIC:
    225 		return (EINVAL);	/* read-only clock */
    226 	default:
    227 		return (EINVAL);
    228 	}
    229 
    230 	return 0;
    231 }
    232 
    233 int
    234 sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
    235     register_t *retval)
    236 {
    237 	/* {
    238 		syscallarg(clockid_t) clock_id;
    239 		syscallarg(struct timespec *) tp;
    240 	} */
    241 	struct timespec ts;
    242 	int error;
    243 
    244 	if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
    245 		return error;
    246 
    247 	if (SCARG(uap, tp))
    248 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    249 
    250 	return error;
    251 }
    252 
    253 int
    254 clock_getres1(clockid_t clock_id, struct timespec *ts)
    255 {
    256 
    257 	switch (clock_id) {
    258 	case CLOCK_REALTIME:
    259 	case CLOCK_MONOTONIC:
    260 		ts->tv_sec = 0;
    261 		if (tc_getfrequency() > 1000000000)
    262 			ts->tv_nsec = 1;
    263 		else
    264 			ts->tv_nsec = 1000000000 / tc_getfrequency();
    265 		break;
    266 	default:
    267 		return EINVAL;
    268 	}
    269 
    270 	return 0;
    271 }
    272 
    273 /* ARGSUSED */
    274 int
    275 sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
    276     register_t *retval)
    277 {
    278 	/* {
    279 		syscallarg(struct timespec *) rqtp;
    280 		syscallarg(struct timespec *) rmtp;
    281 	} */
    282 	struct timespec rmt, rqt;
    283 	int error, error1;
    284 
    285 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    286 	if (error)
    287 		return (error);
    288 
    289 	error = nanosleep1(l, CLOCK_MONOTONIC, 0, &rqt,
    290 	    SCARG(uap, rmtp) ? &rmt : NULL);
    291 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
    292 		return error;
    293 
    294 	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
    295 	return error1 ? error1 : error;
    296 }
    297 
    298 /* ARGSUSED */
    299 int
    300 sys_clock_nanosleep(struct lwp *l, const struct sys_clock_nanosleep_args *uap,
    301     register_t *retval)
    302 {
    303 	/* {
    304 		syscallarg(clockid_t) clock_id;
    305 		syscallarg(int) flags;
    306 		syscallarg(struct timespec *) rqtp;
    307 		syscallarg(struct timespec *) rmtp;
    308 	} */
    309 	struct timespec rmt, rqt;
    310 	int error, error1;
    311 
    312 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    313 	if (error)
    314 		goto out;
    315 
    316 	error = nanosleep1(l, SCARG(uap, clock_id), SCARG(uap, flags), &rqt,
    317 	    SCARG(uap, rmtp) ? &rmt : NULL);
    318 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
    319 		goto out;
    320 
    321 	if ((error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt))) != 0)
    322 		error = error1;
    323 out:
    324 	*retval = error;
    325 	return 0;
    326 }
    327 
    328 int
    329 nanosleep1(struct lwp *l, clockid_t clock_id, int flags, struct timespec *rqt,
    330     struct timespec *rmt)
    331 {
    332 	struct timespec rmtstart;
    333 	int error, timo;
    334 
    335 	if ((error = ts2timo(clock_id, flags, rqt, &timo, &rmtstart)) != 0) {
    336 		if (error == ETIMEDOUT) {
    337 			error = 0;
    338 			if (rmt != NULL)
    339 				rmt->tv_sec = rmt->tv_nsec = 0;
    340 		}
    341 		return error;
    342 	}
    343 
    344 	/*
    345 	 * Avoid inadvertently sleeping forever
    346 	 */
    347 	if (timo == 0)
    348 		timo = 1;
    349 again:
    350 	error = kpause("nanoslp", true, timo, NULL);
    351 	if (rmt != NULL || error == 0) {
    352 		struct timespec rmtend;
    353 		struct timespec t0;
    354 		struct timespec *t;
    355 
    356 		(void)clock_gettime1(clock_id, &rmtend);
    357 		t = (rmt != NULL) ? rmt : &t0;
    358 		if (flags & TIMER_ABSTIME) {
    359 			timespecsub(rqt, &rmtend, t);
    360 		} else {
    361 			timespecsub(&rmtend, &rmtstart, t);
    362 			timespecsub(rqt, t, t);
    363 		}
    364 		if (t->tv_sec < 0)
    365 			timespecclear(t);
    366 		if (error == 0) {
    367 			timo = tstohz(t);
    368 			if (timo > 0)
    369 				goto again;
    370 		}
    371 	}
    372 
    373 	if (error == ERESTART)
    374 		error = EINTR;
    375 	if (error == EWOULDBLOCK)
    376 		error = 0;
    377 
    378 	return error;
    379 }
    380 
    381 int
    382 sys_clock_getcpuclockid2(struct lwp *l,
    383     const struct sys_clock_getcpuclockid2_args *uap,
    384     register_t *retval)
    385 {
    386 	/* {
    387 		syscallarg(idtype_t idtype;
    388 		syscallarg(id_t id);
    389 		syscallarg(clockid_t *)clock_id;
    390 	} */
    391 	pid_t pid;
    392 	lwpid_t lid;
    393 	clockid_t clock_id;
    394 	id_t id = SCARG(uap, id);
    395 
    396 	switch (SCARG(uap, idtype)) {
    397 	case P_PID:
    398 		pid = id == 0 ? l->l_proc->p_pid : id;
    399 		clock_id = CLOCK_PROCESS_CPUTIME_ID | pid;
    400 		break;
    401 	case P_LWPID:
    402 		lid = id == 0 ? l->l_lid : id;
    403 		clock_id = CLOCK_THREAD_CPUTIME_ID | lid;
    404 		break;
    405 	default:
    406 		return EINVAL;
    407 	}
    408 	return copyout(&clock_id, SCARG(uap, clock_id), sizeof(clock_id));
    409 }
    410 
    411 /* ARGSUSED */
    412 int
    413 sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
    414     register_t *retval)
    415 {
    416 	/* {
    417 		syscallarg(struct timeval *) tp;
    418 		syscallarg(void *) tzp;		really "struct timezone *";
    419 	} */
    420 	struct timeval atv;
    421 	int error = 0;
    422 	struct timezone tzfake;
    423 
    424 	if (SCARG(uap, tp)) {
    425 		microtime(&atv);
    426 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    427 		if (error)
    428 			return (error);
    429 	}
    430 	if (SCARG(uap, tzp)) {
    431 		/*
    432 		 * NetBSD has no kernel notion of time zone, so we just
    433 		 * fake up a timezone struct and return it if demanded.
