kern_time.c revision 1.189.16.3 1 /* $NetBSD: kern_time.c,v 1.189.16.3 2020/04/13 08:05:04 martin Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1986, 1989, 1993
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
61 */
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.189.16.3 2020/04/13 08:05:04 martin Exp $");
65
66 #include <sys/param.h>
67 #include <sys/resourcevar.h>
68 #include <sys/kernel.h>
69 #include <sys/systm.h>
70 #include <sys/proc.h>
71 #include <sys/vnode.h>
72 #include <sys/signalvar.h>
73 #include <sys/syslog.h>
74 #include <sys/timetc.h>
75 #include <sys/timex.h>
76 #include <sys/kauth.h>
77 #include <sys/mount.h>
78 #include <sys/syscallargs.h>
79 #include <sys/cpu.h>
80
81 static void timer_intr(void *);
82 static void itimerfire(struct ptimer *);
83 static void itimerfree(struct ptimers *, int);
84
85 kmutex_t timer_lock;
86
87 static void *timer_sih;
88 static TAILQ_HEAD(, ptimer) timer_queue;
89
90 struct pool ptimer_pool, ptimers_pool;
91
92 #define CLOCK_VIRTUAL_P(clockid) \
93 ((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)
94
95 CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
96 CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
97 CTASSERT(ITIMER_PROF == CLOCK_PROF);
98 CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC);
99
100 #define DELAYTIMER_MAX 32
101
102 /*
103 * Initialize timekeeping.
104 */
105 void
106 time_init(void)
107 {
108
109 pool_init(&ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
110 &pool_allocator_nointr, IPL_NONE);
111 pool_init(&ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
112 &pool_allocator_nointr, IPL_NONE);
113 }
114
115 void
116 time_init2(void)
117 {
118
119 TAILQ_INIT(&timer_queue);
120 mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
121 timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
122 timer_intr, NULL);
123 }
124
125 /* Time of day and interval timer support.
126 *
127 * These routines provide the kernel entry points to get and set
128 * the time-of-day and per-process interval timers. Subroutines
129 * here provide support for adding and subtracting timeval structures
130 * and decrementing interval timers, optionally reloading the interval
131 * timers when they expire.
132 */
133
134 /* This function is used by clock_settime and settimeofday */
135 static int
136 settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
137 {
138 struct timespec delta, now;
139
140 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
141 nanotime(&now);
142 timespecsub(ts, &now, &delta);
143
144 if (check_kauth && kauth_authorize_system(kauth_cred_get(),
145 KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
146 &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
147 return (EPERM);
148 }
149
150 #ifdef notyet
151 if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
152 return (EPERM);
153 }
154 #endif
155
156 tc_setclock(ts);
157
158 resettodr();
159
160 return (0);
161 }
162
163 int
164 settime(struct proc *p, struct timespec *ts)
165 {
166 return (settime1(p, ts, true));
167 }
168
169 /* ARGSUSED */
170 int
171 sys___clock_gettime50(struct lwp *l,
172 const struct sys___clock_gettime50_args *uap, register_t *retval)
173 {
174 /* {
175 syscallarg(clockid_t) clock_id;
176 syscallarg(struct timespec *) tp;
177 } */
178 int error;
179 struct timespec ats;
180
181 error = clock_gettime1(SCARG(uap, clock_id), &ats);
182 if (error != 0)
183 return error;
184
185 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
186 }
187
188 /* ARGSUSED */
189 int
190 sys___clock_settime50(struct lwp *l,
191 const struct sys___clock_settime50_args *uap, register_t *retval)
192 {
193 /* {
194 syscallarg(clockid_t) clock_id;
195 syscallarg(const struct timespec *) tp;
196 } */
197 int error;
198 struct timespec ats;
199
200 if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
201 return error;
202
203 return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
204 }
205
206
207 int
208 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
209 bool check_kauth)
210 {
211 int error;
212
213 if (tp->tv_nsec < 0 || tp->tv_nsec >= 1000000000L)
214 return EINVAL;
215
216 switch (clock_id) {
217 case CLOCK_REALTIME:
218 if ((error = settime1(p, tp, check_kauth)) != 0)
219 return (error);
220 break;
221 case CLOCK_MONOTONIC:
222 return (EINVAL); /* read-only clock */
223 default:
224 return (EINVAL);
225 }
226
227 return 0;
228 }
229
230 int
231 sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
232 register_t *retval)
233 {
234 /* {
235 syscallarg(clockid_t) clock_id;
236 syscallarg(struct timespec *) tp;
237 } */
238 struct timespec ts;
239 int error;
240
241 if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
242 return error;
243
244 if (SCARG(uap, tp))
245 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
246
247 return error;
248 }
249
250 int
251 clock_getres1(clockid_t clock_id, struct timespec *ts)
252 {
253
254 switch (clock_id) {
255 case CLOCK_REALTIME:
256 case CLOCK_MONOTONIC:
257 ts->tv_sec = 0;
