kern_time.c revision 1.189.8.4 1 /* $NetBSD: kern_time.c,v 1.189.8.4 2019/02/01 11:21:30 martin Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1986, 1989, 1993
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
61 */
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.189.8.4 2019/02/01 11:21:30 martin Exp $");
65
66 #include <sys/param.h>
67 #include <sys/resourcevar.h>
68 #include <sys/kernel.h>
69 #include <sys/systm.h>
70 #include <sys/proc.h>
71 #include <sys/vnode.h>
72 #include <sys/signalvar.h>
73 #include <sys/syslog.h>
74 #include <sys/timetc.h>
75 #include <sys/timex.h>
76 #include <sys/kauth.h>
77 #include <sys/mount.h>
78 #include <sys/syscallargs.h>
79 #include <sys/cpu.h>
80
81 static void timer_intr(void *);
82 static void itimerfire(struct ptimer *);
83 static void itimerfree(struct ptimers *, int);
84
85 kmutex_t timer_lock;
86
87 static void *timer_sih;
88 static TAILQ_HEAD(, ptimer) timer_queue;
89
90 struct pool ptimer_pool, ptimers_pool;
91
92 #define CLOCK_VIRTUAL_P(clockid) \
93 ((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)
94
95 CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
96 CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
97 CTASSERT(ITIMER_PROF == CLOCK_PROF);
98 CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC);
99
100 #define DELAYTIMER_MAX 32
101
102 /*
103 * Initialize timekeeping.
104 */
105 void
106 time_init(void)
107 {
108
109 pool_init(&ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
110 &pool_allocator_nointr, IPL_NONE);
111 pool_init(&ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
112 &pool_allocator_nointr, IPL_NONE);
113 }
114
115 void
116 time_init2(void)
117 {
118
119 TAILQ_INIT(&timer_queue);
120 mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
121 timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
122 timer_intr, NULL);
123 }
124
125 /* Time of day and interval timer support.
126 *
127 * These routines provide the kernel entry points to get and set
128 * the time-of-day and per-process interval timers. Subroutines
129 * here provide support for adding and subtracting timeval structures
130 * and decrementing interval timers, optionally reloading the interval
131 * timers when they expire.
132 */
133
134 /* This function is used by clock_settime and settimeofday */
135 static int
136 settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
137 {
138 struct timespec delta, now;
139 int s;
140
141 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
142 s = splclock();
143 nanotime(&now);
144 timespecsub(ts, &now, &delta);
145
146 if (check_kauth && kauth_authorize_system(kauth_cred_get(),
147 KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
148 &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
149 splx(s);
150 return (EPERM);
151 }
152
153 #ifdef notyet
154 if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
155 splx(s);
156 return (EPERM);
157 }
158 #endif
159
160 tc_setclock(ts);
161
162 timespecadd(&boottime, &delta, &boottime);
163
164 resettodr();
165 splx(s);
166
167 return (0);
168 }
169
170 int
171 settime(struct proc *p, struct timespec *ts)
172 {
173 return (settime1(p, ts, true));
174 }
175
176 /* ARGSUSED */
177 int
178 sys___clock_gettime50(struct lwp *l,
179 const struct sys___clock_gettime50_args *uap, register_t *retval)
180 {
181 /* {
182 syscallarg(clockid_t) clock_id;