    434 		 */
    435 		tzfake.tz_minuteswest = 0;
    436 		tzfake.tz_dsttime = 0;
    437 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    438 	}
    439 	return (error);
    440 }
    441 
    442 /* ARGSUSED */
    443 int
    444 sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
    445     register_t *retval)
    446 {
    447 	/* {
    448 		syscallarg(const struct timeval *) tv;
    449 		syscallarg(const void *) tzp; really "const struct timezone *";
    450 	} */
    451 
    452 	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
    453 }
    454 
    455 int
    456 settimeofday1(const struct timeval *utv, bool userspace,
    457     const void *utzp, struct lwp *l, bool check_kauth)
    458 {
    459 	struct timeval atv;
    460 	struct timespec ts;
    461 	int error;
    462 
    463 	/* Verify all parameters before changing time. */
    464 
    465 	/*
    466 	 * NetBSD has no kernel notion of time zone, and only an
    467 	 * obsolete program would try to set it, so we log a warning.
    468 	 */
    469 	if (utzp)
    470 		log(LOG_WARNING, "pid %d attempted to set the "
    471 		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
    472 
    473 	if (utv == NULL)
    474 		return 0;
    475 
    476 	if (userspace) {
    477 		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
    478 			return error;
    479 		utv = &atv;
    480 	}
    481 
    482 	TIMEVAL_TO_TIMESPEC(utv, &ts);
    483 	return settime1(l->l_proc, &ts, check_kauth);
    484 }
    485 
    486 int	time_adjusted;			/* set if an adjustment is made */
    487 
    488 /* ARGSUSED */
    489 int
    490 sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
    491     register_t *retval)
    492 {
    493 	/* {
    494 		syscallarg(const struct timeval *) delta;
    495 		syscallarg(struct timeval *) olddelta;
    496 	} */
    497 	int error;
    498 	struct timeval atv, oldatv;
    499 
    500 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
    501 	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
    502 		return error;
    503 
    504 	if (SCARG(uap, delta)) {
    505 		error = copyin(SCARG(uap, delta), &atv,
    506 		    sizeof(*SCARG(uap, delta)));
    507 		if (error)
    508 			return (error);
    509 	}
    510 	adjtime1(SCARG(uap, delta) ? &atv : NULL,
    511 	    SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
    512 	if (SCARG(uap, olddelta))
    513 		error = copyout(&oldatv, SCARG(uap, olddelta),
    514 		    sizeof(*SCARG(uap, olddelta)));
    515 	return error;
    516 }
    517 
    518 void
    519 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
    520 {
    521 	extern int64_t time_adjtime;  /* in kern_ntptime.c */
    522 
    523 	if (olddelta) {
    524 		mutex_spin_enter(&timecounter_lock);
    525 		olddelta->tv_sec = time_adjtime / 1000000;
    526 		olddelta->tv_usec = time_adjtime % 1000000;
    527 		if (olddelta->tv_usec < 0) {
    528 			olddelta->tv_usec += 1000000;
    529 			olddelta->tv_sec--;
    530 		}
    531 		mutex_spin_exit(&timecounter_lock);
    532 	}
    533 
    534 	if (delta) {
    535 		mutex_spin_enter(&timecounter_lock);
    536 		time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
    537 
    538 		if (time_adjtime) {
    539 			/* We need to save the system time during shutdown */
    540 			time_adjusted |= 1;
    541 		}
    542 		mutex_spin_exit(&timecounter_lock);
    543 	}
    544 }
    545 
    546 /*
    547  * Interval timer support. Both the BSD getitimer() family and the POSIX
    548  * timer_*() family of routines are supported.
    549  *
    550  * All timers are kept in an array pointed to by p_timers, which is
    551  * allocated on demand - many processes don't use timers at all. The
    552  * first four elements in this array are reserved for the BSD timers:
    553  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element
    554  * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be
    555  * allocated by the timer_create() syscall.
    556  *
    557  * Realtime timers are kept in the ptimer structure as an absolute
    558  * time; virtual time timers are kept as a linked list of deltas.
