kern_time.c revision 1.189.16.2 1 /* $NetBSD: kern_time.c,v 1.189.16.2 2020/04/08 14:08:51 martin Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1986, 1989, 1993
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
61 */
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.189.16.2 2020/04/08 14:08:51 martin Exp $");
65
66 #include <sys/param.h>
67 #include <sys/resourcevar.h>
68 #include <sys/kernel.h>
69 #include <sys/systm.h>
70 #include <sys/proc.h>
71 #include <sys/vnode.h>
72 #include <sys/signalvar.h>
73 #include <sys/syslog.h>
74 #include <sys/timetc.h>
75 #include <sys/timex.h>
76 #include <sys/kauth.h>
77 #include <sys/mount.h>
78 #include <sys/syscallargs.h>
79 #include <sys/cpu.h>
80
81 static void timer_intr(void *);
82 static void itimerfire(struct ptimer *);
83 static void itimerfree(struct ptimers *, int);
84
85 kmutex_t timer_lock;
86
87 static void *timer_sih;
88 static TAILQ_HEAD(, ptimer) timer_queue;
89
90 struct pool ptimer_pool, ptimers_pool;
91
92 #define CLOCK_VIRTUAL_P(clockid) \
93 ((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)
94
95 CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
96 CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
97 CTASSERT(ITIMER_PROF == CLOCK_PROF);
98 CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC);
99
100 #define DELAYTIMER_MAX 32
101
102 /*
103 * Initialize timekeeping.
104 */
105 void
106 time_init(void)
107 {
108
109 pool_init(&ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
110 &pool_allocator_nointr, IPL_NONE);
111 pool_init(&ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
112 &pool_allocator_nointr, IPL_NONE);
113 }
114
115 void
116 time_init2(void)
117 {
118
119 TAILQ_INIT(&timer_queue);
120 mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
121 timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
122 timer_intr, NULL);
123 }
124
125 /* Time of day and interval timer support.
126 *
127 * These routines provide the kernel entry points to get and set
128 * the time-of-day and per-process interval timers. Subroutines
129 * here provide support for adding and subtracting timeval structures
130 * and decrementing interval timers, optionally reloading the interval
131 * timers when they expire.
132 */
133
134 /* This function is used by clock_settime and settimeofday */
135 static int
136 settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
137 {
138 struct timespec delta, now;
139
140 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
141 nanotime(&now);
142 timespecsub(ts, &now, &delta);
143
144 if (check_kauth && kauth_authorize_system(kauth_cred_get(),
145 KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
146 &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
147 return (EPERM);
148 }
149
150 #ifdef notyet
151 if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
152 return (EPERM);
153 }
154 #endif
155
156 tc_setclock(ts);
157
158 resettodr();
159
160 return (0);
161 }
162
163 int
164 settime(struct proc *p, struct timespec *ts)
165 {
166 return (settime1(p, ts, true));
167 }
168
169 /* ARGSUSED */
170 int
171 sys___clock_gettime50(struct lwp *l,
172 const struct sys___clock_gettime50_args *uap, register_t *retval)
173 {
174 /* {
175 syscallarg(clockid_t) clock_id;
176 syscallarg(struct timespec *) tp;
177 } */
178 int error;
179 struct timespec ats;
180
181 error = clock_gettime1(SCARG(uap, clock_id), &ats);
182 if (error != 0)
183 return error;
184
185 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
186 }
187
188 /* ARGSUSED */
189 int
190 sys___clock_settime50(struct lwp *l,
191 const struct sys___clock_settime50_args *uap, register_t *retval)
192 {
193 /* {
194 syscallarg(clockid_t) clock_id;
195 syscallarg(const struct timespec *) tp;
196 } */
197 int error;
198 struct timespec ats;
199
200 if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
201 return error;
202
203 return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
204 }
205
206
207 int
208 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
209 bool check_kauth)
210 {
211 int error;
212
213 switch (clock_id) {
214 case CLOCK_REALTIME:
215 if ((error = settime1(p, tp, check_kauth)) != 0)
216 return (error);
217 break;
218 case CLOCK_MONOTONIC:
219 return (EINVAL); /* read-only clock */
220 default:
221 return (EINVAL);
222 }
223
224 return 0;
225 }
226
227 int
228 sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
229 register_t *retval)
230 {
231 /* {
232 syscallarg(clockid_t) clock_id;
233 syscallarg(struct timespec *) tp;
234 } */
235 struct timespec ts;
236 int error;
237
238 if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
239 return error;
240
241 if (SCARG(uap, tp))
242 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
243
244 return error;
245 }
246
247 int
248 clock_getres1(clockid_t clock_id, struct timespec *ts)
249 {
250
251 switch (clock_id) {
252 case CLOCK_REALTIME:
253 case CLOCK_MONOTONIC:
254 ts->tv_sec = 0;
255 if (tc_getfrequency() > 1000000000)
256 ts->tv_nsec = 1;