183 syscallarg(struct timespec *) tp;
184 } */
185 int error;
186 struct timespec ats;
187
188 error = clock_gettime1(SCARG(uap, clock_id), &ats);
189 if (error != 0)
190 return error;
191
192 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
193 }
194
195 /* ARGSUSED */
196 int
197 sys___clock_settime50(struct lwp *l,
198 const struct sys___clock_settime50_args *uap, register_t *retval)
199 {
200 /* {
201 syscallarg(clockid_t) clock_id;
202 syscallarg(const struct timespec *) tp;
203 } */
204 int error;
205 struct timespec ats;
206
207 if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
208 return error;
209
210 return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
211 }
212
213
214 int
215 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
216 bool check_kauth)
217 {
218 int error;
219
220 switch (clock_id) {
221 case CLOCK_REALTIME:
222 if ((error = settime1(p, tp, check_kauth)) != 0)
223 return (error);
224 break;
225 case CLOCK_MONOTONIC:
226 return (EINVAL); /* read-only clock */
227 default:
228 return (EINVAL);
229 }
230
231 return 0;
232 }
233
234 int
235 sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
236 register_t *retval)
237 {
238 /* {
239 syscallarg(clockid_t) clock_id;
240 syscallarg(struct timespec *) tp;
241 } */
242 struct timespec ts;
243 int error;
244
245 if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
246 return error;
247
248 if (SCARG(uap, tp))
249 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
250
251 return error;
252 }
253
254 int
255 clock_getres1(clockid_t clock_id, struct timespec *ts)
256 {
257
258 switch (clock_id) {
259 case CLOCK_REALTIME:
260 case CLOCK_MONOTONIC:
261 ts->tv_sec = 0;
262 if (tc_getfrequency() > 1000000000)
263 ts->tv_nsec = 1;
264 else
265 ts->tv_nsec = 1000000000 / tc_getfrequency();
266 break;
267 default:
268 return EINVAL;
269 }
270
271 return 0;
272 }
273
274 /* ARGSUSED */
275 int
276 sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
277 register_t *retval)
278 {
279 /* {
280 syscallarg(struct timespec *) rqtp;
281 syscallarg(struct timespec *) rmtp;
282 } */
283 struct timespec rmt, rqt;
284 int error, error1;
285
286 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
287 if (error)
288 return (error);
289
290 error = nanosleep1(l, CLOCK_MONOTONIC, 0, &rqt,
291 SCARG(uap, rmtp) ? &rmt : NULL);
292 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
293 return error;
294
295 error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
296 return error1 ? error1 : error;
297 }
298
299 /* ARGSUSED */
300 int
301 sys_clock_nanosleep(struct lwp *l, const struct sys_clock_nanosleep_args *uap,
302 register_t *retval)
303 {
304 /* {
305 syscallarg(clockid_t) clock_id;
306 syscallarg(int) flags;
307 syscallarg(struct timespec *) rqtp;
308 syscallarg(struct timespec *) rmtp;
309 } */
310 struct timespec rmt, rqt;
311 int error, error1;
312
313 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
314 if (error)
315 goto out;
316
317 error = nanosleep1(l, SCARG(uap, clock_id), SCARG(uap, flags), &rqt,
318 SCARG(uap, rmtp) ? &rmt : NULL);
319 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
320 goto out;
321
322 if ((SCARG(uap, flags) & TIMER_ABSTIME) == 0 &&
323 (error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt))) != 0)
324 error = error1;
325 out:
326 *retval = error;
327 return 0;
328 }
329