258 if (tc_getfrequency() > 1000000000)
259 ts->tv_nsec = 1;
260 else
261 ts->tv_nsec = 1000000000 / tc_getfrequency();
262 break;
263 default:
264 return EINVAL;
265 }
266
267 return 0;
268 }
269
270 /* ARGSUSED */
271 int
272 sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
273 register_t *retval)
274 {
275 /* {
276 syscallarg(struct timespec *) rqtp;
277 syscallarg(struct timespec *) rmtp;
278 } */
279 struct timespec rmt, rqt;
280 int error, error1;
281
282 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
283 if (error)
284 return (error);
285
286 error = nanosleep1(l, CLOCK_MONOTONIC, 0, &rqt,
287 SCARG(uap, rmtp) ? &rmt : NULL);
288 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
289 return error;
290
291 error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
292 return error1 ? error1 : error;
293 }
294
295 /* ARGSUSED */
296 int
297 sys_clock_nanosleep(struct lwp *l, const struct sys_clock_nanosleep_args *uap,
298 register_t *retval)
299 {
300 /* {
301 syscallarg(clockid_t) clock_id;
302 syscallarg(int) flags;
303 syscallarg(struct timespec *) rqtp;
304 syscallarg(struct timespec *) rmtp;
305 } */
306 struct timespec rmt, rqt;
307 int error, error1;
308
309 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
310 if (error)
311 goto out;
312
313 error = nanosleep1(l, SCARG(uap, clock_id), SCARG(uap, flags), &rqt,
314 SCARG(uap, rmtp) ? &rmt : NULL);
315 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
316 goto out;
317
318 if ((SCARG(uap, flags) & TIMER_ABSTIME) == 0 &&
319 (error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt))) != 0)
320 error = error1;
321 out:
322 *retval = error;
323 return 0;
324 }
325
326 int
327 nanosleep1(struct lwp *l, clockid_t clock_id, int flags, struct timespec *rqt,
328 struct timespec *rmt)
329 {
330 struct timespec rmtstart;
331 int error, timo;
332
333 if ((error = ts2timo(clock_id, flags, rqt, &timo, &rmtstart)) != 0) {
334 if (error == ETIMEDOUT) {
335 error = 0;
336 if (rmt != NULL)
337 rmt->tv_sec = rmt->tv_nsec = 0;
338 }
339 return error;
340 }
341
342 /*
343 * Avoid inadvertently sleeping forever
344 */
345 if (timo == 0)
346 timo = 1;
347 again:
348 error = kpause("nanoslp", true, timo, NULL);
349 if (error == EWOULDBLOCK)
350 error = 0;
351 if (rmt != NULL || error == 0) {
352 struct timespec rmtend;
353 struct timespec t0;
354 struct timespec *t;
355
356 (void)clock_gettime1(clock_id, &rmtend);
357 t = (rmt != NULL) ? rmt : &t0;
358 if (flags & TIMER_ABSTIME) {
359 timespecsub(rqt, &rmtend, t);
360 } else {
361 timespecsub(&rmtend, &rmtstart, t);
362 timespecsub(rqt, t, t);
363 }
364 if (t->tv_sec < 0)
365 timespecclear(t);
366 if (error == 0) {
367 timo = tstohz(t);
368 if (timo > 0)
369 goto again;
370 }
371 }
372
373 if (error == ERESTART)
374 error = EINTR;
375
376 return error;
377 }
378
379 int
380 sys_clock_getcpuclockid2(struct lwp *l,
381 const struct sys_clock_getcpuclockid2_args *uap,
382 register_t *retval)
383 {
384 /* {
385 syscallarg(idtype_t idtype;
386 syscallarg(id_t id);
387 syscallarg(clockid_t *)clock_id;
388 } */
389 pid_t pid;
390 lwpid_t lid;
391 clockid_t clock_id;
392 id_t id = SCARG(uap, id);
393
394 switch (SCARG(uap, idtype)) {
395 case P_PID:
396 pid = id == 0 ? l->l_proc->p_pid : id;
397 clock_id = CLOCK_PROCESS_CPUTIME_ID | pid;
398 break;
399 case P_LWPID:
400 lid = id == 0 ? l->l_lid : id;
401 clock_id = CLOCK_THREAD_CPUTIME_ID | lid;
402 break;
403 default:
404 return EINVAL;
405 }
406 return copyout(&clock_id, SCARG(uap, clock_id), sizeof(clock_id));
407 }
408
409 /* ARGSUSED */
410 int
411 sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
412 register_t *retval)
413 {
414 /* {
415 syscallarg(struct timeval *) tp;
416 syscallarg(void *) tzp; really "struct timezone *";
417 } */
418 struct timeval atv;
419 int error = 0;
420 struct timezone tzfake;
421
422 if (SCARG(uap, tp)) {
423 memset(&atv, 0, sizeof(atv));
424 microtime(&atv);
425 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
426 if (error)
427 return (error);
428 }
429 if (SCARG(uap, tzp)) {
430 /*
431 * NetBSD has no kernel notion of time zone, so we just
432 * fake up a timezone struct and return it if demanded.
433 */
434 tzfake.tz_minuteswest = 0;
435 tzfake.tz_dsttime = 0;
436 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
437 }
438 return (error);
439 }
440
441 /* ARGSUSED */
442 int
443 sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
444 register_t *retval)
445 {
446 /* {
447 syscallarg(const struct timeval *) tv;
448 syscallarg(const void *) tzp; really "const struct timezone *";
449 } */
450
451 return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
452 }
453
454 int
455 settimeofday1(const struct timeval *utv, bool userspace,
456 const void *utzp, struct lwp *l, bool check_kauth)
457 {
458 struct timeval atv;
459 struct timespec ts;
460 int error;
461
462 /* Verify all parameters before changing time. */
463
464 /*
465 * NetBSD has no kernel notion of time zone, and only an
466 * obsolete program would try to set it, so we log a warning.