257 else
258 ts->tv_nsec = 1000000000 / tc_getfrequency();
259 break;
260 default:
261 return EINVAL;
262 }
263
264 return 0;
265 }
266
267 /* ARGSUSED */
268 int
269 sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
270 register_t *retval)
271 {
272 /* {
273 syscallarg(struct timespec *) rqtp;
274 syscallarg(struct timespec *) rmtp;
275 } */
276 struct timespec rmt, rqt;
277 int error, error1;
278
279 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
280 if (error)
281 return (error);
282
283 error = nanosleep1(l, CLOCK_MONOTONIC, 0, &rqt,
284 SCARG(uap, rmtp) ? &rmt : NULL);
285 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
286 return error;
287
288 error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
289 return error1 ? error1 : error;
290 }
291
292 /* ARGSUSED */
293 int
294 sys_clock_nanosleep(struct lwp *l, const struct sys_clock_nanosleep_args *uap,
295 register_t *retval)
296 {
297 /* {
298 syscallarg(clockid_t) clock_id;
299 syscallarg(int) flags;
300 syscallarg(struct timespec *) rqtp;
301 syscallarg(struct timespec *) rmtp;
302 } */
303 struct timespec rmt, rqt;
304 int error, error1;
305
306 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
307 if (error)
308 goto out;
309
310 error = nanosleep1(l, SCARG(uap, clock_id), SCARG(uap, flags), &rqt,
311 SCARG(uap, rmtp) ? &rmt : NULL);
312 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
313 goto out;
314
315 if ((SCARG(uap, flags) & TIMER_ABSTIME) == 0 &&
316 (error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt))) != 0)
317 error = error1;
318 out:
319 *retval = error;
320 return 0;
321 }
322
323 int
324 nanosleep1(struct lwp *l, clockid_t clock_id, int flags, struct timespec *rqt,
325 struct timespec *rmt)
326 {
327 struct timespec rmtstart;
328 int error, timo;
329
330 if ((error = ts2timo(clock_id, flags, rqt, &timo, &rmtstart)) != 0) {
331 if (error == ETIMEDOUT) {
332 error = 0;
333 if (rmt != NULL)
334 rmt->tv_sec = rmt->tv_nsec = 0;
335 }
336 return error;
337 }
338
339 /*
340 * Avoid inadvertently sleeping forever
341 */
342 if (timo == 0)
343 timo = 1;
344 again:
345 error = kpause("nanoslp", true, timo, NULL);
346 if (error == EWOULDBLOCK)
347 error = 0;
348 if (rmt != NULL || error == 0) {
349 struct timespec rmtend;
350 struct timespec t0;
351 struct timespec *t;
352
353 (void)clock_gettime1(clock_id, &rmtend);
354 t = (rmt != NULL) ? rmt : &t0;
355 if (flags & TIMER_ABSTIME) {
356 timespecsub(rqt, &rmtend, t);
357 } else {
358 timespecsub(&rmtend, &rmtstart, t);
359 timespecsub(rqt, t, t);
360 }
361 if (t->tv_sec < 0)
362 timespecclear(t);
363 if (error == 0) {
364 timo = tstohz(t);
365 if (timo > 0)
366 goto again;
367 }
368 }
369
370 if (error == ERESTART)
371 error = EINTR;
372
373 return error;
374 }
375
376 int
377 sys_clock_getcpuclockid2(struct lwp *l,
378 const struct sys_clock_getcpuclockid2_args *uap,
379 register_t *retval)
380 {
381 /* {
382 syscallarg(idtype_t idtype;
383 syscallarg(id_t id);
384 syscallarg(clockid_t *)clock_id;
385 } */
386 pid_t pid;
387 lwpid_t lid;
388 clockid_t clock_id;
389 id_t id = SCARG(uap, id);
390
391 switch (SCARG(uap, idtype)) {
392 case P_PID:
393 pid = id == 0 ? l->l_proc->p_pid : id;
394 clock_id = CLOCK_PROCESS_CPUTIME_ID | pid;
395 break;
396 case P_LWPID:
397 lid = id == 0 ? l->l_lid : id;
398 clock_id = CLOCK_THREAD_CPUTIME_ID | lid;
399 break;
400 default:
401 return EINVAL;
402 }
403 return copyout(&clock_id, SCARG(uap, clock_id), sizeof(clock_id));
404 }
405
406 /* ARGSUSED */
407 int
408 sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
409 register_t *retval)
410 {
411 /* {
412 syscallarg(struct timeval *) tp;
413 syscallarg(void *) tzp; really "struct timezone *";
414 } */
415 struct timeval atv;
416 int error = 0;
417 struct timezone tzfake;
418
419 if (SCARG(uap, tp)) {
420 memset(&atv, 0, sizeof(atv));
421 microtime(&atv);
422 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
423 if (error)
424 return (error);
425 }
426 if (SCARG(uap, tzp)) {
427 /*
428 * NetBSD has no kernel notion of time zone, so we just
429 * fake up a timezone struct and return it if demanded.
430 */
431 tzfake.tz_minuteswest = 0;
432 tzfake.tz_dsttime = 0;
433 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
434 }
435 return (error);
436 }
437
438 /* ARGSUSED */
439 int
440 sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
441 register_t *retval)
442 {
443 /* {
444 syscallarg(const struct timeval *) tv;
445 syscallarg(const void *) tzp; really "const struct timezone *";
446 } */
447
448 return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
449 }
450
451 int
452 settimeofday1(const struct timeval *utv, bool userspace,
453 const void *utzp, struct lwp *l, bool check_kauth)
454 {
455 struct timeval atv;
456 struct timespec ts;
457 int error;
458
459 /* Verify all parameters before changing time. */
460
461 /*
462 * NetBSD has no kernel notion of time zone, and only an
463 * obsolete program would try to set it, so we log a warning.
