kern_time.c revision 1.186 1 /* $NetBSD: kern_time.c,v 1.186 2016/04/23 23:08:26 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1986, 1989, 1993
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
61 */
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.186 2016/04/23 23:08:26 christos Exp $");
65
66 #include <sys/param.h>
67 #include <sys/resourcevar.h>
68 #include <sys/kernel.h>
69 #include <sys/systm.h>
70 #include <sys/proc.h>
71 #include <sys/vnode.h>
72 #include <sys/signalvar.h>
73 #include <sys/syslog.h>
74 #include <sys/timetc.h>
75 #include <sys/timex.h>
76 #include <sys/kauth.h>
77 #include <sys/mount.h>
78 #include <sys/syscallargs.h>
79 #include <sys/cpu.h>
80
81 static void timer_intr(void *);
82 static void itimerfire(struct ptimer *);
83 static void itimerfree(struct ptimers *, int);
84
85 kmutex_t timer_lock;
86
87 static void *timer_sih;
88 static TAILQ_HEAD(, ptimer) timer_queue;
89
90 struct pool ptimer_pool, ptimers_pool;
91
92 #define CLOCK_VIRTUAL_P(clockid) \
93 ((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)
94
95 CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
96 CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
97 CTASSERT(ITIMER_PROF == CLOCK_PROF);
98 CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC);
99
100
101 /*
102 * Initialize timekeeping.
103 */
104 void
105 time_init(void)
106 {
107
108 pool_init(&ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
109 &pool_allocator_nointr, IPL_NONE);
110 pool_init(&ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
111 &pool_allocator_nointr, IPL_NONE);
112 }
113
114 void
115 time_init2(void)
116 {
117
118 TAILQ_INIT(&timer_queue);
119 mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
120 timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
121 timer_intr, NULL);
122 }
123
124 /* Time of day and interval timer support.
125 *
126 * These routines provide the kernel entry points to get and set
127 * the time-of-day and per-process interval timers. Subroutines
128 * here provide support for adding and subtracting timeval structures
129 * and decrementing interval timers, optionally reloading the interval
130 * timers when they expire.
131 */
132
133 /* This function is used by clock_settime and settimeofday */
134 static int
135 settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
136 {
137 struct timespec delta, now;
138 int s;
139
140 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
141 s = splclock();
142 nanotime(&now);
143 timespecsub(ts, &now, &delta);
144
145 if (check_kauth && kauth_authorize_system(kauth_cred_get(),
146 KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
147 &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
148 splx(s);
149 return (EPERM);
150 }
151
152 #ifdef notyet
153 if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
154 splx(s);
155 return (EPERM);
156 }
157 #endif
158
159 tc_setclock(ts);
160
161 timespecadd(&boottime, &delta, &boottime);
162
163 resettodr();
164 splx(s);
165
166 return (0);
167 }
168
169 int
170 settime(struct proc *p, struct timespec *ts)
171 {
172 return (settime1(p, ts, true));
173 }
174
175 /* ARGSUSED */
176 int
177 sys___clock_gettime50(struct lwp *l,
178 const struct sys___clock_gettime50_args *uap, register_t *retval)
179 {
180 /* {
181 syscallarg(clockid_t) clock_id;
182 syscallarg(struct timespec *) tp;
183 } */
184 int error;
185 struct timespec ats;
186
187 error = clock_gettime1(SCARG(uap, clock_id), &ats);
188 if (error != 0)
189 return error;
190
191 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
192 }
193
194 /* ARGSUSED */
195 int
196 sys___clock_settime50(struct lwp *l,
197 const struct sys___clock_settime50_args *uap, register_t *retval)
198 {
199 /* {
200 syscallarg(clockid_t) clock_id;
201 syscallarg(const struct timespec *) tp;
202 } */
203 int error;
204 struct timespec ats;
205
206 if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
207 return error;
208
209 return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
210 }
211
212
213 int
214 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
215 bool check_kauth)
216 {
217 int error;
218
219 switch (clock_id) {
220 case CLOCK_REALTIME:
221 if ((error = settime1(p, tp, check_kauth)) != 0)
222 return (error);
223 break;
224 case CLOCK_MONOTONIC:
225 return (EINVAL); /* read-only clock */
226 default:
227 return (EINVAL);
228 }
229
230 return 0;
231 }
232
233 int
234 sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
235 register_t *retval)
236 {
237 /* {
238 syscallarg(clockid_t) clock_id;
239 syscallarg(struct timespec *) tp;
240 } */
241 struct timespec ts;
242 int error;
243
244 if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
245 return error;
246
247 if (SCARG(uap, tp))
248 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
249
250 return error;
251 }
252
253 int
254 clock_getres1(clockid_t clock_id, struct timespec *ts)
255 {
256
257 switch (clock_id) {
258 case CLOCK_REALTIME:
259 case CLOCK_MONOTONIC:
260 ts->tv_sec = 0;
261 if (tc_getfrequency() > 1000000000)
262 ts->tv_nsec = 1;
263 else
264 ts->tv_nsec = 1000000000 / tc_getfrequency();
265 break;
266 default:
267 return EINVAL;
268 }
269
270 return 0;
271 }
272
273 /* ARGSUSED */
274 int
275 sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
276 register_t *retval)
277 {
278 /* {
279 syscallarg(struct timespec *) rqtp;
280 syscallarg(struct timespec *) rmtp;
281 } */
282 struct timespec rmt, rqt;
283 int error, error1;
284
285 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
286 if (error)
287 return (error);
288
289 error = nanosleep1(l, CLOCK_MONOTONIC, 0, &rqt,
290 SCARG(uap, rmtp) ? &rmt : NULL);
291 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
292 return error;
293
294 error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
295 return error1 ? error1 : error;
296 }
297
298 /* ARGSUSED */
299 int
300 sys_clock_nanosleep(struct lwp *l, const struct sys_clock_nanosleep_args *uap,
301 register_t *retval)
302 {
303 /* {
304 syscallarg(clockid_t) clock_id;
305 syscallarg(int) flags;
306 syscallarg(struct timespec *) rqtp;
307 syscallarg(struct timespec *) rmtp;
308 } */
309 struct timespec rmt, rqt;
310 int error, error1;
311
312 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
313 if (error)
314 goto out;
315
316 error = nanosleep1(l, SCARG(uap, clock_id), SCARG(uap, flags), &rqt,
317 SCARG(uap, rmtp) ? &rmt : NULL);
318 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
319 goto out;
320
321 if ((error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt))) != 0)
322 error = error1;
323 out:
324 *retval = error;
325 return 0;
326 }
327
328 int
329 nanosleep1(struct lwp *l, clockid_t clock_id, int flags, struct timespec *rqt,
330 struct timespec *rmt)
331 {
332 struct timespec rmtstart;
333 int error, timo;
334
335 if ((error = ts2timo(clock_id, flags, rqt, &timo, &rmtstart)) != 0) {
336 if (error == ETIMEDOUT) {
337 error = 0;
338 if (rmt != NULL)
339 rmt->tv_sec = rmt->tv_nsec = 0;
340 }
341 return error;
342 }
343
344 /*
345 * Avoid inadvertently sleeping forever
346 */
347 if (timo == 0)
348 timo = 1;
349 again:
350 error = kpause("nanoslp", true, timo, NULL);
351 if (rmt != NULL || error == 0) {
352 struct timespec rmtend;
353 struct timespec t0;
354 struct timespec *t;
355
356 (void)clock_gettime1(clock_id, &rmtend);
357 t = (rmt != NULL) ? rmt : &t0;
358 if (flags & TIMER_ABSTIME) {
359 timespecsub(rqt, &rmtend, t);
360 } else {
361 timespecsub(&rmtend, &rmtstart, t);
362 timespecsub(rqt, t, t);
363 }
364 if (t->tv_sec < 0)
365 timespecclear(t);
366 if (error == 0) {
367 timo = tstohz(t);
368 if (timo > 0)
369 goto again;
370 }
371 }
372
373 if (error == ERESTART)
374 error = EINTR;
375 if (error == EWOULDBLOCK)
376 error = 0;
377
378 return error;
379 }
380
381 int
382 sys_clock_getcpuclockid2(struct lwp *l,
383 const struct sys_clock_getcpuclockid2_args *uap,
384 register_t *retval)
385 {
386 /* {
387 syscallarg(idtype_t idtype;
388 syscallarg(id_t id);
389 syscallarg(clockid_t *)clock_id;
390 } */
391 pid_t pid;
392 lwpid_t lid;
393 clockid_t clock_id;
394 id_t id = SCARG(uap, id);
395
396 switch (SCARG(uap, idtype)) {
397 case P_PID:
398 pid = id == 0 ? l->l_proc->p_pid : id;
399 clock_id = CLOCK_PROCESS_CPUTIME_ID | pid;
400 break;
401 case P_LWPID:
402 lid = id == 0 ? l->l_lid : id;
403 clock_id = CLOCK_THREAD_CPUTIME_ID | lid;
404 break;
405 default:
406 return EINVAL;
407 }
408 return copyout(&clock_id, SCARG(uap, clock_id), sizeof(clock_id));
409 }
410
411 /* ARGSUSED */
412 int
413 sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
414 register_t *retval)
415 {
416 /* {
417 syscallarg(struct timeval *) tp;
418 syscallarg(void *) tzp; really "struct timezone *";
419 } */
420 struct timeval atv;
421 int error = 0;
422 struct timezone tzfake;
423
424 if (SCARG(uap, tp)) {
425 microtime(&atv);
426 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
427 if (error)
428 return (error);
429 }
430 if (SCARG(uap, tzp)) {
431 /*
432 * NetBSD has no kernel notion of time zone, so we just
433 * fake up a timezone struct and return it if demanded.
434 */
435 tzfake.tz_minuteswest = 0;
436 tzfake.tz_dsttime = 0;
437 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
438 }
439 return (error);
440 }
441
442 /* ARGSUSED */
443 int
444 sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
445 register_t *retval)
446 {
447 /* {
448 syscallarg(const struct timeval *) tv;
449 syscallarg(const void *) tzp; really "const struct timezone *";
450 } */
451
452 return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
453 }
454
455 int
456 settimeofday1(const struct timeval *utv, bool userspace,
457 const void *utzp, struct lwp *l, bool check_kauth)
458 {
459 struct timeval atv;
460 struct timespec ts;
461 int error;
462
463 /* Verify all parameters before changing time. */
464
465 /*
466 * NetBSD has no kernel notion of time zone, and only an
467 * obsolete program would try to set it, so we log a warning.