467 */
468 if (utzp)
469 log(LOG_WARNING, "pid %d attempted to set the "
470 "(obsolete) kernel time zone\n", l->l_proc->p_pid);
471
472 if (utv == NULL)
473 return 0;
474
475 if (userspace) {
476 if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
477 return error;
478 utv = &atv;
479 }
480
481 if (utv->tv_usec < 0 || utv->tv_usec >= 1000000)
482 return EINVAL;
483
484 TIMEVAL_TO_TIMESPEC(utv, &ts);
485 return settime1(l->l_proc, &ts, check_kauth);
486 }
487
488 int time_adjusted; /* set if an adjustment is made */
489
490 /* ARGSUSED */
491 int
492 sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
493 register_t *retval)
494 {
495 /* {
496 syscallarg(const struct timeval *) delta;
497 syscallarg(struct timeval *) olddelta;
498 } */
499 int error;
500 struct timeval atv, oldatv;
501
502 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
503 KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
504 return error;
505
506 if (SCARG(uap, delta)) {
507 error = copyin(SCARG(uap, delta), &atv,
508 sizeof(*SCARG(uap, delta)));
509 if (error)
510 return (error);
511 }
512 adjtime1(SCARG(uap, delta) ? &atv : NULL,
513 SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
514 if (SCARG(uap, olddelta))
515 error = copyout(&oldatv, SCARG(uap, olddelta),
516 sizeof(*SCARG(uap, olddelta)));
517 return error;
518 }
519
520 void
521 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
522 {
523 extern int64_t time_adjtime; /* in kern_ntptime.c */
524
525 if (olddelta) {
526 memset(olddelta, 0, sizeof(*olddelta));
527 mutex_spin_enter(&timecounter_lock);
528 olddelta->tv_sec = time_adjtime / 1000000;
529 olddelta->tv_usec = time_adjtime % 1000000;
530 if (olddelta->tv_usec < 0) {
531 olddelta->tv_usec += 1000000;
532 olddelta->tv_sec--;
533 }
534 mutex_spin_exit(&timecounter_lock);
535 }
536
537 if (delta) {
538 mutex_spin_enter(&timecounter_lock);
539 time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
540
541 if (time_adjtime) {
542 /* We need to save the system time during shutdown */
543 time_adjusted |= 1;
544 }
545 mutex_spin_exit(&timecounter_lock);
546 }
547 }
548
549 /*
550 * Interval timer support. Both the BSD getitimer() family and the POSIX
551 * timer_*() family of routines are supported.
552 *
553 * All timers are kept in an array pointed to by p_timers, which is
554 * allocated on demand - many processes don't use timers at all. The
555 * first four elements in this array are reserved for the BSD timers:
556 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element
557 * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be
558 * allocated by the timer_create() syscall.
559 *
560 * Realtime timers are kept in the ptimer structure as an absolute
561 * time; virtual time timers are kept as a linked list of deltas.
562 * Virtual time timers are processed in the hardclock() routine of
563 * kern_clock.c. The real time timer is processed by a callout
564 * routine, called from the softclock() routine. Since a callout may
565 * be delayed in real time due to interrupt processing in the system,
566 * it is possible for the real time timeout routine (realtimeexpire,
567 * given below), to be delayed in real time past when it is supposed
568 * to occur. It does not suffice, therefore, to reload the real timer
569 * .it_value from the real time timers .it_interval. Rather, we
570 * compute the next time in absolute time the timer should go off. */
571
572 /* Allocate a POSIX realtime timer. */
573 int
574 sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
575 register_t *retval)
576 {
577 /* {
578 syscallarg(clockid_t) clock_id;
579 syscallarg(struct sigevent *) evp;
580 syscallarg(timer_t *) timerid;
581 } */
582
583 return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
584 SCARG(uap, evp), copyin, l);
585 }
586
587 int
588 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
589 copyin_t fetch_event, struct lwp *l)
590 {
591 int error;
592 timer_t timerid;
593 struct ptimers *pts;
594 struct ptimer *pt;
595 struct proc *p;
596
597 p = l->l_proc;
598
599 if ((u_int)id > CLOCK_MONOTONIC)
600 return (EINVAL);
601
602 if ((pts = p->p_timers) == NULL)
603 pts = timers_alloc(p);
604
605 pt = pool_get(&ptimer_pool, PR_WAITOK | PR_ZERO);
606 if (evp != NULL) {
607 if (((error =
608 (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
609 ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
610 (pt->pt_ev.sigev_notify > SIGEV_SA)) ||
611 (pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
612 (pt->pt_ev.sigev_signo <= 0 ||
613 pt->pt_ev.sigev_signo >= NSIG))) {
614 pool_put(&ptimer_pool, pt);
615 return (error ? error : EINVAL);
616 }
617 }
618
619 /* Find a free timer slot, skipping those reserved for setitimer(). */
620 mutex_spin_enter(&timer_lock);
621 for (timerid = TIMER_MIN; timerid < TIMER_MAX; timerid++)
622 if (pts->pts_timers[timerid] == NULL)
623 break;
624 if (timerid == TIMER_MAX) {
625 mutex_spin_exit(&timer_lock);
626 pool_put(&ptimer_pool, pt);
627 return EAGAIN;
628 }
629 if (evp == NULL) {
630 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
631 switch (id) {
632 case CLOCK_REALTIME:
633 case CLOCK_MONOTONIC:
634 pt->pt_ev.sigev_signo = SIGALRM;
635 break;
636 case CLOCK_VIRTUAL:
637 pt->pt_ev.sigev_signo = SIGVTALRM;
638 break;
639 case CLOCK_PROF:
640 pt->pt_ev.sigev_signo = SIGPROF;
641 break;
642 }
643 pt->pt_ev.sigev_value.sival_int = timerid;
644 }
645 pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
646 pt->pt_info.ksi_errno = 0;
647 pt->pt_info.ksi_code = 0;
648 pt->pt_info.ksi_pid = p->p_pid;
649 pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
650 pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
651 pt->pt_type = id;
652 pt->pt_proc = p;
653 pt->pt_overruns = 0;
654 pt->pt_poverruns = 0;
655 pt->pt_entry = timerid;
656 pt->pt_queued = false;
657 timespecclear(&pt->pt_time.it_value);
658 if (!CLOCK_VIRTUAL_P(id))
659 callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
660 else
661 pt->pt_active = 0;
662
663 pts->pts_timers[timerid] = pt;
664 mutex_spin_exit(&timer_lock);
665
666 return copyout(&timerid, tid, sizeof(timerid));
667 }
668
669 /* Delete a POSIX realtime timer */
670 int
671 sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
672 register_t *retval)
673 {
674 /* {
675 syscallarg(timer_t) timerid;
676 } */
677 struct proc *p = l->l_proc;
678 timer_t timerid;
679 struct ptimers *pts;
680 struct ptimer *pt, *ptn;
681
682 timerid = SCARG(uap, timerid);
683 pts = p->p_timers;
684
685 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
686 return (EINVAL);
687
688 mutex_spin_enter(&timer_lock);
689 if ((pt = pts->pts_timers[timerid]) == NULL) {
690 mutex_spin_exit(&timer_lock);
691 return (EINVAL);
692 }
693 if (CLOCK_VIRTUAL_P(pt->pt_type)) {
694 if (pt->pt_active) {
695 ptn = LIST_NEXT(pt, pt_list);
696 LIST_REMOVE(pt, pt_list);
697 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
698 timespecadd(&pt->pt_time.it_value,
699 &ptn->pt_time.it_value,
700 &ptn->pt_time.it_value);
701 pt->pt_active = 0;
702 }
703 }
704
705 /* Free the timer and release the lock. */
706 itimerfree(pts, timerid);
707
708 return (0);
709 }
710
711 /*
712 * Set up the given timer. The value in pt->pt_time.it_value is taken
713 * to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC timers and
714 * a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
715 *
716 * If the callout had already fired but not yet run, fails with
717 * ERESTART -- caller must restart from the top to look up a timer.