464 */
465 if (utzp)
466 log(LOG_WARNING, "pid %d attempted to set the "
467 "(obsolete) kernel time zone\n", l->l_proc->p_pid);
468
469 if (utv == NULL)
470 return 0;
471
472 if (userspace) {
473 if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
474 return error;
475 utv = &atv;
476 }
477
478 TIMEVAL_TO_TIMESPEC(utv, &ts);
479 return settime1(l->l_proc, &ts, check_kauth);
480 }
481
482 int time_adjusted; /* set if an adjustment is made */
483
484 /* ARGSUSED */
485 int
486 sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
487 register_t *retval)
488 {
489 /* {
490 syscallarg(const struct timeval *) delta;
491 syscallarg(struct timeval *) olddelta;
492 } */
493 int error;
494 struct timeval atv, oldatv;
495
496 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
497 KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
498 return error;
499
500 if (SCARG(uap, delta)) {
501 error = copyin(SCARG(uap, delta), &atv,
502 sizeof(*SCARG(uap, delta)));
503 if (error)
504 return (error);
505 }
506 adjtime1(SCARG(uap, delta) ? &atv : NULL,
507 SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
508 if (SCARG(uap, olddelta))
509 error = copyout(&oldatv, SCARG(uap, olddelta),
510 sizeof(*SCARG(uap, olddelta)));
511 return error;
512 }
513
514 void
515 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
516 {
517 extern int64_t time_adjtime; /* in kern_ntptime.c */
518
519 if (olddelta) {
520 memset(olddelta, 0, sizeof(*olddelta));
521 mutex_spin_enter(&timecounter_lock);
522 olddelta->tv_sec = time_adjtime / 1000000;
523 olddelta->tv_usec = time_adjtime % 1000000;
524 if (olddelta->tv_usec < 0) {
525 olddelta->tv_usec += 1000000;
526 olddelta->tv_sec--;
527 }
528 mutex_spin_exit(&timecounter_lock);
529 }
530
531 if (delta) {
532 mutex_spin_enter(&timecounter_lock);
533 time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
534
535 if (time_adjtime) {
536 /* We need to save the system time during shutdown */
537 time_adjusted |= 1;
538 }
539 mutex_spin_exit(&timecounter_lock);
540 }
541 }
542
543 /*
544 * Interval timer support. Both the BSD getitimer() family and the POSIX
545 * timer_*() family of routines are supported.
546 *
547 * All timers are kept in an array pointed to by p_timers, which is
548 * allocated on demand - many processes don't use timers at all. The
549 * first four elements in this array are reserved for the BSD timers:
550 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element
551 * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be
552 * allocated by the timer_create() syscall.
553 *
554 * Realtime timers are kept in the ptimer structure as an absolute
555 * time; virtual time timers are kept as a linked list of deltas.
556 * Virtual time timers are processed in the hardclock() routine of
557 * kern_clock.c. The real time timer is processed by a callout
558 * routine, called from the softclock() routine. Since a callout may
559 * be delayed in real time due to interrupt processing in the system,
560 * it is possible for the real time timeout routine (realtimeexpire,
561 * given below), to be delayed in real time past when it is supposed
562 * to occur. It does not suffice, therefore, to reload the real timer
563 * .it_value from the real time timers .it_interval. Rather, we
564 * compute the next time in absolute time the timer should go off. */
565
566 /* Allocate a POSIX realtime timer. */
567 int
568 sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
569 register_t *retval)
570 {
571 /* {
572 syscallarg(clockid_t) clock_id;
573 syscallarg(struct sigevent *) evp;
574 syscallarg(timer_t *) timerid;
575 } */
576
577 return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
578 SCARG(uap, evp), copyin, l);
579 }
580
581 int
582 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
583 copyin_t fetch_event, struct lwp *l)
584 {
585 int error;
586 timer_t timerid;
587 struct ptimers *pts;
588 struct ptimer *pt;
589 struct proc *p;
590
591 p = l->l_proc;
592
593 if ((u_int)id > CLOCK_MONOTONIC)
594 return (EINVAL);
595
596 if ((pts = p->p_timers) == NULL)
597 pts = timers_alloc(p);
598
599 pt = pool_get(&ptimer_pool, PR_WAITOK | PR_ZERO);
600 if (evp != NULL) {
601 if (((error =
602 (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
603 ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
604 (pt->pt_ev.sigev_notify > SIGEV_SA)) ||
605 (pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
606 (pt->pt_ev.sigev_signo <= 0 ||
607 pt->pt_ev.sigev_signo >= NSIG))) {
608 pool_put(&ptimer_pool, pt);
609 return (error ? error : EINVAL);
610 }
611 }
612
613 /* Find a free timer slot, skipping those reserved for setitimer(). */
614 mutex_spin_enter(&timer_lock);