468 */
469 if (utzp)
470 log(LOG_WARNING, "pid %d attempted to set the "
471 "(obsolete) kernel time zone\n", l->l_proc->p_pid);
472
473 if (utv == NULL)
474 return 0;
475
476 if (userspace) {
477 if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
478 return error;
479 utv = &atv;
480 }
481
482 TIMEVAL_TO_TIMESPEC(utv, &ts);
483 return settime1(l->l_proc, &ts, check_kauth);
484 }
485
486 int time_adjusted; /* set if an adjustment is made */
487
488 /* ARGSUSED */
489 int
490 sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
491 register_t *retval)
492 {
493 /* {
494 syscallarg(const struct timeval *) delta;
495 syscallarg(struct timeval *) olddelta;
496 } */
497 int error;
498 struct timeval atv, oldatv;
499
500 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
501 KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
502 return error;
503
504 if (SCARG(uap, delta)) {
505 error = copyin(SCARG(uap, delta), &atv,
506 sizeof(*SCARG(uap, delta)));
507 if (error)
508 return (error);
509 }
510 adjtime1(SCARG(uap, delta) ? &atv : NULL,
511 SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
512 if (SCARG(uap, olddelta))
513 error = copyout(&oldatv, SCARG(uap, olddelta),
514 sizeof(*SCARG(uap, olddelta)));
515 return error;
516 }
517
518 void
519 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
520 {
521 extern int64_t time_adjtime; /* in kern_ntptime.c */
522
523 if (olddelta) {
524 mutex_spin_enter(&timecounter_lock);
525 olddelta->tv_sec = time_adjtime / 1000000;
526 olddelta->tv_usec = time_adjtime % 1000000;
527 if (olddelta->tv_usec < 0) {
528 olddelta->tv_usec += 1000000;
529 olddelta->tv_sec--;
530 }
531 mutex_spin_exit(&timecounter_lock);
532 }
533
534 if (delta) {
535 mutex_spin_enter(&timecounter_lock);
536 time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
537
538 if (time_adjtime) {
539 /* We need to save the system time during shutdown */
540 time_adjusted |= 1;
541 }
542 mutex_spin_exit(&timecounter_lock);
543 }
544 }
545
546 /*
547 * Interval timer support. Both the BSD getitimer() family and the POSIX
548 * timer_*() family of routines are supported.
549 *
550 * All timers are kept in an array pointed to by p_timers, which is
551 * allocated on demand - many processes don't use timers at all. The
552 * first four elements in this array are reserved for the BSD timers:
553 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element
554 * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be
555 * allocated by the timer_create() syscall.
556 *
557 * Realtime timers are kept in the ptimer structure as an absolute
558 * time; virtual time timers are kept as a linked list of deltas.
559 * Virtual time timers are processed in the hardclock() routine of
560 * kern_clock.c. The real time timer is processed by a callout
561 * routine, called from the softclock() routine. Since a callout may
562 * be delayed in real time due to interrupt processing in the system,
563 * it is possible for the real time timeout routine (realtimeexpire,
564 * given below), to be delayed in real time past when it is supposed
565 * to occur. It does not suffice, therefore, to reload the real timer
566 * .it_value from the real time timers .it_interval. Rather, we
567 * compute the next time in absolute time the timer should go off. */
568
569 /* Allocate a POSIX realtime timer. */
570 int
571 sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
572 register_t *retval)
573 {
574 /* {
575 syscallarg(clockid_t) clock_id;
576 syscallarg(struct sigevent *) evp;
577 syscallarg(timer_t *) timerid;
578 } */
579
580 return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
581 SCARG(uap, evp), copyin, l);
582 }
583
584 int
585 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
586 copyin_t fetch_event, struct lwp *l)
587 {
588 int error;
589 timer_t timerid;
590 struct ptimers *pts;
591 struct ptimer *pt;
592 struct proc *p;
593
594 p = l->l_proc;
595
596 if ((u_int)id > CLOCK_MONOTONIC)
597 return (EINVAL);
598
599 if ((pts = p->p_timers) == NULL)
600 pts = timers_alloc(p);
601
602 pt = pool_get(&ptimer_pool, PR_WAITOK);
603 if (evp != NULL) {
604 if (((error =
605 (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
606 ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
607 (pt->pt_ev.sigev_notify > SIGEV_SA)) ||
608 (pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
609 (pt->pt_ev.sigev_signo <= 0 ||
610 pt->pt_ev.sigev_signo >= NSIG))) {
611 pool_put(&ptimer_pool, pt);
612 return (error ? error : EINVAL);
613 }
614 }
615
616 /* Find a free timer slot, skipping those reserved for setitimer(). */
617 mutex_spin_enter(&timer_lock);
618 for (timerid = TIMER_MIN; timerid < TIMER_MAX; timerid++)