718 */
719 int
720 timer_settime(struct ptimer *pt)
721 {
722 struct ptimer *ptn, *pptn;
723 struct ptlist *ptl;
724
725 KASSERT(mutex_owned(&timer_lock));
726
727 if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
728 /*
729 * Try to stop the callout. However, if it had already
730 * fired, we have to drop the lock to wait for it, so
731 * the world may have changed and pt may not be there
732 * any more. In that case, tell the caller to start
733 * over from the top.
734 */
735 if (callout_halt(&pt->pt_ch, &timer_lock))
736 return ERESTART;
737
738 /* Now we can touch pt and start it up again. */
739 if (timespecisset(&pt->pt_time.it_value)) {
740 /*
741 * Don't need to check tshzto() return value, here.
742 * callout_reset() does it for us.
743 */
744 callout_reset(&pt->pt_ch,
745 pt->pt_type == CLOCK_MONOTONIC ?
746 tshztoup(&pt->pt_time.it_value) :
747 tshzto(&pt->pt_time.it_value),
748 realtimerexpire, pt);
749 }
750 } else {
751 if (pt->pt_active) {
752 ptn = LIST_NEXT(pt, pt_list);
753 LIST_REMOVE(pt, pt_list);
754 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
755 timespecadd(&pt->pt_time.it_value,
756 &ptn->pt_time.it_value,
757 &ptn->pt_time.it_value);
758 }
759 if (timespecisset(&pt->pt_time.it_value)) {
760 if (pt->pt_type == CLOCK_VIRTUAL)
761 ptl = &pt->pt_proc->p_timers->pts_virtual;
762 else
763 ptl = &pt->pt_proc->p_timers->pts_prof;
764
765 for (ptn = LIST_FIRST(ptl), pptn = NULL;
766 ptn && timespeccmp(&pt->pt_time.it_value,
767 &ptn->pt_time.it_value, >);
768 pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
769 timespecsub(&pt->pt_time.it_value,
770 &ptn->pt_time.it_value,
771 &pt->pt_time.it_value);
772
773 if (pptn)
774 LIST_INSERT_AFTER(pptn, pt, pt_list);
775 else
776 LIST_INSERT_HEAD(ptl, pt, pt_list);
777
778 for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
779 timespecsub(&ptn->pt_time.it_value,
780 &pt->pt_time.it_value,
781 &ptn->pt_time.it_value);
782
783 pt->pt_active = 1;
784 } else
785 pt->pt_active = 0;
786 }
787
788 /* Success! */
789 return 0;
790 }
791
792 void
793 timer_gettime(struct ptimer *pt, struct itimerspec *aits)
794 {
795 struct timespec now;
796 struct ptimer *ptn;
797
798 KASSERT(mutex_owned(&timer_lock));
799
800 *aits = pt->pt_time;
801 if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
802 /*
803 * Convert from absolute to relative time in .it_value
804 * part of real time timer. If time for real time
805 * timer has passed return 0, else return difference
806 * between current time and time for the timer to go
807 * off.