615 for (timerid = TIMER_MIN; timerid < TIMER_MAX; timerid++)
616 if (pts->pts_timers[timerid] == NULL)
617 break;
618 if (timerid == TIMER_MAX) {
619 mutex_spin_exit(&timer_lock);
620 pool_put(&ptimer_pool, pt);
621 return EAGAIN;
622 }
623 if (evp == NULL) {
624 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
625 switch (id) {
626 case CLOCK_REALTIME:
627 case CLOCK_MONOTONIC:
628 pt->pt_ev.sigev_signo = SIGALRM;
629 break;
630 case CLOCK_VIRTUAL:
631 pt->pt_ev.sigev_signo = SIGVTALRM;
632 break;
633 case CLOCK_PROF:
634 pt->pt_ev.sigev_signo = SIGPROF;
635 break;
636 }
637 pt->pt_ev.sigev_value.sival_int = timerid;
638 }
639 pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
640 pt->pt_info.ksi_errno = 0;
641 pt->pt_info.ksi_code = 0;
642 pt->pt_info.ksi_pid = p->p_pid;
643 pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
644 pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
645 pt->pt_type = id;
646 pt->pt_proc = p;
647 pt->pt_overruns = 0;
648 pt->pt_poverruns = 0;
649 pt->pt_entry = timerid;
650 pt->pt_queued = false;
651 timespecclear(&pt->pt_time.it_value);
652 if (!CLOCK_VIRTUAL_P(id))
653 callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
654 else
655 pt->pt_active = 0;
656
657 pts->pts_timers[timerid] = pt;
658 mutex_spin_exit(&timer_lock);
659
660 return copyout(&timerid, tid, sizeof(timerid));
661 }
662
663 /* Delete a POSIX realtime timer */
664 int
665 sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
666 register_t *retval)
667 {
668 /* {
669 syscallarg(timer_t) timerid;
670 } */
671 struct proc *p = l->l_proc;
672 timer_t timerid;
673 struct ptimers *pts;
674 struct ptimer *pt, *ptn;
675
676 timerid = SCARG(uap, timerid);
677 pts = p->p_timers;
678
679 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
680 return (EINVAL);
681
682 mutex_spin_enter(&timer_lock);
683 if ((pt = pts->pts_timers[timerid]) == NULL) {
684 mutex_spin_exit(&timer_lock);
685 return (EINVAL);
686 }
687 if (CLOCK_VIRTUAL_P(pt->pt_type)) {
688 if (pt->pt_active) {
689 ptn = LIST_NEXT(pt, pt_list);
690 LIST_REMOVE(pt, pt_list);
691 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
692 timespecadd(&pt->pt_time.it_value,
693 &ptn->pt_time.it_value,
694 &ptn->pt_time.it_value);
695 pt->pt_active = 0;
696 }
697 }
698 itimerfree(pts, timerid);
699
700 return (0);
701 }
702
703 /*
704 * Set up the given timer. The value in pt->pt_time.it_value is taken
705 * to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC timers and
706 * a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
707 */
708 void
709 timer_settime(struct ptimer *pt)
710 {
711 struct ptimer *ptn, *pptn;
712 struct ptlist *ptl;
713
714 KASSERT(mutex_owned(&timer_lock));
715
716 if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
717 callout_halt(&pt->pt_ch, &timer_lock);
718 if (timespecisset(&pt->pt_time.it_value)) {
719 /*
720 * Don't need to check tshzto() return value, here.
721 * callout_reset() does it for us.
722 */
723 callout_reset(&pt->pt_ch,
724 pt->pt_type == CLOCK_MONOTONIC ?
725 tshztoup(&pt->pt_time.it_value) :
726 tshzto(&pt->pt_time.it_value),
727 realtimerexpire, pt);
728 }
729 } else {
730 if (pt->pt_active) {
731 ptn = LIST_NEXT(pt, pt_list);
732 LIST_REMOVE(pt, pt_list);
733 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
734 timespecadd(&pt->pt_time.it_value,
735 &ptn->pt_time.it_value,
736 &ptn->pt_time.it_value);
737 }
738 if (timespecisset(&pt->pt_time.it_value)) {
739 if (pt->pt_type == CLOCK_VIRTUAL)
740 ptl = &pt->pt_proc->p_timers->pts_virtual;
741 else
742 ptl = &pt->pt_proc->p_timers->pts_prof;
743
744 for (ptn = LIST_FIRST(ptl), pptn = NULL;
745 ptn && timespeccmp(&pt->pt_time.it_value,
746 &ptn->pt_time.it_value, >);
747 pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
748 timespecsub(&pt->pt_time.it_value,
749 &ptn->pt_time.it_value,
750 &pt->pt_time.it_value);
751
752 if (pptn)
753 LIST_INSERT_AFTER(pptn, pt, pt_list);
754 else
755 LIST_INSERT_HEAD(ptl, pt, pt_list);
756
757 for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
758 timespecsub(&ptn->pt_time.it_value,
759 &pt->pt_time.it_value,
760 &ptn->pt_time.it_value);
761
762 pt->pt_active = 1;
763 } else
764 pt->pt_active = 0;
765 }
766 }
767
768 void
769 timer_gettime(struct ptimer *pt, struct itimerspec *aits)
770 {
771 struct timespec now;
772 struct ptimer *ptn;
773
774 KASSERT(mutex_owned(&timer_lock));
775
776 *aits = pt->pt_time;
777 if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
778 /*
779 * Convert from absolute to relative time in .it_value
780 * part of real time timer. If time for real time
781 * timer has passed return 0, else return difference
782 * between current time and time for the timer to go
783 * off.