619 if (pts->pts_timers[timerid] == NULL)
620 break;
621 if (timerid == TIMER_MAX) {
622 mutex_spin_exit(&timer_lock);
623 pool_put(&ptimer_pool, pt);
624 return EAGAIN;
625 }
626 if (evp == NULL) {
627 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
628 switch (id) {
629 case CLOCK_REALTIME:
630 case CLOCK_MONOTONIC:
631 pt->pt_ev.sigev_signo = SIGALRM;
632 break;
633 case CLOCK_VIRTUAL:
634 pt->pt_ev.sigev_signo = SIGVTALRM;
635 break;
636 case CLOCK_PROF:
637 pt->pt_ev.sigev_signo = SIGPROF;
638 break;
639 }
640 pt->pt_ev.sigev_value.sival_int = timerid;
641 }
642 pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
643 pt->pt_info.ksi_errno = 0;
644 pt->pt_info.ksi_code = 0;
645 pt->pt_info.ksi_pid = p->p_pid;
646 pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
647 pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
648 pt->pt_type = id;
649 pt->pt_proc = p;
650 pt->pt_overruns = 0;
651 pt->pt_poverruns = 0;
652 pt->pt_entry = timerid;
653 pt->pt_queued = false;
654 timespecclear(&pt->pt_time.it_value);
655 if (!CLOCK_VIRTUAL_P(id))
656 callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
657 else
658 pt->pt_active = 0;
659
660 pts->pts_timers[timerid] = pt;
661 mutex_spin_exit(&timer_lock);
662
663 return copyout(&timerid, tid, sizeof(timerid));
664 }
665
666 /* Delete a POSIX realtime timer */
667 int
668 sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
669 register_t *retval)
670 {
671 /* {
672 syscallarg(timer_t) timerid;
673 } */
674 struct proc *p = l->l_proc;
675 timer_t timerid;
676 struct ptimers *pts;
677 struct ptimer *pt, *ptn;
678
679 timerid = SCARG(uap, timerid);
680 pts = p->p_timers;
681
682 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
683 return (EINVAL);
684
685 mutex_spin_enter(&timer_lock);
686 if ((pt = pts->pts_timers[timerid]) == NULL) {
687 mutex_spin_exit(&timer_lock);
688 return (EINVAL);
689 }
690 if (CLOCK_VIRTUAL_P(pt->pt_type)) {
691 if (pt->pt_active) {
692 ptn = LIST_NEXT(pt, pt_list);
693 LIST_REMOVE(pt, pt_list);
694 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
695 timespecadd(&pt->pt_time.it_value,
696 &ptn->pt_time.it_value,
697 &ptn->pt_time.it_value);
698 pt->pt_active = 0;
699 }
700 }
701 itimerfree(pts, timerid);
702
703 return (0);
704 }
705
706 /*
707 * Set up the given timer. The value in pt->pt_time.it_value is taken
708 * to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC timers and
709 * a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
710 */
711 void
712 timer_settime(struct ptimer *pt)
713 {
714 struct ptimer *ptn, *pptn;
715 struct ptlist *ptl;
716
717 KASSERT(mutex_owned(&timer_lock));
718
719 if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
720 callout_halt(&pt->pt_ch, &timer_lock);
721 if (timespecisset(&pt->pt_time.it_value)) {
722 /*
723 * Don't need to check tshzto() return value, here.
724 * callout_reset() does it for us.
725 */
726 callout_reset(&pt->pt_ch,
727 pt->pt_type == CLOCK_MONOTONIC ?
728 tshztoup(&pt->pt_time.it_value) :
729 tshzto(&pt->pt_time.it_value),
730 realtimerexpire, pt);
731 }
732 } else {
733 if (pt->pt_active) {
734 ptn = LIST_NEXT(pt, pt_list);
735 LIST_REMOVE(pt, pt_list);
736 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
737 timespecadd(&pt->pt_time.it_value,
738 &ptn->pt_time.it_value,
739 &ptn->pt_time.it_value);
740 }
741 if (timespecisset(&pt->pt_time.it_value)) {
742 if (pt->pt_type == CLOCK_VIRTUAL)
743 ptl = &pt->pt_proc->p_timers->pts_virtual;
744 else
745 ptl = &pt->pt_proc->p_timers->pts_prof;
746
747 for (ptn = LIST_FIRST(ptl), pptn = NULL;
748 ptn && timespeccmp(&pt->pt_time.it_value,
749 &ptn->pt_time.it_value, >);
750 pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
751 timespecsub(&pt->pt_time.it_value,
752 &ptn->pt_time.it_value,
753 &pt->pt_time.it_value);
754
755 if (pptn)
756 LIST_INSERT_AFTER(pptn, pt, pt_list);
757 else
758 LIST_INSERT_HEAD(ptl, pt, pt_list);
759
760 for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
761 timespecsub(&ptn->pt_time.it_value,
762 &pt->pt_time.it_value,
763 &ptn->pt_time.it_value);
764
765 pt->pt_active = 1;
766 } else
767 pt->pt_active = 0;
768 }
769 }
770
771 void
772 timer_gettime(struct ptimer *pt, struct itimerspec *aits)
773 {
774 struct timespec now;
775 struct ptimer *ptn;
776
777 KASSERT(mutex_owned(&timer_lock));
778
779 *aits = pt->pt_time;
780 if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
781 /*
782 * Convert from absolute to relative time in .it_value
783 * part of real time timer. If time for real time
784 * timer has passed return 0, else return difference
785 * between current time and time for the timer to go
786 * off.