808 */
809 if (timespecisset(&aits->it_value)) {
810 if (pt->pt_type == CLOCK_REALTIME) {
811 getnanotime(&now);
812 } else { /* CLOCK_MONOTONIC */
813 getnanouptime(&now);
814 }
815 if (timespeccmp(&aits->it_value, &now, <))
816 timespecclear(&aits->it_value);
817 else
818 timespecsub(&aits->it_value, &now,
819 &aits->it_value);
820 }
821 } else if (pt->pt_active) {
822 if (pt->pt_type == CLOCK_VIRTUAL)
823 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
824 else
825 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
826 for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
827 timespecadd(&aits->it_value,
828 &ptn->pt_time.it_value, &aits->it_value);
829 KASSERT(ptn != NULL); /* pt should be findable on the list */
830 } else
831 timespecclear(&aits->it_value);
832 }
833
834
835
836 /* Set and arm a POSIX realtime timer */
837 int
838 sys___timer_settime50(struct lwp *l,
839 const struct sys___timer_settime50_args *uap,
840 register_t *retval)
841 {
842 /* {
843 syscallarg(timer_t) timerid;
844 syscallarg(int) flags;
845 syscallarg(const struct itimerspec *) value;
846 syscallarg(struct itimerspec *) ovalue;
847 } */
848 int error;
849 struct itimerspec value, ovalue, *ovp = NULL;
850
851 if ((error = copyin(SCARG(uap, value), &value,
852 sizeof(struct itimerspec))) != 0)
853 return (error);
854
855 if (SCARG(uap, ovalue))
856 ovp = &ovalue;
857
858 if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
859 SCARG(uap, flags), l->l_proc)) != 0)
860 return error;
861
862 if (ovp)
863 return copyout(&ovalue, SCARG(uap, ovalue),
864 sizeof(struct itimerspec));
865 return 0;
866 }
867
868 int
869 dotimer_settime(int timerid, struct itimerspec *value,
870 struct itimerspec *ovalue, int flags, struct proc *p)
871 {
872 struct timespec now;
873 struct itimerspec val, oval;
874 struct ptimers *pts;
875 struct ptimer *pt;
876 int error;
877
878 pts = p->p_timers;
879
880 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
881 return EINVAL;
882 val = *value;
883 if ((error = itimespecfix(&val.it_value)) != 0 ||
884 (error = itimespecfix(&val.it_interval)) != 0)
885 return error;
886
887 mutex_spin_enter(&timer_lock);
888 restart:
889 if ((pt = pts->pts_timers[timerid]) == NULL) {
890 mutex_spin_exit(&timer_lock);
891 return EINVAL;
892 }
893
894 oval = pt->pt_time;
895 pt->pt_time = val;
896
897 /*
898 * If we've been passed a relative time for a realtime timer,
899 * convert it to absolute; if an absolute time for a virtual
900 * timer, convert it to relative and make sure we don't set it
901 * to zero, which would cancel the timer, or let it go
902 * negative, which would confuse the comparison tests.
903 */
904 if (timespecisset(&pt->pt_time.it_value)) {
905 if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
906 if ((flags & TIMER_ABSTIME) == 0) {
907 if (pt->pt_type == CLOCK_REALTIME) {
908 getnanotime(&now);
909 } else { /* CLOCK_MONOTONIC */
910 getnanouptime(&now);
911 }
912 timespecadd(&pt->pt_time.it_value, &now,
913 &pt->pt_time.it_value);
914 }
915 } else {
916 if ((flags & TIMER_ABSTIME) != 0) {
917 getnanotime(&now);
918 timespecsub(&pt->pt_time.it_value, &now,
919 &pt->pt_time.it_value);
920 if (!timespecisset(&pt->pt_time.it_value) ||
921 pt->pt_time.it_value.tv_sec < 0) {
922 pt->pt_time.it_value.tv_sec = 0;
923 pt->pt_time.it_value.tv_nsec = 1;
924 }
925 }
926 }
927 }
928
929 error = timer_settime(pt);
930 if (error == ERESTART) {
931 KASSERT(!CLOCK_VIRTUAL_P(pt->pt_type));
932 goto restart;
933 }
934 KASSERT(error == 0);
935 mutex_spin_exit(&timer_lock);
936
937 if (ovalue)
938 *ovalue = oval;
939
940 return (0);
941 }
942
943 /* Return the time remaining until a POSIX timer fires. */
944 int
945 sys___timer_gettime50(struct lwp *l,
946 const struct sys___timer_gettime50_args *uap, register_t *retval)
947 {
948 /* {
949 syscallarg(timer_t) timerid;
950 syscallarg(struct itimerspec *) value;
951 } */
952 struct itimerspec its;
953 int error;
954
955 if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
956 &its)) != 0)
957 return error;
958
959 return copyout(&its, SCARG(uap, value), sizeof(its));
960 }
961
962 int
963 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
964 {
965 struct ptimer *pt;
966 struct ptimers *pts;
967
968 pts = p->p_timers;
969 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
970 return (EINVAL);
971 mutex_spin_enter(&timer_lock);
972 if ((pt = pts->pts_timers[timerid]) == NULL) {
973 mutex_spin_exit(&timer_lock);
974 return (EINVAL);
975 }
976 timer_gettime(pt, its);
977 mutex_spin_exit(&timer_lock);
978
979 return 0;
980 }
981
982 /*
983 * Return the count of the number of times a periodic timer expired
984 * while a notification was already pending. The counter is reset when
985 * a timer expires and a notification can be posted.
986 */
987 int
988 sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
989 register_t *retval)
990 {
991 /* {
992 syscallarg(timer_t) timerid;
993 } */
994 struct proc *p = l->l_proc;
995 struct ptimers *pts;
996 int timerid;
997 struct ptimer *pt;
998
999 timerid = SCARG(uap, timerid);
1000
1001 pts = p->p_timers;
1002 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
1003 return (EINVAL);
1004 mutex_spin_enter(&timer_lock);
1005 if ((pt = pts->pts_timers[timerid]) == NULL) {
1006 mutex_spin_exit(&timer_lock);
1007 return (EINVAL);
1008 }
1009 *retval = pt->pt_poverruns;
1010 if (*retval >= DELAYTIMER_MAX)
1011 *retval = DELAYTIMER_MAX;
1012 mutex_spin_exit(&timer_lock);
1013
1014 return (0);
1015 }
1016
1017 /*
1018 * Real interval timer expired:
1019 * send process whose timer expired an alarm signal.
1020 * If time is not set up to reload, then just return.
1021 * Else compute next time timer should go off which is > current time.
1022 * This is where delay in processing this timeout causes multiple
1023 * SIGALRM calls to be compressed into one.