    559  * Virtual time timers are processed in the hardclock() routine of
    560  * kern_clock.c.  The real time timer is processed by a callout
    561  * routine, called from the softclock() routine.  Since a callout may
    562  * be delayed in real time due to interrupt processing in the system,
    563  * it is possible for the real time timeout routine (realtimeexpire,
    564  * given below), to be delayed in real time past when it is supposed
    565  * to occur.  It does not suffice, therefore, to reload the real timer
    566  * .it_value from the real time timers .it_interval.  Rather, we
    567  * compute the next time in absolute time the timer should go off.  */
    568 
    569 /* Allocate a POSIX realtime timer. */
    570 int
    571 sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
    572     register_t *retval)
    573 {
    574 	/* {
    575 		syscallarg(clockid_t) clock_id;
    576 		syscallarg(struct sigevent *) evp;
    577 		syscallarg(timer_t *) timerid;
    578 	} */
    579 
    580 	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
    581 	    SCARG(uap, evp), copyin, l);
    582 }
    583 
    584 int
    585 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
    586     copyin_t fetch_event, struct lwp *l)
    587 {
    588 	int error;
    589 	timer_t timerid;
    590 	struct ptimers *pts;
    591 	struct ptimer *pt;
    592 	struct proc *p;
    593 
    594 	p = l->l_proc;
    595 
    596 	if ((u_int)id > CLOCK_MONOTONIC)
    597 		return (EINVAL);
    598 
    599 	if ((pts = p->p_timers) == NULL)
    600 		pts = timers_alloc(p);
    601 
    602 	pt = pool_get(&ptimer_pool, PR_WAITOK);
    603 	if (evp != NULL) {
    604 		if (((error =
    605 		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
    606 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
    607 			(pt->pt_ev.sigev_notify > SIGEV_SA)) ||
    608 			(pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
    609 			 (pt->pt_ev.sigev_signo <= 0 ||
    610 			  pt->pt_ev.sigev_signo >= NSIG))) {
    611 			pool_put(&ptimer_pool, pt);
    612 			return (error ? error : EINVAL);
    613 		}
    614 	}
    615 
    616 	/* Find a free timer slot, skipping those reserved for setitimer(). */
    617 	mutex_spin_enter(&timer_lock);
    618 	for (timerid = TIMER_MIN; timerid < TIMER_MAX; timerid++)
    619 		if (pts->pts_timers[timerid] == NULL)
    620 			break;
    621 	if (timerid == TIMER_MAX) {
    622 		mutex_spin_exit(&timer_lock);
    623 		pool_put(&ptimer_pool, pt);
    624 		return EAGAIN;
    625 	}
    626 	if (evp == NULL) {
    627 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    628 		switch (id) {
    629 		case CLOCK_REALTIME:
    630 		case CLOCK_MONOTONIC:
    631 			pt->pt_ev.sigev_signo = SIGALRM;
    632 			break;
    633 		case CLOCK_VIRTUAL:
    634 			pt->pt_ev.sigev_signo = SIGVTALRM;
    635 			break;
    636 		case CLOCK_PROF:
    637 			pt->pt_ev.sigev_signo = SIGPROF;
    638 			break;
    639 		}
    640 		pt->pt_ev.sigev_value.sival_int = timerid;
    641 	}
    642 	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
    643 	pt->pt_info.ksi_errno = 0;
    644 	pt->pt_info.ksi_code = 0;
    645 	pt->pt_info.ksi_pid = p->p_pid;
    646 	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
    647 	pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
    648 	pt->pt_type = id;
    649 	pt->pt_proc = p;
    650 	pt->pt_overruns = 0;
    651 	pt->pt_poverruns = 0;
    652 	pt->pt_entry = timerid;
    653 	pt->pt_queued = false;
    654 	timespecclear(&pt->pt_time.it_value);
    655 	if (!CLOCK_VIRTUAL_P(id))
    656 		callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
    657 	else
    658 		pt->pt_active = 0;
    659 
    660 	pts->pts_timers[timerid] = pt;
    661 	mutex_spin_exit(&timer_lock);
    662 
    663 	return copyout(&timerid, tid, sizeof(timerid));
    664 }
    665 
    666 /* Delete a POSIX realtime timer */
    667 int
    668 sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
    669     register_t *retval)
    670 {
    671 	/* {
    672 		syscallarg(timer_t) timerid;
    673 	} */
    674 	struct proc *p = l->l_proc;
    675 	timer_t timerid;
    676 	struct ptimers *pts;
    677 	struct ptimer *pt, *ptn;
    678 
    679 	timerid = SCARG(uap, timerid);
    680 	pts = p->p_timers;
    681 
    682 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    683 		return (EINVAL);
    684 
    685 	mutex_spin_enter(&timer_lock);
    686 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    687 		mutex_spin_exit(&timer_lock);
    688 		return (EINVAL);
    689 	}
    690 	if (CLOCK_VIRTUAL_P(pt->pt_type)) {
    691 		if (pt->pt_active) {
    692 			ptn = LIST_NEXT(pt, pt_list);
    693 			LIST_REMOVE(pt, pt_list);
    694 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    695 				timespecadd(&pt->pt_time.it_value,
    696 				    &ptn->pt_time.it_value,
    697 				    &ptn->pt_time.it_value);
    698 			pt->pt_active = 0;
    699 		}
    700 	}
    701 	itimerfree(pts, timerid);
    702 
    703 	return (0);
    704 }
    705 
    706 /*
    707  * Set up the given timer. The value in pt->pt_time.it_value is taken
    708  * to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC timers and
    709  * a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
    710  */
    711 void
    712 timer_settime(struct ptimer *pt)
    713 {
    714 	struct ptimer *ptn, *pptn;
    715 	struct ptlist *ptl;
    716 
    717 	KASSERT(mutex_owned(&timer_lock));
    718 
    719 	if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
    720 		callout_halt(&pt->pt_ch, &timer_lock);
    721 		if (timespecisset(&pt->pt_time.it_value)) {
    722 			/*
    723 			 * Don't need to check tshzto() return value, here.
    724 			 * callout_reset() does it for us.
    725 			 */
    726 			callout_reset(&pt->pt_ch,
    727 			    pt->pt_type == CLOCK_MONOTONIC ?