784 */
785 if (timespecisset(&aits->it_value)) {
786 if (pt->pt_type == CLOCK_REALTIME) {
787 getnanotime(&now);
788 } else { /* CLOCK_MONOTONIC */
789 getnanouptime(&now);
790 }
791 if (timespeccmp(&aits->it_value, &now, <))
792 timespecclear(&aits->it_value);
793 else
794 timespecsub(&aits->it_value, &now,
795 &aits->it_value);
796 }
797 } else if (pt->pt_active) {
798 if (pt->pt_type == CLOCK_VIRTUAL)
799 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
800 else
801 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
802 for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
803 timespecadd(&aits->it_value,
804 &ptn->pt_time.it_value, &aits->it_value);
805 KASSERT(ptn != NULL); /* pt should be findable on the list */
806 } else
807 timespecclear(&aits->it_value);
808 }
809
810
811
812 /* Set and arm a POSIX realtime timer */
813 int
814 sys___timer_settime50(struct lwp *l,
815 const struct sys___timer_settime50_args *uap,
816 register_t *retval)
817 {
818 /* {
819 syscallarg(timer_t) timerid;
820 syscallarg(int) flags;
821 syscallarg(const struct itimerspec *) value;
822 syscallarg(struct itimerspec *) ovalue;
823 } */
824 int error;
825 struct itimerspec value, ovalue, *ovp = NULL;
826
827 if ((error = copyin(SCARG(uap, value), &value,
828 sizeof(struct itimerspec))) != 0)
829 return (error);
830
831 if (SCARG(uap, ovalue))
832 ovp = &ovalue;
833
834 if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
835 SCARG(uap, flags), l->l_proc)) != 0)
836 return error;
837
838 if (ovp)
839 return copyout(&ovalue, SCARG(uap, ovalue),
840 sizeof(struct itimerspec));
841 return 0;
842 }
843
844 int
845 dotimer_settime(int timerid, struct itimerspec *value,
846 struct itimerspec *ovalue, int flags, struct proc *p)
847 {
848 struct timespec now;
849 struct itimerspec val, oval;
850 struct ptimers *pts;
851 struct ptimer *pt;
852 int error;
853
854 pts = p->p_timers;
855
856 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
857 return EINVAL;
858 val = *value;
859 if ((error = itimespecfix(&val.it_value)) != 0 ||
860 (error = itimespecfix(&val.it_interval)) != 0)
861 return error;
862
863 mutex_spin_enter(&timer_lock);
864 if ((pt = pts->pts_timers[timerid]) == NULL) {
865 mutex_spin_exit(&timer_lock);
866 return EINVAL;
867 }
868
869 oval = pt->pt_time;
870 pt->pt_time = val;
871
872 /*
873 * If we've been passed a relative time for a realtime timer,
874 * convert it to absolute; if an absolute time for a virtual
875 * timer, convert it to relative and make sure we don't set it
876 * to zero, which would cancel the timer, or let it go
877 * negative, which would confuse the comparison tests.
878 */
879 if (timespecisset(&pt->pt_time.it_value)) {
880 if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
881 if ((flags & TIMER_ABSTIME) == 0) {
882 if (pt->pt_type == CLOCK_REALTIME) {
883 getnanotime(&now);
884 } else { /* CLOCK_MONOTONIC */
885 getnanouptime(&now);
886 }
887 timespecadd(&pt->pt_time.it_value, &now,
888 &pt->pt_time.it_value);
889 }
890 } else {
891 if ((flags & TIMER_ABSTIME) != 0) {
892 getnanotime(&now);
893 timespecsub(&pt->pt_time.it_value, &now,
894 &pt->pt_time.it_value);
895 if (!timespecisset(&pt->pt_time.it_value) ||
896 pt->pt_time.it_value.tv_sec < 0) {
897 pt->pt_time.it_value.tv_sec = 0;
898 pt->pt_time.it_value.tv_nsec = 1;
899 }
900 }
901 }
902 }
903
904 timer_settime(pt);
905 mutex_spin_exit(&timer_lock);
906
907 if (ovalue)
908 *ovalue = oval;
909
910 return (0);
911 }
912
913 /* Return the time remaining until a POSIX timer fires. */
914 int
915 sys___timer_gettime50(struct lwp *l,
916 const struct sys___timer_gettime50_args *uap, register_t *retval)
917 {
918 /* {
919 syscallarg(timer_t) timerid;
920 syscallarg(struct itimerspec *) value;
921 } */
922 struct itimerspec its;
923 int error;
924
925 if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
926 &its)) != 0)
927 return error;
928
929 return copyout(&its, SCARG(uap, value), sizeof(its));
930 }
931
932 int
933 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
934 {
935 struct ptimer *pt;
936 struct ptimers *pts;
937
938 pts = p->p_timers;
939 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
940 return (EINVAL);
941 mutex_spin_enter(&timer_lock);
942 if ((pt = pts->pts_timers[timerid]) == NULL) {
943 mutex_spin_exit(&timer_lock);
944 return (EINVAL);
945 }
946 timer_gettime(pt, its);
947 mutex_spin_exit(&timer_lock);
948
949 return 0;
950 }
951
952 /*
953 * Return the count of the number of times a periodic timer expired
954 * while a notification was already pending. The counter is reset when
955 * a timer expires and a notification can be posted.
956 */
957 int
958 sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
959 register_t *retval)
960 {
961 /* {
962 syscallarg(timer_t) timerid;
963 } */
964 struct proc *p = l->l_proc;
965 struct ptimers *pts;
966 int timerid;
967 struct ptimer *pt;
968
969 timerid = SCARG(uap, timerid);
970
971 pts = p->p_timers;
972 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
973 return (EINVAL);
974 mutex_spin_enter(&timer_lock);
975 if ((pt = pts->pts_timers[timerid]) == NULL) {
976 mutex_spin_exit(&timer_lock);
977 return (EINVAL);
978 }
979 *retval = pt->pt_poverruns;
980 if (*retval >= DELAYTIMER_MAX)
981 *retval = DELAYTIMER_MAX;
982 mutex_spin_exit(&timer_lock);
983
984 return (0);
985 }
986
987 /*
988 * Real interval timer expired:
989 * send process whose timer expired an alarm signal.
990 * If time is not set up to reload, then just return.
991 * Else compute next time timer should go off which is > current time.
992 * This is where delay in processing this timeout causes multiple
993 * SIGALRM calls to be compressed into one.