1024 */
1025 void
1026 realtimerexpire(void *arg)
1027 {
1028 uint64_t last_val, next_val, interval, now_ns;
1029 struct timespec now, next;
1030 struct ptimer *pt;
1031 int backwards;
1032
1033 pt = arg;
1034
1035 mutex_spin_enter(&timer_lock);
1036 itimerfire(pt);
1037
1038 if (!timespecisset(&pt->pt_time.it_interval)) {
1039 timespecclear(&pt->pt_time.it_value);
1040 mutex_spin_exit(&timer_lock);
1041 return;
1042 }
1043
1044 if (pt->pt_type == CLOCK_MONOTONIC) {
1045 getnanouptime(&now);
1046 } else {
1047 getnanotime(&now);
1048 }
1049 backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
1050 timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
1051 /* Handle the easy case of non-overflown timers first. */
1052 if (!backwards && timespeccmp(&next, &now, >)) {
1053 pt->pt_time.it_value = next;
1054 } else {
1055 now_ns = timespec2ns(&now);
1056 last_val = timespec2ns(&pt->pt_time.it_value);
1057 interval = timespec2ns(&pt->pt_time.it_interval);
1058
1059 next_val = now_ns +
1060 (now_ns - last_val + interval - 1) % interval;
1061
1062 if (backwards)
1063 next_val += interval;
1064 else
1065 pt->pt_overruns += (now_ns - last_val) / interval;
1066
1067 pt->pt_time.it_value.tv_sec = next_val / 1000000000;
1068 pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
1069 }
1070
1071 /*
1072 * Reset the callout, if it's not going away.
1073 *
1074 * Don't need to check tshzto() return value, here.
1075 * callout_reset() does it for us.
1076 */
1077 if (!pt->pt_dying)
1078 callout_reset(&pt->pt_ch,
1079 (pt->pt_type == CLOCK_MONOTONIC
1080 ? tshztoup(&pt->pt_time.it_value)
1081 : tshzto(&pt->pt_time.it_value)),
1082 realtimerexpire, pt);
1083 mutex_spin_exit(&timer_lock);
1084 }
1085
1086 /* BSD routine to get the value of an interval timer. */
1087 /* ARGSUSED */
1088 int
1089 sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
1090 register_t *retval)
1091 {
1092 /* {
1093 syscallarg(int) which;
1094 syscallarg(struct itimerval *) itv;
1095 } */
1096 struct proc *p = l->l_proc;
1097 struct itimerval aitv;
1098 int error;
1099
1100 memset(&aitv, 0, sizeof(aitv));
1101 error = dogetitimer(p, SCARG(uap, which), &aitv);
1102 if (error)
1103 return error;
1104 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1105 }
1106
1107 int
1108 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1109 {
1110 struct ptimers *pts;
1111 struct ptimer *pt;
1112 struct itimerspec its;
1113
1114 if ((u_int)which > ITIMER_MONOTONIC)
1115 return (EINVAL);
1116
1117 mutex_spin_enter(&timer_lock);
1118 pts = p->p_timers;
1119 if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
1120 timerclear(&itvp->it_value);
1121 timerclear(&itvp->it_interval);
1122 } else {
1123 timer_gettime(pt, &its);
1124 TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
1125 TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
1126 }
1127 mutex_spin_exit(&timer_lock);
1128
1129 return 0;
1130 }
1131
1132 /* BSD routine to set/arm an interval timer. */
1133 /* ARGSUSED */
1134 int
1135 sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
1136 register_t *retval)
1137 {
1138 /* {
1139 syscallarg(int) which;
1140 syscallarg(const struct itimerval *) itv;
1141 syscallarg(struct itimerval *) oitv;
1142 } */
1143 struct proc *p = l->l_proc;
1144 int which = SCARG(uap, which);
1145 struct sys___getitimer50_args getargs;
1146 const struct itimerval *itvp;
1147 struct itimerval aitv;
1148 int error;
1149
1150 if ((u_int)which > ITIMER_MONOTONIC)
1151 return (EINVAL);
1152 itvp = SCARG(uap, itv);
1153 if (itvp &&
1154 (error = copyin(itvp, &aitv, sizeof(struct itimerval))) != 0)
1155 return (error);
1156 if (SCARG(uap, oitv) != NULL) {
1157 SCARG(&getargs, which) = which;
1158 SCARG(&getargs, itv) = SCARG(uap, oitv);
1159 if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
1160 return (error);
1161 }
1162 if (itvp == 0)
1163 return (0);
1164
1165 return dosetitimer(p, which, &aitv);
1166 }
1167
1168 int
1169 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1170 {
1171 struct timespec now;
1172 struct ptimers *pts;
1173 struct ptimer *pt, *spare;
1174 int error;
1175
1176 KASSERT((u_int)which <= CLOCK_MONOTONIC);
1177 if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1178 return (EINVAL);
1179
1180 /*
1181 * Don't bother allocating data structures if the process just
1182 * wants to clear the timer.