787 */
788 if (timespecisset(&aits->it_value)) {
789 if (pt->pt_type == CLOCK_REALTIME) {
790 getnanotime(&now);
791 } else { /* CLOCK_MONOTONIC */
792 getnanouptime(&now);
793 }
794 if (timespeccmp(&aits->it_value, &now, <))
795 timespecclear(&aits->it_value);
796 else
797 timespecsub(&aits->it_value, &now,
798 &aits->it_value);
799 }
800 } else if (pt->pt_active) {
801 if (pt->pt_type == CLOCK_VIRTUAL)
802 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
803 else
804 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
805 for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
806 timespecadd(&aits->it_value,
807 &ptn->pt_time.it_value, &aits->it_value);
808 KASSERT(ptn != NULL); /* pt should be findable on the list */
809 } else
810 timespecclear(&aits->it_value);
811 }
812
813
814
815 /* Set and arm a POSIX realtime timer */
816 int
817 sys___timer_settime50(struct lwp *l,
818 const struct sys___timer_settime50_args *uap,
819 register_t *retval)
820 {
821 /* {
822 syscallarg(timer_t) timerid;
823 syscallarg(int) flags;
824 syscallarg(const struct itimerspec *) value;
825 syscallarg(struct itimerspec *) ovalue;
826 } */
827 int error;
828 struct itimerspec value, ovalue, *ovp = NULL;
829
830 if ((error = copyin(SCARG(uap, value), &value,
831 sizeof(struct itimerspec))) != 0)
832 return (error);
833
834 if (SCARG(uap, ovalue))
835 ovp = &ovalue;
836
837 if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
838 SCARG(uap, flags), l->l_proc)) != 0)
839 return error;
840
841 if (ovp)
842 return copyout(&ovalue, SCARG(uap, ovalue),
843 sizeof(struct itimerspec));
844 return 0;
845 }
846
847 int
848 dotimer_settime(int timerid, struct itimerspec *value,
849 struct itimerspec *ovalue, int flags, struct proc *p)
850 {
851 struct timespec now;
852 struct itimerspec val, oval;
853 struct ptimers *pts;
854 struct ptimer *pt;
855 int error;
856
857 pts = p->p_timers;
858
859 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
860 return EINVAL;
861 val = *value;
862 if ((error = itimespecfix(&val.it_value)) != 0 ||
863 (error = itimespecfix(&val.it_interval)) != 0)
864 return error;
865
866 mutex_spin_enter(&timer_lock);
867 if ((pt = pts->pts_timers[timerid]) == NULL) {
868 mutex_spin_exit(&timer_lock);
869 return EINVAL;
870 }
871
872 oval = pt->pt_time;
873 pt->pt_time = val;
874
875 /*
876 * If we've been passed a relative time for a realtime timer,
877 * convert it to absolute; if an absolute time for a virtual
878 * timer, convert it to relative and make sure we don't set it
879 * to zero, which would cancel the timer, or let it go
880 * negative, which would confuse the comparison tests.
881 */
882 if (timespecisset(&pt->pt_time.it_value)) {
883 if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
884 if ((flags & TIMER_ABSTIME) == 0) {
885 if (pt->pt_type == CLOCK_REALTIME) {
886 getnanotime(&now);
887 } else { /* CLOCK_MONOTONIC */
888 getnanouptime(&now);
889 }
890 timespecadd(&pt->pt_time.it_value, &now,
891 &pt->pt_time.it_value);
892 }
893 } else {
894 if ((flags & TIMER_ABSTIME) != 0) {
895 getnanotime(&now);
896 timespecsub(&pt->pt_time.it_value, &now,
897 &pt->pt_time.it_value);
898 if (!timespecisset(&pt->pt_time.it_value) ||
899 pt->pt_time.it_value.tv_sec < 0) {
900 pt->pt_time.it_value.tv_sec = 0;
901 pt->pt_time.it_value.tv_nsec = 1;
902 }
903 }
904 }
905 }
906
907 timer_settime(pt);
908 mutex_spin_exit(&timer_lock);
909
910 if (ovalue)
911 *ovalue = oval;
912
913 return (0);
914 }
915
916 /* Return the time remaining until a POSIX timer fires. */
917 int
918 sys___timer_gettime50(struct lwp *l,
919 const struct sys___timer_gettime50_args *uap, register_t *retval)
920 {
921 /* {
922 syscallarg(timer_t) timerid;
923 syscallarg(struct itimerspec *) value;
924 } */
925 struct itimerspec its;
926 int error;
927
928 if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
929 &its)) != 0)
930 return error;
931
932 return copyout(&its, SCARG(uap, value), sizeof(its));
933 }
934
935 int
936 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
937 {
938 struct ptimer *pt;
939 struct ptimers *pts;
940
941 pts = p->p_timers;
942 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
943 return (EINVAL);
944 mutex_spin_enter(&timer_lock);
945 if ((pt = pts->pts_timers[timerid]) == NULL) {
946 mutex_spin_exit(&timer_lock);
947 return (EINVAL);
948 }
949 timer_gettime(pt, its);
950 mutex_spin_exit(&timer_lock);
951
952 return 0;
953 }
954
955 /*
956 * Return the count of the number of times a periodic timer expired
957 * while a notification was already pending. The counter is reset when
958 * a timer expires and a notification can be posted.
959 */
960 int
961 sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
962 register_t *retval)
963 {
964 /* {
965 syscallarg(timer_t) timerid;
966 } */
967 struct proc *p = l->l_proc;
968 struct ptimers *pts;
969 int timerid;
970 struct ptimer *pt;
971
972 timerid = SCARG(uap, timerid);
973
974 pts = p->p_timers;
975 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
976 return (EINVAL);
977 mutex_spin_enter(&timer_lock);
978 if ((pt = pts->pts_timers[timerid]) == NULL) {
979 mutex_spin_exit(&timer_lock);
980 return (EINVAL);
981 }
982 *retval = pt->pt_poverruns;
983 mutex_spin_exit(&timer_lock);
984
985 return (0);
986 }
987
988 /*
989 * Real interval timer expired:
990 * send process whose timer expired an alarm signal.
991 * If time is not set up to reload, then just return.
992 * Else compute next time timer should go off which is > current time.
993 * This is where delay in processing this timeout causes multiple
994 * SIGALRM calls to be compressed into one.