994 */
995 void
996 realtimerexpire(void *arg)
997 {
998 uint64_t last_val, next_val, interval, now_ns;
999 struct timespec now, next;
1000 struct ptimer *pt;
1001 int backwards;
1002
1003 pt = arg;
1004
1005 mutex_spin_enter(&timer_lock);
1006 itimerfire(pt);
1007
1008 if (!timespecisset(&pt->pt_time.it_interval)) {
1009 timespecclear(&pt->pt_time.it_value);
1010 mutex_spin_exit(&timer_lock);
1011 return;
1012 }
1013
1014 if (pt->pt_type == CLOCK_MONOTONIC) {
1015 getnanouptime(&now);
1016 } else {
1017 getnanotime(&now);
1018 }
1019 backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
1020 timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
1021 /* Handle the easy case of non-overflown timers first. */
1022 if (!backwards && timespeccmp(&next, &now, >)) {
1023 pt->pt_time.it_value = next;
1024 } else {
1025 now_ns = timespec2ns(&now);
1026 last_val = timespec2ns(&pt->pt_time.it_value);
1027 interval = timespec2ns(&pt->pt_time.it_interval);
1028
1029 next_val = now_ns +
1030 (now_ns - last_val + interval - 1) % interval;
1031
1032 if (backwards)
1033 next_val += interval;
1034 else
1035 pt->pt_overruns += (now_ns - last_val) / interval;
1036
1037 pt->pt_time.it_value.tv_sec = next_val / 1000000000;
1038 pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
1039 }
1040
1041 /*
1042 * Don't need to check tshzto() return value, here.
1043 * callout_reset() does it for us.
1044 */
1045 callout_reset(&pt->pt_ch, pt->pt_type == CLOCK_MONOTONIC ?
1046 tshztoup(&pt->pt_time.it_value) : tshzto(&pt->pt_time.it_value),
1047 realtimerexpire, pt);
1048 mutex_spin_exit(&timer_lock);
1049 }
1050
1051 /* BSD routine to get the value of an interval timer. */
1052 /* ARGSUSED */
1053 int
1054 sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
1055 register_t *retval)
1056 {
1057 /* {
1058 syscallarg(int) which;
1059 syscallarg(struct itimerval *) itv;
1060 } */
1061 struct proc *p = l->l_proc;
1062 struct itimerval aitv;
1063 int error;
1064
1065 memset(&aitv, 0, sizeof(aitv));
1066 error = dogetitimer(p, SCARG(uap, which), &aitv);
1067 if (error)
1068 return error;
1069 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1070 }
1071
1072 int
1073 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1074 {
1075 struct ptimers *pts;
1076 struct ptimer *pt;
1077 struct itimerspec its;
1078
1079 if ((u_int)which > ITIMER_MONOTONIC)
1080 return (EINVAL);
1081
1082 mutex_spin_enter(&timer_lock);
1083 pts = p->p_timers;
1084 if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
1085 timerclear(&itvp->it_value);
1086 timerclear(&itvp->it_interval);
1087 } else {
1088 timer_gettime(pt, &its);
1089 TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
1090 TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
1091 }
1092 mutex_spin_exit(&timer_lock);
1093
1094 return 0;
1095 }
1096
1097 /* BSD routine to set/arm an interval timer. */
1098 /* ARGSUSED */
1099 int
1100 sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
1101 register_t *retval)
1102 {
1103 /* {
1104 syscallarg(int) which;
1105 syscallarg(const struct itimerval *) itv;
1106 syscallarg(struct itimerval *) oitv;
1107 } */
1108 struct proc *p = l->l_proc;
1109 int which = SCARG(uap, which);
1110 struct sys___getitimer50_args getargs;
1111 const struct itimerval *itvp;
1112 struct itimerval aitv;
1113 int error;
1114
1115 if ((u_int)which > ITIMER_MONOTONIC)
1116 return (EINVAL);
1117 itvp = SCARG(uap, itv);
1118 if (itvp &&
1119 (error = copyin(itvp, &aitv, sizeof(struct itimerval))) != 0)
1120 return (error);
1121 if (SCARG(uap, oitv) != NULL) {
1122 SCARG(&getargs, which) = which;
1123 SCARG(&getargs, itv) = SCARG(uap, oitv);
1124 if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
1125 return (error);
1126 }
1127 if (itvp == 0)
1128 return (0);
1129
1130 return dosetitimer(p, which, &aitv);
1131 }
1132
1133 int
1134 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1135 {
1136 struct timespec now;
1137 struct ptimers *pts;
1138 struct ptimer *pt, *spare;
1139
1140 KASSERT((u_int)which <= CLOCK_MONOTONIC);
1141 if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1142 return (EINVAL);
1143
1144 /*
1145 * Don't bother allocating data structures if the process just
1146 * wants to clear the timer.