    728 			    tshztoup(&pt->pt_time.it_value) :
    729 			    tshzto(&pt->pt_time.it_value),
    730 			    realtimerexpire, pt);
    731 		}
    732 	} else {
    733 		if (pt->pt_active) {
    734 			ptn = LIST_NEXT(pt, pt_list);
    735 			LIST_REMOVE(pt, pt_list);
    736 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    737 				timespecadd(&pt->pt_time.it_value,
    738 				    &ptn->pt_time.it_value,
    739 				    &ptn->pt_time.it_value);
    740 		}
    741 		if (timespecisset(&pt->pt_time.it_value)) {
    742 			if (pt->pt_type == CLOCK_VIRTUAL)
    743 				ptl = &pt->pt_proc->p_timers->pts_virtual;
    744 			else
    745 				ptl = &pt->pt_proc->p_timers->pts_prof;
    746 
    747 			for (ptn = LIST_FIRST(ptl), pptn = NULL;
    748 			     ptn && timespeccmp(&pt->pt_time.it_value,
    749 				 &ptn->pt_time.it_value, >);
    750 			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
    751 				timespecsub(&pt->pt_time.it_value,
    752 				    &ptn->pt_time.it_value,
    753 				    &pt->pt_time.it_value);
    754 
    755 			if (pptn)
    756 				LIST_INSERT_AFTER(pptn, pt, pt_list);
    757 			else
    758 				LIST_INSERT_HEAD(ptl, pt, pt_list);
    759 
    760 			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
    761 				timespecsub(&ptn->pt_time.it_value,
    762 				    &pt->pt_time.it_value,
    763 				    &ptn->pt_time.it_value);
    764 
    765 			pt->pt_active = 1;
    766 		} else
    767 			pt->pt_active = 0;
    768 	}
    769 }
    770 
    771 void
    772 timer_gettime(struct ptimer *pt, struct itimerspec *aits)
    773 {
    774 	struct timespec now;
    775 	struct ptimer *ptn;
    776 
    777 	KASSERT(mutex_owned(&timer_lock));
    778 
    779 	*aits = pt->pt_time;
    780 	if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
    781 		/*
    782 		 * Convert from absolute to relative time in .it_value
    783 		 * part of real time timer.  If time for real time
    784 		 * timer has passed return 0, else return difference
    785 		 * between current time and time for the timer to go
    786 		 * off.
    787 		 */
    788 		if (timespecisset(&aits->it_value)) {
    789 			if (pt->pt_type == CLOCK_REALTIME) {
    790 				getnanotime(&now);
    791 			} else { /* CLOCK_MONOTONIC */
    792 				getnanouptime(&now);
    793 			}
    794 			if (timespeccmp(&aits->it_value, &now, <))
    795 				timespecclear(&aits->it_value);
    796 			else
    797 				timespecsub(&aits->it_value, &now,
    798 				    &aits->it_value);
    799 		}
    800 	} else if (pt->pt_active) {
    801 		if (pt->pt_type == CLOCK_VIRTUAL)
    802 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
    803 		else
    804 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
    805 		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
    806 			timespecadd(&aits->it_value,
    807 			    &ptn->pt_time.it_value, &aits->it_value);
    808 		KASSERT(ptn != NULL); /* pt should be findable on the list */
    809 	} else
    810 		timespecclear(&aits->it_value);
    811 }
    812 
    813 
    814 
    815 /* Set and arm a POSIX realtime timer */
    816 int
    817 sys___timer_settime50(struct lwp *l,
    818     const struct sys___timer_settime50_args *uap,
    819     register_t *retval)
    820 {
    821 	/* {
    822 		syscallarg(timer_t) timerid;
    823 		syscallarg(int) flags;
    824 		syscallarg(const struct itimerspec *) value;
    825 		syscallarg(struct itimerspec *) ovalue;
    826 	} */
    827 	int error;
    828 	struct itimerspec value, ovalue, *ovp = NULL;
    829 
    830 	if ((error = copyin(SCARG(uap, value), &value,
    831 	    sizeof(struct itimerspec))) != 0)
    832 		return (error);
    833 
    834 	if (SCARG(uap, ovalue))
    835 		ovp = &ovalue;
    836 
    837 	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
    838 	    SCARG(uap, flags), l->l_proc)) != 0)
    839 		return error;
    840 
    841 	if (ovp)
    842 		return copyout(&ovalue, SCARG(uap, ovalue),
    843 		    sizeof(struct itimerspec));
    844 	return 0;
    845 }
    846 
    847 int
    848 dotimer_settime(int timerid, struct itimerspec *value,
    849     struct itimerspec *ovalue, int flags, struct proc *p)
    850 {
    851 	struct timespec now;
    852 	struct itimerspec val, oval;
    853 	struct ptimers *pts;
    854 	struct ptimer *pt;
    855 	int error;
    856 
    857 	pts = p->p_timers;
    858 
    859 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    860 		return EINVAL;
    861 	val = *value;
    862 	if ((error = itimespecfix(&val.it_value)) != 0 ||
    863 	    (error = itimespecfix(&val.it_interval)) != 0)
    864 		return error;
    865 
    866 	mutex_spin_enter(&timer_lock);
    867 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    868 		mutex_spin_exit(&timer_lock);
    869 		return EINVAL;
    870 	}
    871 
    872 	oval = pt->pt_time;
    873 	pt->pt_time = val;
    874 
    875 	/*
    876 	 * If we've been passed a relative time for a realtime timer,
    877 	 * convert it to absolute; if an absolute time for a virtual
    878 	 * timer, convert it to relative and make sure we don't set it
    879 	 * to zero, which would cancel the timer, or let it go
    880 	 * negative, which would confuse the comparison tests.