330 int
331 nanosleep1(struct lwp *l, clockid_t clock_id, int flags, struct timespec *rqt,
332 struct timespec *rmt)
333 {
334 struct timespec rmtstart;
335 int error, timo;
336
337 if ((error = ts2timo(clock_id, flags, rqt, &timo, &rmtstart)) != 0) {
338 if (error == ETIMEDOUT) {
339 error = 0;
340 if (rmt != NULL)
341 rmt->tv_sec = rmt->tv_nsec = 0;
342 }
343 return error;
344 }
345
346 /*
347 * Avoid inadvertently sleeping forever
348 */
349 if (timo == 0)
350 timo = 1;
351 again:
352 error = kpause("nanoslp", true, timo, NULL);
353 if (rmt != NULL || error == 0) {
354 struct timespec rmtend;
355 struct timespec t0;
356 struct timespec *t;
357
358 (void)clock_gettime1(clock_id, &rmtend);
359 t = (rmt != NULL) ? rmt : &t0;
360 if (flags & TIMER_ABSTIME) {
361 timespecsub(rqt, &rmtend, t);
362 } else {
363 timespecsub(&rmtend, &rmtstart, t);
364 timespecsub(rqt, t, t);
365 }
366 if (t->tv_sec < 0)
367 timespecclear(t);
368 if (error == 0) {
369 timo = tstohz(t);
370 if (timo > 0)
371 goto again;
372 }
373 }
374
375 if (error == ERESTART)
376 error = EINTR;
377 if (error == EWOULDBLOCK)
378 error = 0;
379
380 return error;
381 }
382
383 int
384 sys_clock_getcpuclockid2(struct lwp *l,
385 const struct sys_clock_getcpuclockid2_args *uap,
386 register_t *retval)
387 {
388 /* {
389 syscallarg(idtype_t idtype;
390 syscallarg(id_t id);
391 syscallarg(clockid_t *)clock_id;
392 } */
393 pid_t pid;
394 lwpid_t lid;
395 clockid_t clock_id;
396 id_t id = SCARG(uap, id);
397
398 switch (SCARG(uap, idtype)) {
399 case P_PID:
400 pid = id == 0 ? l->l_proc->p_pid : id;
401 clock_id = CLOCK_PROCESS_CPUTIME_ID | pid;
402 break;
403 case P_LWPID:
404 lid = id == 0 ? l->l_lid : id;
405 clock_id = CLOCK_THREAD_CPUTIME_ID | lid;
406 break;
407 default:
408 return EINVAL;
409 }
410 return copyout(&clock_id, SCARG(uap, clock_id), sizeof(clock_id));
411 }
412
413 /* ARGSUSED */
414 int
415 sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
416 register_t *retval)
417 {
418 /* {
419 syscallarg(struct timeval *) tp;
420 syscallarg(void *) tzp; really "struct timezone *";
421 } */
422 struct timeval atv;
423 int error = 0;
424 struct timezone tzfake;
425
426 if (SCARG(uap, tp)) {
427 memset(&atv, 0, sizeof(atv));
428 microtime(&atv);
429 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
430 if (error)
431 return (error);
432 }
433 if (SCARG(uap, tzp)) {
434 /*
435 * NetBSD has no kernel notion of time zone, so we just
436 * fake up a timezone struct and return it if demanded.
437 */
438 tzfake.tz_minuteswest = 0;
439 tzfake.tz_dsttime = 0;
440 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
441 }
442 return (error);
443 }
444
445 /* ARGSUSED */
446 int
447 sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
448 register_t *retval)
449 {
450 /* {
451 syscallarg(const struct timeval *) tv;
452 syscallarg(const void *) tzp; really "const struct timezone *";
453 } */
454
455 return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
456 }
457
458 int
459 settimeofday1(const struct timeval *utv, bool userspace,
460 const void *utzp, struct lwp *l, bool check_kauth)
461 {
462 struct timeval atv;
463 struct timespec ts;
464 int error;
465
466 /* Verify all parameters before changing time. */
467
468 /*
469 * NetBSD has no kernel notion of time zone, and only an
470 * obsolete program would try to set it, so we log a warning.