1183 */
1184 spare = NULL;
1185 pts = p->p_timers;
1186 retry:
1187 if (!timerisset(&itvp->it_value) && (pts == NULL ||
1188 pts->pts_timers[which] == NULL))
1189 return (0);
1190 if (pts == NULL)
1191 pts = timers_alloc(p);
1192 mutex_spin_enter(&timer_lock);
1193 restart:
1194 pt = pts->pts_timers[which];
1195 if (pt == NULL) {
1196 if (spare == NULL) {
1197 mutex_spin_exit(&timer_lock);
1198 spare = pool_get(&ptimer_pool, PR_WAITOK | PR_ZERO);
1199 goto retry;
1200 }
1201 pt = spare;
1202 spare = NULL;
1203 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1204 pt->pt_ev.sigev_value.sival_int = which;
1205 pt->pt_overruns = 0;
1206 pt->pt_proc = p;
1207 pt->pt_type = which;
1208 pt->pt_entry = which;
1209 pt->pt_queued = false;
1210 if (!CLOCK_VIRTUAL_P(which))
1211 callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
1212 else
1213 pt->pt_active = 0;
1214
1215 switch (which) {
1216 case ITIMER_REAL:
1217 case ITIMER_MONOTONIC:
1218 pt->pt_ev.sigev_signo = SIGALRM;
1219 break;
1220 case ITIMER_VIRTUAL:
1221 pt->pt_ev.sigev_signo = SIGVTALRM;
1222 break;
1223 case ITIMER_PROF:
1224 pt->pt_ev.sigev_signo = SIGPROF;
1225 break;
1226 }
1227 pts->pts_timers[which] = pt;
1228 }
1229
1230 TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
1231 TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
1232
1233 if (timespecisset(&pt->pt_time.it_value)) {
1234 /* Convert to absolute time */
1235 /* XXX need to wrap in splclock for timecounters case? */
1236 switch (which) {
1237 case ITIMER_REAL:
1238 getnanotime(&now);
1239 timespecadd(&pt->pt_time.it_value, &now,
1240 &pt->pt_time.it_value);
1241 break;
1242 case ITIMER_MONOTONIC:
1243 getnanouptime(&now);
1244 timespecadd(&pt->pt_time.it_value, &now,
1245 &pt->pt_time.it_value);
1246 break;
1247 default:
1248 break;
1249 }
1250 }
1251 error = timer_settime(pt);
1252 if (error == ERESTART) {
1253 KASSERT(!CLOCK_VIRTUAL_P(pt->pt_type));
1254 goto restart;
1255 }
1256 KASSERT(error == 0);
1257 mutex_spin_exit(&timer_lock);
1258 if (spare != NULL)
1259 pool_put(&ptimer_pool, spare);
1260
1261 return (0);
1262 }
1263
1264 /* Utility routines to manage the array of pointers to timers. */
1265 struct ptimers *
1266 timers_alloc(struct proc *p)
1267 {
1268 struct ptimers *pts;
1269 int i;
1270
1271 pts = pool_get(&ptimers_pool, PR_WAITOK);
1272 LIST_INIT(&pts->pts_virtual);
1273 LIST_INIT(&pts->pts_prof);
1274 for (i = 0; i < TIMER_MAX; i++)
1275 pts->pts_timers[i] = NULL;
1276 mutex_spin_enter(&timer_lock);
1277 if (p->p_timers == NULL) {
1278 p->p_timers = pts;
1279 mutex_spin_exit(&timer_lock);
1280 return pts;
1281 }
1282 mutex_spin_exit(&timer_lock);
1283 pool_put(&ptimers_pool, pts);
1284 return p->p_timers;
1285 }
1286
1287 /*
1288 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1289 * then clean up all timers and free all the data structures. If
1290 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1291 * by timer_create(), not the BSD setitimer() timers, and only free the
1292 * structure if none of those remain.
1293 */
1294 void
1295 timers_free(struct proc *p, int which)
1296 {
1297 struct ptimers *pts;
1298 struct ptimer *ptn;
1299 struct timespec ts;
1300 int i;
1301
1302 if (p->p_timers == NULL)
1303 return;
1304
1305 pts = p->p_timers;
1306 mutex_spin_enter(&timer_lock);
1307 if (which == TIMERS_ALL) {
1308 p->p_timers = NULL;
1309 i = 0;
1310 } else {
1311 timespecclear(&ts);
1312 for (ptn = LIST_FIRST(&pts->pts_virtual);
1313 ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1314 ptn = LIST_NEXT(ptn, pt_list)) {
1315 KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1316 timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1317 }
1318 LIST_FIRST(&pts->pts_virtual) = NULL;
1319 if (ptn) {
1320 KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1321 timespecadd(&ts, &ptn->pt_time.it_value,
1322 &ptn->pt_time.it_value);
1323 LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
1324 }
1325 timespecclear(&ts);
1326 for (ptn = LIST_FIRST(&pts->pts_prof);
1327 ptn && ptn != pts->pts_timers[ITIMER_PROF];
1328 ptn = LIST_NEXT(ptn, pt_list)) {
1329 KASSERT(ptn->pt_type == CLOCK_PROF);
1330 timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1331 }
1332 LIST_FIRST(&pts->pts_prof) = NULL;
1333 if (ptn) {
1334 KASSERT(ptn->pt_type == CLOCK_PROF);
1335 timespecadd(&ts, &ptn->pt_time.it_value,
1336 &ptn->pt_time.it_value);
1337 LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
1338 }
1339 i = TIMER_MIN;
1340 }
1341 for ( ; i < TIMER_MAX; i++) {
1342 if (pts->pts_timers[i] != NULL) {
1343 /* Free the timer and release the lock. */
1344 itimerfree(pts, i);
1345 /* Reacquire the lock for the next one. */
1346 mutex_spin_enter(&timer_lock);
1347 }
1348 }
1349 if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
1350 pts->pts_timers[2] == NULL && pts->pts_timers[3] == NULL) {
1351 p->p_timers = NULL;
1352 mutex_spin_exit(&timer_lock);
1353 pool_put(&ptimers_pool, pts);
1354 } else
1355 mutex_spin_exit(&timer_lock);
1356 }
1357
1358 static void
1359 itimerfree(struct ptimers *pts, int index)
1360 {
1361 struct ptimer *pt;
1362
1363 KASSERT(mutex_owned(&timer_lock));
1364
1365 pt = pts->pts_timers[index];
1366
1367 /*
1368 * Prevent new references, and notify the callout not to
1369 * restart itself.
1370 */
1371 pts->pts_timers[index] = NULL;
1372 pt->pt_dying = true;
1373
1374 /*
1375 * For non-virtual timers, stop the callout, or wait for it to
1376 * run if it has already fired. It cannot restart again after
1377 * this point: the callout won't restart itself when dying, no
1378 * other users holding the lock can restart it, and any other
1379 * users waiting for callout_halt concurrently (timer_settime)
1380 * will restart from the top.