    881 	 */
    882 	if (timespecisset(&pt->pt_time.it_value)) {
    883 		if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
    884 			if ((flags & TIMER_ABSTIME) == 0) {
    885 				if (pt->pt_type == CLOCK_REALTIME) {
    886 					getnanotime(&now);
    887 				} else { /* CLOCK_MONOTONIC */
    888 					getnanouptime(&now);
    889 				}
    890 				timespecadd(&pt->pt_time.it_value, &now,
    891 				    &pt->pt_time.it_value);
    892 			}
    893 		} else {
    894 			if ((flags & TIMER_ABSTIME) != 0) {
    895 				getnanotime(&now);
    896 				timespecsub(&pt->pt_time.it_value, &now,
    897 				    &pt->pt_time.it_value);
    898 				if (!timespecisset(&pt->pt_time.it_value) ||
    899 				    pt->pt_time.it_value.tv_sec < 0) {
    900 					pt->pt_time.it_value.tv_sec = 0;
    901 					pt->pt_time.it_value.tv_nsec = 1;
    902 				}
    903 			}
    904 		}
    905 	}
    906 
    907 	timer_settime(pt);
    908 	mutex_spin_exit(&timer_lock);
    909 
    910 	if (ovalue)
    911 		*ovalue = oval;
    912 
    913 	return (0);
    914 }
    915 
    916 /* Return the time remaining until a POSIX timer fires. */
    917 int
    918 sys___timer_gettime50(struct lwp *l,
    919     const struct sys___timer_gettime50_args *uap, register_t *retval)
    920 {
    921 	/* {
    922 		syscallarg(timer_t) timerid;
    923 		syscallarg(struct itimerspec *) value;
    924 	} */
    925 	struct itimerspec its;
    926 	int error;
    927 
    928 	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
    929 	    &its)) != 0)
    930 		return error;
    931 
    932 	return copyout(&its, SCARG(uap, value), sizeof(its));
    933 }
    934 
    935 int
    936 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
    937 {
    938 	struct ptimer *pt;
    939 	struct ptimers *pts;
    940 
    941 	pts = p->p_timers;
    942 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    943 		return (EINVAL);
    944 	mutex_spin_enter(&timer_lock);
    945 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    946 		mutex_spin_exit(&timer_lock);
    947 		return (EINVAL);
    948 	}
    949 	timer_gettime(pt, its);
    950 	mutex_spin_exit(&timer_lock);
    951 
    952 	return 0;
    953 }
    954 
    955 /*
    956  * Return the count of the number of times a periodic timer expired
    957  * while a notification was already pending. The counter is reset when
    958  * a timer expires and a notification can be posted.
    959  */
    960 int
    961 sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
    962     register_t *retval)
    963 {
    964 	/* {
    965 		syscallarg(timer_t) timerid;
    966 	} */
    967 	struct proc *p = l->l_proc;
    968 	struct ptimers *pts;
    969 	int timerid;
    970 	struct ptimer *pt;
    971 
    972 	timerid = SCARG(uap, timerid);
    973 
    974 	pts = p->p_timers;
    975 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    976 		return (EINVAL);
    977 	mutex_spin_enter(&timer_lock);
    978 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    979 		mutex_spin_exit(&timer_lock);
    980 		return (EINVAL);
    981 	}
    982 	*retval = pt->pt_poverruns;
    983 	mutex_spin_exit(&timer_lock);
    984 
    985 	return (0);
    986 }
    987 
    988 /*
    989  * Real interval timer expired:
    990  * send process whose timer expired an alarm signal.
    991  * If time is not set up to reload, then just return.
    992  * Else compute next time timer should go off which is > current time.
    993  * This is where delay in processing this timeout causes multiple
    994  * SIGALRM calls to be compressed into one.
    995  */
    996 void
    997 realtimerexpire(void *arg)
    998 {
    999 	uint64_t last_val, next_val, interval, now_ns;
   1000 	struct timespec now, next;
   1001 	struct ptimer *pt;
   1002 	int backwards;
   1003 
   1004 	pt = arg;
   1005 
   1006 	mutex_spin_enter(&timer_lock);
   1007 	itimerfire(pt);
   1008 
   1009 	if (!timespecisset(&pt->pt_time.it_interval)) {
   1010 		timespecclear(&pt->pt_time.it_value);
   1011 		mutex_spin_exit(&timer_lock);
   1012 		return;
   1013 	}
   1014 
   1015 	if (pt->pt_type == CLOCK_MONOTONIC) {
   1016 		getnanouptime(&now);
   1017 	} else {
   1018 		getnanotime(&now);
   1019 	}
   1020 	backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
   1021 	timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
   1022 	/* Handle the easy case of non-overflown timers first. */
   1023 	if (!backwards && timespeccmp(&next, &now, >)) {
   1024 		pt->pt_time.it_value = next;
   1025 	} else {
   1026 		now_ns = timespec2ns(&now);
   1027 		last_val = timespec2ns(&pt->pt_time.it_value);
   1028 		interval = timespec2ns(&pt->pt_time.it_interval);
   1029 
   1030 		next_val = now_ns +
   1031 		    (now_ns - last_val + interval - 1) % interval;
   1032 
   1033 		if (backwards)
   1034 			next_val += interval;
   1035 		else
   1036 			pt->pt_overruns += (now_ns - last_val) / interval;
   1037 
   1038 		pt->pt_time.it_value.tv_sec = next_val / 1000000000;
   1039 		pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
   1040 	}
   1041 
   1042 	/*
   1043 	 * Don't need to check tshzto() return value, here.
   1044 	 * callout_reset() does it for us.
   1045 	 */
   1046 	callout_reset(&pt->pt_ch, pt->pt_type == CLOCK_MONOTONIC ?