1147 */
1148 spare = NULL;
1149 pts = p->p_timers;
1150 retry:
1151 if (!timerisset(&itvp->it_value) && (pts == NULL ||
1152 pts->pts_timers[which] == NULL))
1153 return (0);
1154 if (pts == NULL)
1155 pts = timers_alloc(p);
1156 mutex_spin_enter(&timer_lock);
1157 pt = pts->pts_timers[which];
1158 if (pt == NULL) {
1159 if (spare == NULL) {
1160 mutex_spin_exit(&timer_lock);
1161 spare = pool_get(&ptimer_pool, PR_WAITOK | PR_ZERO);
1162 goto retry;
1163 }
1164 pt = spare;
1165 spare = NULL;
1166 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1167 pt->pt_ev.sigev_value.sival_int = which;
1168 pt->pt_overruns = 0;
1169 pt->pt_proc = p;
1170 pt->pt_type = which;
1171 pt->pt_entry = which;
1172 pt->pt_queued = false;
1173 if (!CLOCK_VIRTUAL_P(which))
1174 callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
1175 else
1176 pt->pt_active = 0;
1177
1178 switch (which) {
1179 case ITIMER_REAL:
1180 case ITIMER_MONOTONIC:
1181 pt->pt_ev.sigev_signo = SIGALRM;
1182 break;
1183 case ITIMER_VIRTUAL:
1184 pt->pt_ev.sigev_signo = SIGVTALRM;
1185 break;
1186 case ITIMER_PROF:
1187 pt->pt_ev.sigev_signo = SIGPROF;
1188 break;
1189 }
1190 pts->pts_timers[which] = pt;
1191 }
1192
1193 TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
1194 TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
1195
1196 if (timespecisset(&pt->pt_time.it_value)) {
1197 /* Convert to absolute time */
1198 /* XXX need to wrap in splclock for timecounters case? */
1199 switch (which) {
1200 case ITIMER_REAL:
1201 getnanotime(&now);
1202 timespecadd(&pt->pt_time.it_value, &now,
1203 &pt->pt_time.it_value);
1204 break;
1205 case ITIMER_MONOTONIC:
1206 getnanouptime(&now);
1207 timespecadd(&pt->pt_time.it_value, &now,
1208 &pt->pt_time.it_value);
1209 break;
1210 default:
1211 break;
1212 }
1213 }
1214 timer_settime(pt);
1215 mutex_spin_exit(&timer_lock);
1216 if (spare != NULL)
1217 pool_put(&ptimer_pool, spare);
1218
1219 return (0);
1220 }
1221
1222 /* Utility routines to manage the array of pointers to timers. */
1223 struct ptimers *
1224 timers_alloc(struct proc *p)
1225 {
1226 struct ptimers *pts;
1227 int i;
1228
1229 pts = pool_get(&ptimers_pool, PR_WAITOK);
1230 LIST_INIT(&pts->pts_virtual);
1231 LIST_INIT(&pts->pts_prof);
1232 for (i = 0; i < TIMER_MAX; i++)
1233 pts->pts_timers[i] = NULL;
1234 mutex_spin_enter(&timer_lock);
1235 if (p->p_timers == NULL) {
1236 p->p_timers = pts;
1237 mutex_spin_exit(&timer_lock);
1238 return pts;
1239 }
1240 mutex_spin_exit(&timer_lock);
1241 pool_put(&ptimers_pool, pts);
1242 return p->p_timers;
1243 }
1244
1245 /*
1246 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1247 * then clean up all timers and free all the data structures. If
1248 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1249 * by timer_create(), not the BSD setitimer() timers, and only free the
1250 * structure if none of those remain.
1251 */
1252 void
1253 timers_free(struct proc *p, int which)
1254 {
1255 struct ptimers *pts;
1256 struct ptimer *ptn;
1257 struct timespec ts;
1258 int i;
1259
1260 if (p->p_timers == NULL)
1261 return;
1262
1263 pts = p->p_timers;
1264 mutex_spin_enter(&timer_lock);
1265 if (which == TIMERS_ALL) {
1266 p->p_timers = NULL;
1267 i = 0;
1268 } else {
1269 timespecclear(&ts);
1270 for (ptn = LIST_FIRST(&pts->pts_virtual);
1271 ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1272 ptn = LIST_NEXT(ptn, pt_list)) {
1273 KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1274 timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1275 }
1276 LIST_FIRST(&pts->pts_virtual) = NULL;
1277 if (ptn) {
1278 KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1279 timespecadd(&ts, &ptn->pt_time.it_value,
1280 &ptn->pt_time.it_value);
1281 LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
1282 }
1283 timespecclear(&ts);
1284 for (ptn = LIST_FIRST(&pts->pts_prof);
1285 ptn && ptn != pts->pts_timers[ITIMER_PROF];
1286 ptn = LIST_NEXT(ptn, pt_list)) {
1287 KASSERT(ptn->pt_type == CLOCK_PROF);
1288 timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1289 }
1290 LIST_FIRST(&pts->pts_prof) = NULL;
1291 if (ptn) {
1292 KASSERT(ptn->pt_type == CLOCK_PROF);
1293 timespecadd(&ts, &ptn->pt_time.it_value,
1294 &ptn->pt_time.it_value);
1295 LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
1296 }
1297 i = TIMER_MIN;
1298 }
1299 for ( ; i < TIMER_MAX; i++) {
1300 if (pts->pts_timers[i] != NULL) {
1301 itimerfree(pts, i);
1302 mutex_spin_enter(&timer_lock);
1303 }
1304 }
1305 if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
1306 pts->pts_timers[2] == NULL && pts->pts_timers[3] == NULL) {
1307 p->p_timers = NULL;
1308 mutex_spin_exit(&timer_lock);
1309 pool_put(&ptimers_pool, pts);
1310 } else
1311 mutex_spin_exit(&timer_lock);
1312 }
1313
1314 static void
1315 itimerfree(struct ptimers *pts, int index)
1316 {
1317 struct ptimer *pt;
1318
1319 KASSERT(mutex_owned(&timer_lock));
1320
1321 pt = pts->pts_timers[index];
1322 pts->pts_timers[index] = NULL;
1323 if (!CLOCK_VIRTUAL_P(pt->pt_type))
1324 callout_halt(&pt->pt_ch, &timer_lock);
1325 if (pt->pt_queued)
1326 TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1327 mutex_spin_exit(&timer_lock);
1328 if (!CLOCK_VIRTUAL_P(pt->pt_type))
1329 callout_destroy(&pt->pt_ch);
1330 pool_put(&ptimer_pool, pt);
1331 }
1332
1333 /*
1334 * Decrement an interval timer by a specified number
1335 * of nanoseconds, which must be less than a second,
1336 * i.e. < 1000000000. If the timer expires, then reload
1337 * it. In this case, carry over (nsec - old value) to
1338 * reduce the value reloaded into the timer so that
1339 * the timer does not drift. This routine assumes
1340 * that it is called in a context where the timers
1341 * on which it is operating cannot change in value.