471 */
472 if (utzp)
473 log(LOG_WARNING, "pid %d attempted to set the "
474 "(obsolete) kernel time zone\n", l->l_proc->p_pid);
475
476 if (utv == NULL)
477 return 0;
478
479 if (userspace) {
480 if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
481 return error;
482 utv = &atv;
483 }
484
485 TIMEVAL_TO_TIMESPEC(utv, &ts);
486 return settime1(l->l_proc, &ts, check_kauth);
487 }
488
489 int time_adjusted; /* set if an adjustment is made */
490
491 /* ARGSUSED */
492 int
493 sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
494 register_t *retval)
495 {
496 /* {
497 syscallarg(const struct timeval *) delta;
498 syscallarg(struct timeval *) olddelta;
499 } */
500 int error;
501 struct timeval atv, oldatv;
502
503 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
504 KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
505 return error;
506
507 if (SCARG(uap, delta)) {
508 error = copyin(SCARG(uap, delta), &atv,
509 sizeof(*SCARG(uap, delta)));
510 if (error)
511 return (error);
512 }
513 adjtime1(SCARG(uap, delta) ? &atv : NULL,
514 SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
515 if (SCARG(uap, olddelta))
516 error = copyout(&oldatv, SCARG(uap, olddelta),
517 sizeof(*SCARG(uap, olddelta)));
518 return error;
519 }
520
521 void
522 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
523 {
524 extern int64_t time_adjtime; /* in kern_ntptime.c */
525
526 if (olddelta) {
527 memset(olddelta, 0, sizeof(*olddelta));
528 mutex_spin_enter(&timecounter_lock);
529 olddelta->tv_sec = time_adjtime / 1000000;
530 olddelta->tv_usec = time_adjtime % 1000000;
531 if (olddelta->tv_usec < 0) {
532 olddelta->tv_usec += 1000000;
533 olddelta->tv_sec--;
534 }
535 mutex_spin_exit(&timecounter_lock);
536 }
537
538 if (delta) {
539 mutex_spin_enter(&timecounter_lock);
540 time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
541
542 if (time_adjtime) {
543 /* We need to save the system time during shutdown */
544 time_adjusted |= 1;
545 }
546 mutex_spin_exit(&timecounter_lock);
547 }
548 }
549
550 /*
551 * Interval timer support. Both the BSD getitimer() family and the POSIX
552 * timer_*() family of routines are supported.
553 *
554 * All timers are kept in an array pointed to by p_timers, which is
555 * allocated on demand - many processes don't use timers at all. The
556 * first four elements in this array are reserved for the BSD timers:
557 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element
558 * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be
559 * allocated by the timer_create() syscall.
560 *
561 * Realtime timers are kept in the ptimer structure as an absolute
562 * time; virtual time timers are kept as a linked list of deltas.
563 * Virtual time timers are processed in the hardclock() routine of
564 * kern_clock.c. The real time timer is processed by a callout
565 * routine, called from the softclock() routine. Since a callout may
566 * be delayed in real time due to interrupt processing in the system,
567 * it is possible for the real time timeout routine (realtimeexpire,
568 * given below), to be delayed in real time past when it is supposed
569 * to occur. It does not suffice, therefore, to reload the real timer
570 * .it_value from the real time timers .it_interval. Rather, we
571 * compute the next time in absolute time the timer should go off. */
572
573 /* Allocate a POSIX realtime timer. */
574 int
575 sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
576 register_t *retval)
577 {
578 /* {
579 syscallarg(clockid_t) clock_id;
580 syscallarg(struct sigevent *) evp;
581 syscallarg(timer_t *) timerid;
582 } */
583
584 return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
585 SCARG(uap, evp), copyin, l);
586 }
587
588 int
589 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
590 copyin_t fetch_event, struct lwp *l)
591 {
592 int error;
593 timer_t timerid;
594 struct ptimers *pts;
595 struct ptimer *pt;
596 struct proc *p;
597
598 p = l->l_proc;