995 */
996 void
997 realtimerexpire(void *arg)
998 {
999 uint64_t last_val, next_val, interval, now_ns;
1000 struct timespec now, next;
1001 struct ptimer *pt;
1002 int backwards;
1003
1004 pt = arg;
1005
1006 mutex_spin_enter(&timer_lock);
1007 itimerfire(pt);
1008
1009 if (!timespecisset(&pt->pt_time.it_interval)) {
1010 timespecclear(&pt->pt_time.it_value);
1011 mutex_spin_exit(&timer_lock);
1012 return;
1013 }
1014
1015 if (pt->pt_type == CLOCK_MONOTONIC) {
1016 getnanouptime(&now);
1017 } else {
1018 getnanotime(&now);
1019 }
1020 backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
1021 timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
1022 /* Handle the easy case of non-overflown timers first. */
1023 if (!backwards && timespeccmp(&next, &now, >)) {
1024 pt->pt_time.it_value = next;
1025 } else {
1026 now_ns = timespec2ns(&now);
1027 last_val = timespec2ns(&pt->pt_time.it_value);
1028 interval = timespec2ns(&pt->pt_time.it_interval);
1029
1030 next_val = now_ns +
1031 (now_ns - last_val + interval - 1) % interval;
1032
1033 if (backwards)
1034 next_val += interval;
1035 else
1036 pt->pt_overruns += (now_ns - last_val) / interval;
1037
1038 pt->pt_time.it_value.tv_sec = next_val / 1000000000;
1039 pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
1040 }
1041
1042 /*
1043 * Don't need to check tshzto() return value, here.
1044 * callout_reset() does it for us.
1045 */
1046 callout_reset(&pt->pt_ch, pt->pt_type == CLOCK_MONOTONIC ?
1047 tshztoup(&pt->pt_time.it_value) : tshzto(&pt->pt_time.it_value),
1048 realtimerexpire, pt);
1049 mutex_spin_exit(&timer_lock);
1050 }
1051
1052 /* BSD routine to get the value of an interval timer. */
1053 /* ARGSUSED */
1054 int
1055 sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
1056 register_t *retval)
1057 {
1058 /* {
1059 syscallarg(int) which;
1060 syscallarg(struct itimerval *) itv;
1061 } */
1062 struct proc *p = l->l_proc;
1063 struct itimerval aitv;
1064 int error;
1065
1066 error = dogetitimer(p, SCARG(uap, which), &aitv);
1067 if (error)
1068 return error;
1069 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1070 }
1071
1072 int
1073 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1074 {
1075 struct ptimers *pts;
1076 struct ptimer *pt;
1077 struct itimerspec its;
1078
1079 if ((u_int)which > ITIMER_MONOTONIC)
1080 return (EINVAL);
1081
1082 mutex_spin_enter(&timer_lock);
1083 pts = p->p_timers;
1084 if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
1085 timerclear(&itvp->it_value);
1086 timerclear(&itvp->it_interval);
1087 } else {
1088 timer_gettime(pt, &its);
1089 TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
1090 TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
1091 }
1092 mutex_spin_exit(&timer_lock);
1093
1094 return 0;
1095 }
1096
1097 /* BSD routine to set/arm an interval timer. */
1098 /* ARGSUSED */
1099 int
1100 sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
1101 register_t *retval)
1102 {
1103 /* {
1104 syscallarg(int) which;
1105 syscallarg(const struct itimerval *) itv;
1106 syscallarg(struct itimerval *) oitv;
1107 } */
1108 struct proc *p = l->l_proc;
1109 int which = SCARG(uap, which);
1110 struct sys___getitimer50_args getargs;
1111 const struct itimerval *itvp;
1112 struct itimerval aitv;
1113 int error;
1114
1115 if ((u_int)which > ITIMER_MONOTONIC)
1116 return (EINVAL);
1117 itvp = SCARG(uap, itv);
1118 if (itvp &&
1119 (error = copyin(itvp, &aitv, sizeof(struct itimerval))) != 0)
1120 return (error);
1121 if (SCARG(uap, oitv) != NULL) {
1122 SCARG(&getargs, which) = which;
1123 SCARG(&getargs, itv) = SCARG(uap, oitv);
1124 if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
1125 return (error);
1126 }
1127 if (itvp == 0)
1128 return (0);
1129
1130 return dosetitimer(p, which, &aitv);
1131 }
1132
1133 int
1134 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1135 {
1136 struct timespec now;
1137 struct ptimers *pts;
1138 struct ptimer *pt, *spare;
1139
1140 KASSERT((u_int)which <= CLOCK_MONOTONIC);
1141 if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1142 return (EINVAL);
1143
1144 /*
1145 * Don't bother allocating data structures if the process just
1146 * wants to clear the timer.