   1047 	    tshztoup(&pt->pt_time.it_value) : tshzto(&pt->pt_time.it_value),
   1048 	    realtimerexpire, pt);
   1049 	mutex_spin_exit(&timer_lock);
   1050 }
   1051 
   1052 /* BSD routine to get the value of an interval timer. */
   1053 /* ARGSUSED */
   1054 int
   1055 sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
   1056     register_t *retval)
   1057 {
   1058 	/* {
   1059 		syscallarg(int) which;
   1060 		syscallarg(struct itimerval *) itv;
   1061 	} */
   1062 	struct proc *p = l->l_proc;
   1063 	struct itimerval aitv;
   1064 	int error;
   1065 
   1066 	error = dogetitimer(p, SCARG(uap, which), &aitv);
   1067 	if (error)
   1068 		return error;
   1069 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
   1070 }
   1071 
   1072 int
   1073 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
   1074 {
   1075 	struct ptimers *pts;
   1076 	struct ptimer *pt;
   1077 	struct itimerspec its;
   1078 
   1079 	if ((u_int)which > ITIMER_MONOTONIC)
   1080 		return (EINVAL);
   1081 
   1082 	mutex_spin_enter(&timer_lock);
   1083 	pts = p->p_timers;
   1084 	if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
   1085 		timerclear(&itvp->it_value);
   1086 		timerclear(&itvp->it_interval);
   1087 	} else {
   1088 		timer_gettime(pt, &its);
   1089 		TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
   1090 		TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
   1091 	}
   1092 	mutex_spin_exit(&timer_lock);
   1093 
   1094 	return 0;
   1095 }
   1096 
   1097 /* BSD routine to set/arm an interval timer. */
   1098 /* ARGSUSED */
   1099 int
   1100 sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
   1101     register_t *retval)
   1102 {
   1103 	/* {
   1104 		syscallarg(int) which;
   1105 		syscallarg(const struct itimerval *) itv;
   1106 		syscallarg(struct itimerval *) oitv;
   1107 	} */
   1108 	struct proc *p = l->l_proc;
   1109 	int which = SCARG(uap, which);
   1110 	struct sys___getitimer50_args getargs;
   1111 	const struct itimerval *itvp;
   1112 	struct itimerval aitv;
   1113 	int error;
   1114 
   1115 	if ((u_int)which > ITIMER_MONOTONIC)
   1116 		return (EINVAL);
   1117 	itvp = SCARG(uap, itv);
   1118 	if (itvp &&
   1119 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval))) != 0)
   1120 		return (error);
   1121 	if (SCARG(uap, oitv) != NULL) {
   1122 		SCARG(&getargs, which) = which;
   1123 		SCARG(&getargs, itv) = SCARG(uap, oitv);
   1124 		if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
   1125 			return (error);
   1126 	}
   1127 	if (itvp == 0)
   1128 		return (0);
   1129 
   1130 	return dosetitimer(p, which, &aitv);
   1131 }
   1132 
   1133 int
   1134 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
   1135 {
   1136 	struct timespec now;
   1137 	struct ptimers *pts;
   1138 	struct ptimer *pt, *spare;
   1139 
   1140 	KASSERT((u_int)which <= CLOCK_MONOTONIC);
   1141 	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
   1142 		return (EINVAL);
   1143 
   1144 	/*
   1145 	 * Don't bother allocating data structures if the process just
   1146 	 * wants to clear the timer.
   1147 	 */
   1148 	spare = NULL;
   1149 	pts = p->p_timers;
   1150  retry:
   1151 	if (!timerisset(&itvp->it_value) && (pts == NULL ||
   1152 	    pts->pts_timers[which] == NULL))
   1153 		return (0);
   1154 	if (pts == NULL)
   1155 		pts = timers_alloc(p);
   1156 	mutex_spin_enter(&timer_lock);
   1157 	pt = pts->pts_timers[which];
   1158 	if (pt == NULL) {
   1159 		if (spare == NULL) {
   1160 			mutex_spin_exit(&timer_lock);
   1161 			spare = pool_get(&ptimer_pool, PR_WAITOK);
   1162 			goto retry;
   1163 		}
   1164 		pt = spare;
   1165 		spare = NULL;
   1166 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
   1167 		pt->pt_ev.sigev_value.sival_int = which;
   1168 		pt->pt_overruns = 0;
   1169 		pt->pt_proc = p;
   1170 		pt->pt_type = which;
   1171 		pt->pt_entry = which;
   1172 		pt->pt_queued = false;
   1173 		if (pt->pt_type == CLOCK_REALTIME)
   1174 			callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
   1175 		else
   1176 			pt->pt_active = 0;
   1177 
   1178 		switch (which) {
   1179 		case ITIMER_REAL:
   1180 		case ITIMER_MONOTONIC:
   1181 			pt->pt_ev.sigev_signo = SIGALRM;
   1182 			break;
   1183 		case ITIMER_VIRTUAL:
   1184 			pt->pt_ev.sigev_signo = SIGVTALRM;
   1185 			break;
   1186 		case ITIMER_PROF:
   1187 			pt->pt_ev.sigev_signo = SIGPROF;
   1188 			break;
   1189 		}
   1190 		pts->pts_timers[which] = pt;
   1191 	}
   1192 
   1193 	TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
   1194 	TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
   1195 
   1196 	if (timespecisset(&pt->pt_time.it_value)) {
   1197 		/* Convert to absolute time */
   1198 		/* XXX need to wrap in splclock for timecounters case? */
   1199 		switch (which) {
   1200 		case ITIMER_REAL:
   1201 			getnanotime(&now);
   1202 			timespecadd(&pt->pt_time.it_value, &now,
   1203 			    &pt->pt_time.it_value);
   1204 			break;
   1205 		case ITIMER_MONOTONIC:
   1206 			getnanouptime(&now);
   1207 			timespecadd(&pt->pt_time.it_value, &now,
   1208 			    &pt->pt_time.it_value);
   1209 			break;
   1210 		default:
   1211 			break;
   1212 		}
   1213 	}
   1214 	timer_settime(pt);
   1215 	mutex_spin_exit(&timer_lock);
   1216 	if (spare != NULL)
   1217 		pool_put(&ptimer_pool, spare);
   1218 
   1219 	return (0);
   1220 }
   1221 
   1222 /* Utility routines to manage the array of pointers to timers. */
   1223 struct ptimers *
   1224 timers_alloc(struct proc *p)
   1225 {
   1226 	struct ptimers *pts;
   1227 	int i;
   1228 
   1229 	pts = pool_get(&ptimers_pool, PR_WAITOK);
   1230 	LIST_INIT(&pts->pts_virtual);
   1231 	LIST_INIT(&pts->pts_prof);
   1232 	for (i = 0; i < TIMER_MAX; i++)
   1233 		pts->pts_timers[i] = NULL;
   1234 	mutex_spin_enter(&timer_lock);
   1235 	if (p->p_timers == NULL) {
   1236 		p->p_timers = pts;
   1237 		mutex_spin_exit(&timer_lock);
   1238 		return pts;
   1239 	}
   1240 	mutex_spin_exit(&timer_lock);
   1241 	pool_put(&ptimers_pool, pts);
   1242 	return p->p_timers;
   1243 }
   1244 
   1245 /*
   1246  * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
   1247  * then clean up all timers and free all the data structures. If
   1248  * "which" is set to TIMERS_POSIX, only clean up the timers allocated
   1249  * by timer_create(), not the BSD setitimer() timers, and only free the
   1250  * structure if none of those remain.
   1251  */
   1252 void
   1253 timers_free(struct proc *p, int which)
   1254 {
   1255 	struct ptimers *pts;
   1256 	struct ptimer *ptn;
   1257 	struct timespec ts;
   1258 	int i;
   1259 
   1260 	if (p->p_timers == NULL)
   1261 		return;
   1262 
   1263 	pts = p->p_timers;
   1264 	mutex_spin_enter(&timer_lock);
   1265 	if (which == TIMERS_ALL) {
   1266 		p->p_timers = NULL;
   1267 		i = 0;
   1268 	} else {
   1269 		timespecclear(&ts);
   1270 		for (ptn = LIST_FIRST(&pts->pts_virtual);
   1271 		     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
   1272 		     ptn = LIST_NEXT(ptn, pt_list)) {
   1273 			KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
   1274 			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
   1275 		}
   1276 		LIST_FIRST(&pts->pts_virtual) = NULL;
   1277 		if (ptn) {
   1278 			KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
   1279 			timespecadd(&ts, &ptn->pt_time.it_value,
   1280 			    &ptn->pt_time.it_value);
   1281 			LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
   1282 		}
   1283 		timespecclear(&ts);
   1284 		for (ptn = LIST_FIRST(&pts->pts_prof);
   1285 		     ptn && ptn != pts->pts_timers[ITIMER_PROF];
   1286 		     ptn = LIST_NEXT(ptn, pt_list)) {
   1287 			KASSERT(ptn->pt_type == CLOCK_PROF);
   1288 			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
   1289 		}
   1290 		LIST_FIRST(&pts->pts_prof) = NULL;
   1291 		if (ptn) {
   1292 			KASSERT(ptn->pt_type == CLOCK_PROF);
   1293 			timespecadd(&ts, &ptn->pt_time.it_value,
   1294 			    &ptn->pt_time.it_value);
   1295 			LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
   1296 		}
   1297 		i = TIMER_MIN;
   1298 	}
   1299 	for ( ; i < TIMER_MAX; i++) {
   1300 		if (pts->pts_timers[i] != NULL) {
   1301 			itimerfree(pts, i);
   1302 			mutex_spin_enter(&timer_lock);
   1303 		}
   1304 	}
   1305 	if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
   1306 	    pts->pts_timers[2] == NULL && pts->pts_timers[3] == NULL) {
   1307 		p->p_timers = NULL;
   1308 		mutex_spin_exit(&timer_lock);
   1309 		pool_put(&ptimers_pool, pts);
   1310 	} else
   1311 		mutex_spin_exit(&timer_lock);
   1312 }
   1313 
   1314 static void
   1315 itimerfree(struct ptimers *pts, int index)
   1316 {
   1317 	struct ptimer *pt;
   1318 
   1319 	KASSERT(mutex_owned(&timer_lock));
   1320 
   1321 	pt = pts->pts_timers[index];
   1322 	pts->pts_timers[index] = NULL;
   1323 	if (!CLOCK_VIRTUAL_P(pt->pt_type))
   1324 		callout_halt(&pt->pt_ch, &timer_lock);
   1325 	if (pt->pt_queued)
   1326 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
   1327 	mutex_spin_exit(&timer_lock);
   1328 	if (!CLOCK_VIRTUAL_P(pt->pt_type))
   1329 		callout_destroy(&pt->pt_ch);
   1330 	pool_put(&ptimer_pool, pt);
   1331 }
   1332 
   1333 /*
   1334  * Decrement an interval timer by a specified number
   1335  * of nanoseconds, which must be less than a second,
   1336  * i.e. < 1000000000.  If the timer expires, then reload
   1337  * it.  In this case, carry over (nsec - old value) to
   1338  * reduce the value reloaded into the timer so that
   1339  * the timer does not drift.  This routine assumes
   1340  * that it is called in a context where the timers
   1341  * on which it is operating cannot change in value.