1342 */
1343 static int
1344 itimerdecr(struct ptimer *pt, int nsec)
1345 {
1346 struct itimerspec *itp;
1347
1348 KASSERT(mutex_owned(&timer_lock));
1349 KASSERT(CLOCK_VIRTUAL_P(pt->pt_type));
1350
1351 itp = &pt->pt_time;
1352 if (itp->it_value.tv_nsec < nsec) {
1353 if (itp->it_value.tv_sec == 0) {
1354 /* expired, and already in next interval */
1355 nsec -= itp->it_value.tv_nsec;
1356 goto expire;
1357 }
1358 itp->it_value.tv_nsec += 1000000000;
1359 itp->it_value.tv_sec--;
1360 }
1361 itp->it_value.tv_nsec -= nsec;
1362 nsec = 0;
1363 if (timespecisset(&itp->it_value))
1364 return (1);
1365 /* expired, exactly at end of interval */
1366 expire:
1367 if (timespecisset(&itp->it_interval)) {
1368 itp->it_value = itp->it_interval;
1369 itp->it_value.tv_nsec -= nsec;
1370 if (itp->it_value.tv_nsec < 0) {
1371 itp->it_value.tv_nsec += 1000000000;
1372 itp->it_value.tv_sec--;
1373 }
1374 timer_settime(pt);
1375 } else
1376 itp->it_value.tv_nsec = 0; /* sec is already 0 */
1377 return (0);
1378 }
1379
1380 static void
1381 itimerfire(struct ptimer *pt)
1382 {
1383
1384 KASSERT(mutex_owned(&timer_lock));
1385
1386 /*
1387 * XXX Can overrun, but we don't do signal queueing yet, anyway.
1388 * XXX Relying on the clock interrupt is stupid.
1389 */
1390 if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL || pt->pt_queued) {
1391 return;
1392 }
1393 TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
1394 pt->pt_queued = true;
1395 softint_schedule(timer_sih);
1396 }
1397
1398 void
1399 timer_tick(lwp_t *l, bool user)
1400 {
1401 struct ptimers *pts;
1402 struct ptimer *pt;
1403 proc_t *p;
1404
1405 p = l->l_proc;
1406 if (p->p_timers == NULL)
1407 return;
1408
1409 mutex_spin_enter(&timer_lock);
1410 if ((pts = l->l_proc->p_timers) != NULL) {
1411 /*
1412 * Run current process's virtual and profile time, as needed.
1413 */
1414 if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
1415 if (itimerdecr(pt, tick * 1000) == 0)
1416 itimerfire(pt);
1417 if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
1418 if (itimerdecr(pt, tick * 1000) == 0)
1419 itimerfire(pt);
1420 }
1421 mutex_spin_exit(&timer_lock);
1422 }
1423
1424 static void
1425 timer_intr(void *cookie)
1426 {
1427 ksiginfo_t ksi;
1428 struct ptimer *pt;
1429 proc_t *p;
1430
1431 mutex_enter(proc_lock);
1432 mutex_spin_enter(&timer_lock);
1433 while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
1434 TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1435 KASSERT(pt->pt_queued);
1436 pt->pt_queued = false;
1437
1438 if (pt->pt_proc->p_timers == NULL) {
1439 /* Process is dying. */
1440 continue;
1441 }
1442 p = pt->pt_proc;
1443 if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
1444 continue;
1445 }
1446 if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
1447 pt->pt_overruns++;
1448 continue;
1449 }
1450
1451 KSI_INIT(&ksi);
1452 ksi.ksi_signo = pt->pt_ev.sigev_signo;
1453 ksi.ksi_code = SI_TIMER;
1454 ksi.ksi_value = pt->pt_ev.sigev_value;
1455 pt->pt_poverruns = pt->pt_overruns;
1456 pt->pt_overruns = 0;
1457 mutex_spin_exit(&timer_lock);
1458 kpsignal(p, &ksi, NULL);
1459 mutex_spin_enter(&timer_lock);
1460 }
1461 mutex_spin_exit(&timer_lock);
1462 mutex_exit(proc_lock);
1463 }
1464
1465 /*
1466 * Check if the time will wrap if set to ts.
1467 *
1468 * ts - timespec describing the new time
1469 * delta - the delta between the current time and ts
1470 */
1471 bool
1472 time_wraps(struct timespec *ts, struct timespec *delta)
1473 {
1474
1475 /*
1476 * Don't allow the time to be set forward so far it
1477 * will wrap and become negative, thus allowing an
1478 * attacker to bypass the next check below. The
1479 * cutoff is 1 year before rollover occurs, so even
1480 * if the attacker uses adjtime(2) to move the time
1481 * past the cutoff, it will take a very long time
1482 * to get to the wrap point.
1483 */
1484 if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
1485 (delta->tv_sec < 0 || delta->tv_nsec < 0))
1486 return true;
1487
1488 return false;
1489 }
1490