1147 */
1148 spare = NULL;
1149 pts = p->p_timers;
1150 retry:
1151 if (!timerisset(&itvp->it_value) && (pts == NULL ||
1152 pts->pts_timers[which] == NULL))
1153 return (0);
1154 if (pts == NULL)
1155 pts = timers_alloc(p);
1156 mutex_spin_enter(&timer_lock);
1157 pt = pts->pts_timers[which];
1158 if (pt == NULL) {
1159 if (spare == NULL) {
1160 mutex_spin_exit(&timer_lock);
1161 spare = pool_get(&ptimer_pool, PR_WAITOK);
1162 goto retry;
1163 }
1164 pt = spare;
1165 spare = NULL;
1166 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1167 pt->pt_ev.sigev_value.sival_int = which;
1168 pt->pt_overruns = 0;
1169 pt->pt_proc = p;
1170 pt->pt_type = which;
1171 pt->pt_entry = which;
1172 pt->pt_queued = false;
1173 if (pt->pt_type == CLOCK_REALTIME)
1174 callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
1175 else
1176 pt->pt_active = 0;
1177
1178 switch (which) {
1179 case ITIMER_REAL:
1180 case ITIMER_MONOTONIC:
1181 pt->pt_ev.sigev_signo = SIGALRM;
1182 break;
1183 case ITIMER_VIRTUAL:
1184 pt->pt_ev.sigev_signo = SIGVTALRM;
1185 break;
1186 case ITIMER_PROF:
1187 pt->pt_ev.sigev_signo = SIGPROF;
1188 break;
1189 }
1190 pts->pts_timers[which] = pt;
1191 }
1192
1193 TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
1194 TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
1195
1196 if (timespecisset(&pt->pt_time.it_value)) {
1197 /* Convert to absolute time */
1198 /* XXX need to wrap in splclock for timecounters case? */
1199 switch (which) {
1200 case ITIMER_REAL:
1201 getnanotime(&now);
1202 timespecadd(&pt->pt_time.it_value, &now,
1203 &pt->pt_time.it_value);
1204 break;
1205 case ITIMER_MONOTONIC:
1206 getnanouptime(&now);
1207 timespecadd(&pt->pt_time.it_value, &now,
1208 &pt->pt_time.it_value);
1209 break;
1210 default:
1211 break;
1212 }
1213 }
1214 timer_settime(pt);
1215 mutex_spin_exit(&timer_lock);
1216 if (spare != NULL)
1217 pool_put(&ptimer_pool, spare);
1218
1219 return (0);
1220 }
1221
1222 /* Utility routines to manage the array of pointers to timers. */
1223 struct ptimers *
1224 timers_alloc(struct proc *p)
1225 {
1226 struct ptimers *pts;
1227 int i;
1228
1229 pts = pool_get(&ptimers_pool, PR_WAITOK);
1230 LIST_INIT(&pts->pts_virtual);
1231 LIST_INIT(&pts->pts_prof);
1232 for (i = 0; i < TIMER_MAX; i++)
1233 pts->pts_timers[i] = NULL;
1234 mutex_spin_enter(&timer_lock);
1235 if (p->p_timers == NULL) {
1236 p->p_timers = pts;
1237 mutex_spin_exit(&timer_lock);
1238 return pts;
1239 }
1240 mutex_spin_exit(&timer_lock);
1241 pool_put(&ptimers_pool, pts);
1242 return p->p_timers;
1243 }
1244
1245 /*
1246 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1247 * then clean up all timers and free all the data structures. If
1248 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1249 * by timer_create(), not the BSD setitimer() timers, and only free the
1250 * structure if none of those remain.
1251 */
1252 void
1253 timers_free(struct proc *p, int which)
1254 {
1255 struct ptimers *pts;
1256 struct ptimer *ptn;
1257 struct timespec ts;
1258 int i;
1259
1260 if (p->p_timers == NULL)
1261 return;
1262
1263 pts = p->p_timers;
1264 mutex_spin_enter(&timer_lock);
1265 if (which == TIMERS_ALL) {
1266 p->p_timers = NULL;
1267 i = 0;
1268 } else {
1269 timespecclear(&ts);
1270 for (ptn = LIST_FIRST(&pts->pts_virtual);
1271 ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1272 ptn = LIST_NEXT(ptn, pt_list)) {
1273 KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1274 timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1275 }
1276 LIST_FIRST(&pts->pts_virtual) = NULL;
1277 if (ptn) {
1278 KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1279 timespecadd(&ts, &ptn->pt_time.it_value,
1280 &ptn->pt_time.it_value);
1281 LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
1282 }
1283 timespecclear(&ts);
1284 for (ptn = LIST_FIRST(&pts->pts_prof);
1285 ptn && ptn != pts->pts_timers[ITIMER_PROF];
1286 ptn = LIST_NEXT(ptn, pt_list)) {
1287 KASSERT(ptn->pt_type == CLOCK_PROF);
1288 timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1289 }
1290 LIST_FIRST(&pts->pts_prof) = NULL;
1291 if (ptn) {
1292 KASSERT(ptn->pt_type == CLOCK_PROF);
1293 timespecadd(&ts, &ptn->pt_time.it_value,
1294 &ptn->pt_time.it_value);
1295 LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
1296 }
1297 i = TIMER_MIN;
1298 }
1299 for ( ; i < TIMER_MAX; i++) {
1300 if (pts->pts_timers[i] != NULL) {
1301 itimerfree(pts, i);
1302 mutex_spin_enter(&timer_lock);
1303 }
1304 }
1305 if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
1306 pts->pts_timers[2] == NULL && pts->pts_timers[3] == NULL) {
1307 p->p_timers = NULL;
1308 mutex_spin_exit(&timer_lock);
1309 pool_put(&ptimers_pool, pts);
1310 } else
1311 mutex_spin_exit(&timer_lock);
1312 }
1313
1314 static void
1315 itimerfree(struct ptimers *pts, int index)
1316 {
1317 struct ptimer *pt;
1318
1319 KASSERT(mutex_owned(&timer_lock));
1320
1321 pt = pts->pts_timers[index];
1322 pts->pts_timers[index] = NULL;
1323 if (!CLOCK_VIRTUAL_P(pt->pt_type))
1324 callout_halt(&pt->pt_ch, &timer_lock);
1325 if (pt->pt_queued)
1326 TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1327 mutex_spin_exit(&timer_lock);
1328 if (!CLOCK_VIRTUAL_P(pt->pt_type))
1329 callout_destroy(&pt->pt_ch);
1330 pool_put(&ptimer_pool, pt);
1331 }
1332
1333 /*
1334 * Decrement an interval timer by a specified number
1335 * of nanoseconds, which must be less than a second,
1336 * i.e. < 1000000000. If the timer expires, then reload
1337 * it. In this case, carry over (nsec - old value) to
1338 * reduce the value reloaded into the timer so that
1339 * the timer does not drift. This routine assumes
1340 * that it is called in a context where the timers
1341 * on which it is operating cannot change in value.