   1342  */
   1343 static int
   1344 itimerdecr(struct ptimer *pt, int nsec)
   1345 {
   1346 	struct itimerspec *itp;
   1347 
   1348 	KASSERT(mutex_owned(&timer_lock));
   1349 	KASSERT(CLOCK_VIRTUAL_P(pt->pt_type));
   1350 
   1351 	itp = &pt->pt_time;
   1352 	if (itp->it_value.tv_nsec < nsec) {
   1353 		if (itp->it_value.tv_sec == 0) {
   1354 			/* expired, and already in next interval */
   1355 			nsec -= itp->it_value.tv_nsec;
   1356 			goto expire;
   1357 		}
   1358 		itp->it_value.tv_nsec += 1000000000;
   1359 		itp->it_value.tv_sec--;
   1360 	}
   1361 	itp->it_value.tv_nsec -= nsec;
   1362 	nsec = 0;
   1363 	if (timespecisset(&itp->it_value))
   1364 		return (1);
   1365 	/* expired, exactly at end of interval */
   1366 expire:
   1367 	if (timespecisset(&itp->it_interval)) {
   1368 		itp->it_value = itp->it_interval;
   1369 		itp->it_value.tv_nsec -= nsec;
   1370 		if (itp->it_value.tv_nsec < 0) {
   1371 			itp->it_value.tv_nsec += 1000000000;
   1372 			itp->it_value.tv_sec--;
   1373 		}
   1374 		timer_settime(pt);
   1375 	} else
   1376 		itp->it_value.tv_nsec = 0;		/* sec is already 0 */
   1377 	return (0);
   1378 }
   1379 
   1380 static void
   1381 itimerfire(struct ptimer *pt)
   1382 {
   1383 
   1384 	KASSERT(mutex_owned(&timer_lock));
   1385 
   1386 	/*
   1387 	 * XXX Can overrun, but we don't do signal queueing yet, anyway.
   1388 	 * XXX Relying on the clock interrupt is stupid.
   1389 	 */
   1390 	if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL || pt->pt_queued) {
   1391 		return;
   1392 	}
   1393 	TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
   1394 	pt->pt_queued = true;
   1395 	softint_schedule(timer_sih);
   1396 }
   1397 
   1398 void
   1399 timer_tick(lwp_t *l, bool user)
   1400 {
   1401 	struct ptimers *pts;
   1402 	struct ptimer *pt;
   1403 	proc_t *p;
   1404 
   1405 	p = l->l_proc;
   1406 	if (p->p_timers == NULL)
   1407 		return;
   1408 
   1409 	mutex_spin_enter(&timer_lock);
   1410 	if ((pts = l->l_proc->p_timers) != NULL) {
   1411 		/*
   1412 		 * Run current process's virtual and profile time, as needed.
   1413 		 */
   1414 		if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
   1415 			if (itimerdecr(pt, tick * 1000) == 0)
   1416 				itimerfire(pt);
   1417 		if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
   1418 			if (itimerdecr(pt, tick * 1000) == 0)
   1419 				itimerfire(pt);
   1420 	}
   1421 	mutex_spin_exit(&timer_lock);
   1422 }
   1423 
   1424 static void
   1425 timer_intr(void *cookie)
   1426 {
   1427 	ksiginfo_t ksi;
   1428 	struct ptimer *pt;
   1429 	proc_t *p;
   1430 
   1431 	mutex_enter(proc_lock);
   1432 	mutex_spin_enter(&timer_lock);
   1433 	while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
   1434 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
   1435 		KASSERT(pt->pt_queued);
   1436 		pt->pt_queued = false;
   1437 
   1438 		if (pt->pt_proc->p_timers == NULL) {
   1439 			/* Process is dying. */
   1440 			continue;
   1441 		}
   1442 		p = pt->pt_proc;
   1443 		if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
   1444 			continue;
   1445 		}
   1446 		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
   1447 			pt->pt_overruns++;
   1448 			continue;
   1449 		}
   1450 
   1451 		KSI_INIT(&ksi);
   1452 		ksi.ksi_signo = pt->pt_ev.sigev_signo;
   1453 		ksi.ksi_code = SI_TIMER;
   1454 		ksi.ksi_value = pt->pt_ev.sigev_value;
   1455 		pt->pt_poverruns = pt->pt_overruns;
   1456 		pt->pt_overruns = 0;
   1457 		mutex_spin_exit(&timer_lock);
   1458 		kpsignal(p, &ksi, NULL);
   1459 		mutex_spin_enter(&timer_lock);
   1460 	}
   1461 	mutex_spin_exit(&timer_lock);
   1462 	mutex_exit(proc_lock);
   1463 }
   1464 
   1465 /*
   1466  * Check if the time will wrap if set to ts.
   1467  *
   1468  * ts - timespec describing the new time
   1469  * delta - the delta between the current time and ts
   1470  */
   1471 bool
   1472 time_wraps(struct timespec *ts, struct timespec *delta)
   1473 {
   1474 
   1475 	/*
   1476 	 * Don't allow the time to be set forward so far it
   1477 	 * will wrap and become negative, thus allowing an
   1478 	 * attacker to bypass the next check below.  The
   1479 	 * cutoff is 1 year before rollover occurs, so even
   1480 	 * if the attacker uses adjtime(2) to move the time
   1481 	 * past the cutoff, it will take a very long time
   1482 	 * to get to the wrap point.
   1483 	 */
   1484 	if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
   1485 	    (delta->tv_sec < 0 || delta->tv_nsec < 0))
   1486 		return true;
   1487 
   1488 	return false;
   1489 }
   1490