1381 */
1382 if (!CLOCK_VIRTUAL_P(pt->pt_type))
1383 callout_halt(&pt->pt_ch, &timer_lock);
1384
1385 /* Remove it from the queue to be signalled. */
1386 if (pt->pt_queued)
1387 TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1388
1389 /* All done with the global state. */
1390 mutex_spin_exit(&timer_lock);
1391
1392 /* Destroy the callout, if needed, and free the ptimer. */
1393 if (!CLOCK_VIRTUAL_P(pt->pt_type))
1394 callout_destroy(&pt->pt_ch);
1395 pool_put(&ptimer_pool, pt);
1396 }
1397
1398 /*
1399 * Decrement an interval timer by a specified number
1400 * of nanoseconds, which must be less than a second,
1401 * i.e. < 1000000000. If the timer expires, then reload
1402 * it. In this case, carry over (nsec - old value) to
1403 * reduce the value reloaded into the timer so that
1404 * the timer does not drift. This routine assumes
1405 * that it is called in a context where the timers
1406 * on which it is operating cannot change in value.
1407 */
1408 static int
1409 itimerdecr(struct ptimer *pt, int nsec)
1410 {
1411 struct itimerspec *itp;
1412 int error __diagused;
1413
1414 KASSERT(mutex_owned(&timer_lock));
1415 KASSERT(CLOCK_VIRTUAL_P(pt->pt_type));
1416
1417 itp = &pt->pt_time;
1418 if (itp->it_value.tv_nsec < nsec) {
1419 if (itp->it_value.tv_sec == 0) {
1420 /* expired, and already in next interval */
1421 nsec -= itp->it_value.tv_nsec;
1422 goto expire;
1423 }
1424 itp->it_value.tv_nsec += 1000000000;
1425 itp->it_value.tv_sec--;
1426 }
1427 itp->it_value.tv_nsec -= nsec;
1428 nsec = 0;
1429 if (timespecisset(&itp->it_value))
1430 return (1);
1431 /* expired, exactly at end of interval */
1432 expire:
1433 if (timespecisset(&itp->it_interval)) {
1434 itp->it_value = itp->it_interval;
1435 itp->it_value.tv_nsec -= nsec;
1436 if (itp->it_value.tv_nsec < 0) {
1437 itp->it_value.tv_nsec += 1000000000;
1438 itp->it_value.tv_sec--;
1439 }
1440 error = timer_settime(pt);
1441 KASSERT(error == 0); /* virtual, never fails */
1442 } else
1443 itp->it_value.tv_nsec = 0; /* sec is already 0 */
1444 return (0);
1445 }
1446
1447 static void
1448 itimerfire(struct ptimer *pt)
1449 {
1450
1451 KASSERT(mutex_owned(&timer_lock));
1452
1453 /*
1454 * XXX Can overrun, but we don't do signal queueing yet, anyway.
1455 * XXX Relying on the clock interrupt is stupid.
1456 */
1457 if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL || pt->pt_queued) {
1458 return;
1459 }
1460 TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
1461 pt->pt_queued = true;
1462 softint_schedule(timer_sih);
1463 }
1464
1465 void
1466 timer_tick(lwp_t *l, bool user)
1467 {
1468 struct ptimers *pts;
1469 struct ptimer *pt;
1470 proc_t *p;
1471
1472 p = l->l_proc;
1473 if (p->p_timers == NULL)
1474 return;
1475
1476 mutex_spin_enter(&timer_lock);
1477 if ((pts = l->l_proc->p_timers) != NULL) {
1478 /*
1479 * Run current process's virtual and profile time, as needed.
1480 */
1481 if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
1482 if (itimerdecr(pt, tick * 1000) == 0)
1483 itimerfire(pt);
1484 if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
1485 if (itimerdecr(pt, tick * 1000) == 0)
1486 itimerfire(pt);
1487 }
1488 mutex_spin_exit(&timer_lock);
1489 }
1490
1491 static void
1492 timer_intr(void *cookie)
1493 {
1494 ksiginfo_t ksi;
1495 struct ptimer *pt;
1496 proc_t *p;
1497
1498 mutex_enter(proc_lock);
1499 mutex_spin_enter(&timer_lock);
1500 while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
1501 TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1502 KASSERT(pt->pt_queued);
1503 pt->pt_queued = false;
1504
1505 if (pt->pt_proc->p_timers == NULL) {
1506 /* Process is dying. */
1507 continue;
1508 }
1509 p = pt->pt_proc;
1510 if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
1511 continue;
1512 }
1513 if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
1514 pt->pt_overruns++;
1515 continue;
1516 }
1517
1518 KSI_INIT(&ksi);
1519 ksi.ksi_signo = pt->pt_ev.sigev_signo;
1520 ksi.ksi_code = SI_TIMER;
1521 ksi.ksi_value = pt->pt_ev.sigev_value;
1522 pt->pt_poverruns = pt->pt_overruns;
1523 pt->pt_overruns = 0;
1524 mutex_spin_exit(&timer_lock);
1525 kpsignal(p, &ksi, NULL);
1526 mutex_spin_enter(&timer_lock);
1527 }
1528 mutex_spin_exit(&timer_lock);
1529 mutex_exit(proc_lock);
1530 }
1531
1532 /*
1533 * Check if the time will wrap if set to ts.
1534 *
1535 * ts - timespec describing the new time
1536 * delta - the delta between the current time and ts
1537 */
1538 bool
1539 time_wraps(struct timespec *ts, struct timespec *delta)
1540 {
1541
1542 /*
1543 * Don't allow the time to be set forward so far it
1544 * will wrap and become negative, thus allowing an
1545 * attacker to bypass the next check below. The
1546 * cutoff is 1 year before rollover occurs, so even
1547 * if the attacker uses adjtime(2) to move the time
1548 * past the cutoff, it will take a very long time
1549 * to get to the wrap point.
1550 */
1551 if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
1552 (delta->tv_sec < 0 || delta->tv_nsec < 0))
1553 return true;
1554
1555 return false;
1556 }
1557