1342 */
1343 static int
1344 itimerdecr(struct ptimer *pt, int nsec)
1345 {
1346 struct itimerspec *itp;
1347
1348 KASSERT(mutex_owned(&timer_lock));
1349 KASSERT(CLOCK_VIRTUAL_P(pt->pt_type));
1350
1351 itp = &pt->pt_time;
1352 if (itp->it_value.tv_nsec < nsec) {
1353 if (itp->it_value.tv_sec == 0) {
1354 /* expired, and already in next interval */
1355 nsec -= itp->it_value.tv_nsec;
1356 goto expire;
1357 }
1358 itp->it_value.tv_nsec += 1000000000;
1359 itp->it_value.tv_sec--;
1360 }
1361 itp->it_value.tv_nsec -= nsec;
1362 nsec = 0;
1363 if (timespecisset(&itp->it_value))
1364 return (1);
1365 /* expired, exactly at end of interval */
1366 expire:
1367 if (timespecisset(&itp->it_interval)) {
1368 itp->it_value = itp->it_interval;
1369 itp->it_value.tv_nsec -= nsec;
1370 if (itp->it_value.tv_nsec < 0) {
1371 itp->it_value.tv_nsec += 1000000000;
1372 itp->it_value.tv_sec--;
1373 }
1374 timer_settime(pt);
1375 } else
1376 itp->it_value.tv_nsec = 0; /* sec is already 0 */
1377 return (0);
1378 }
1379
1380 static void
1381 itimerfire(struct ptimer *pt)
1382 {
1383
1384 KASSERT(mutex_owned(&timer_lock));
1385
1386 /*
1387 * XXX Can overrun, but we don't do signal queueing yet, anyway.
1388 * XXX Relying on the clock interrupt is stupid.
1389 */
1390 if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL || pt->pt_queued) {
1391 return;
1392 }
1393 TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
1394 pt->pt_queued = true;
1395 softint_schedule(timer_sih);
1396 }
1397
1398 void
1399 timer_tick(lwp_t *l, bool user)
1400 {
1401 struct ptimers *pts;
1402 struct ptimer *pt;
1403 proc_t *p;
1404
1405 p = l->l_proc;
1406 if (p->p_timers == NULL)
1407 return;
1408
1409 mutex_spin_enter(&timer_lock);
1410 if ((pts = l->l_proc->p_timers) != NULL) {
1411 /*
1412 * Run current process's virtual and profile time, as needed.
1413 */
1414 if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
1415 if (itimerdecr(pt, tick * 1000) == 0)
1416 itimerfire(pt);
1417 if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
1418 if (itimerdecr(pt, tick * 1000) == 0)
1419 itimerfire(pt);
1420 }
1421 mutex_spin_exit(&timer_lock);
1422 }
1423
1424 static void
1425 timer_intr(void *cookie)
1426 {
1427 ksiginfo_t ksi;
1428 struct ptimer *pt;
1429 proc_t *p;
1430
1431 mutex_enter(proc_lock);
1432 mutex_spin_enter(&timer_lock);
1433 while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
1434 TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1435 KASSERT(pt->pt_queued);
1436 pt->pt_queued = false;
1437
1438 if (pt->pt_proc->p_timers == NULL) {
1439 /* Process is dying. */
1440 continue;
1441 }
1442 p = pt->pt_proc;
1443 if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
1444 continue;
1445 }
1446 if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
1447 pt->pt_overruns++;
1448 continue;
1449 }
1450
1451 KSI_INIT(&ksi);
1452 ksi.ksi_signo = pt->pt_ev.sigev_signo;
1453 ksi.ksi_code = SI_TIMER;
1454 ksi.ksi_value = pt->pt_ev.sigev_value;
1455 pt->pt_poverruns = pt->pt_overruns;
1456 pt->pt_overruns = 0;
1457 mutex_spin_exit(&timer_lock);
1458 kpsignal(p, &ksi, NULL);
1459 mutex_spin_enter(&timer_lock);
1460 }
1461 mutex_spin_exit(&timer_lock);
1462 mutex_exit(proc_lock);
1463 }
1464
1465 /*
1466 * Check if the time will wrap if set to ts.
1467 *
1468 * ts - timespec describing the new time
1469 * delta - the delta between the current time and ts
1470 */
1471 bool
1472 time_wraps(struct timespec *ts, struct timespec *delta)
1473 {
1474
1475 /*
1476 * Don't allow the time to be set forward so far it
1477 * will wrap and become negative, thus allowing an
1478 * attacker to bypass the next check below. The
1479 * cutoff is 1 year before rollover occurs, so even
1480 * if the attacker uses adjtime(2) to move the time
1481 * past the cutoff, it will take a very long time
1482 * to get to the wrap point.
1483 */
1484 if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
1485 (delta->tv_sec < 0 || delta->tv_nsec < 0))
1486 return true;
1487
1488 return false;
1489 }
1490