599
600 if ((u_int)id > CLOCK_MONOTONIC)
601 return (EINVAL);
602
603 if ((pts = p->p_timers) == NULL)
604 pts = timers_alloc(p);
605
606 pt = pool_get(&ptimer_pool, PR_WAITOK);
607 memset(pt, 0, sizeof(*pt));
608 if (evp != NULL) {
609 if (((error =
610 (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
611 ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
612 (pt->pt_ev.sigev_notify > SIGEV_SA)) ||
613 (pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
614 (pt->pt_ev.sigev_signo <= 0 ||
615 pt->pt_ev.sigev_signo >= NSIG))) {
616 pool_put(&ptimer_pool, pt);
617 return (error ? error : EINVAL);
618 }
619 }
620
621 /* Find a free timer slot, skipping those reserved for setitimer(). */
622 mutex_spin_enter(&timer_lock);
623 for (timerid = TIMER_MIN; timerid < TIMER_MAX; timerid++)
624 if (pts->pts_timers[timerid] == NULL)
625 break;
626 if (timerid == TIMER_MAX) {
627 mutex_spin_exit(&timer_lock);
628 pool_put(&ptimer_pool, pt);
629 return EAGAIN;
630 }
631 if (evp == NULL) {
632 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
633 switch (id) {
634 case CLOCK_REALTIME:
635 case CLOCK_MONOTONIC:
636 pt->pt_ev.sigev_signo = SIGALRM;
637 break;
638 case CLOCK_VIRTUAL:
639 pt->pt_ev.sigev_signo = SIGVTALRM;
640 break;
641 case CLOCK_PROF:
642 pt->pt_ev.sigev_signo = SIGPROF;
643 break;
644 }
645 pt->pt_ev.sigev_value.sival_int = timerid;
646 }
647 pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
648 pt->pt_info.ksi_errno = 0;
649 pt->pt_info.ksi_code = 0;
650 pt->pt_info.ksi_pid = p->p_pid;
651 pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
652 pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
653 pt->pt_type = id;
654 pt->pt_proc = p;
655 pt->pt_overruns = 0;
656 pt->pt_poverruns = 0;
657 pt->pt_entry = timerid;
658 pt->pt_queued = false;
659 timespecclear(&pt->pt_time.it_value);
660 if (!CLOCK_VIRTUAL_P(id))
661 callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
662 else
663 pt->pt_active = 0;
664
665 pts->pts_timers[timerid] = pt;
666 mutex_spin_exit(&timer_lock);
667
668 return copyout(&timerid, tid, sizeof(timerid));
669 }
670
671 /* Delete a POSIX realtime timer */
672 int
673 sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
674 register_t *retval)
675 {
676 /* {
677 syscallarg(timer_t) timerid;
678 } */
679 struct proc *p = l->l_proc;
680 timer_t timerid;
681 struct ptimers *pts;
682 struct ptimer *pt, *ptn;
683
684 timerid = SCARG(uap, timerid);
685 pts = p->p_timers;
686
687 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
688 return (EINVAL);
689
690 mutex_spin_enter(&timer_lock);
691 if ((pt = pts->pts_timers[timerid]) == NULL) {
692 mutex_spin_exit(&timer_lock);
693 return (EINVAL);
694 }
695 if (CLOCK_VIRTUAL_P(pt->pt_type)) {
696 if (pt->pt_active) {
697 ptn = LIST_NEXT(pt, pt_list);
698 LIST_REMOVE(pt, pt_list);
699 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
700 timespecadd(&pt->pt_time.it_value,
701 &ptn->pt_time.it_value,
702 &ptn->pt_time.it_value);
703 pt->pt_active = 0;
704 }
705 }
706 itimerfree(pts, timerid);
707
708 return (0);
709 }
710
711 /*
712 * Set up the given timer. The value in pt->pt_time.it_value is taken
713 * to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC timers and
714 * a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
715 */
716 void
717 timer_settime(struct ptimer *pt)
718 {
719 struct ptimer *ptn, *pptn;
720 struct ptlist *ptl;
721
722 KASSERT(mutex_owned(&timer_lock));
723
724 if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
725 callout_halt(&pt->pt_ch, &timer_lock);
726 if (timespecisset(&pt->pt_time.it_value)) {
727 /*
728 * Don't need to check tshzto() return value, here.
729 * callout_reset() does it for us.
730 */
731 callout_reset(&pt->pt_ch,
732 pt->pt_type == CLOCK_MONOTONIC ?
733 tshztoup(&pt->pt_time.it_value) :
734 tshzto(&pt->pt_time.it_value),
735 realtimerexpire, pt);
736 }
737 } else {
738 if (pt->pt_active) {
739 ptn = LIST_NEXT(pt, pt_list);
740 LIST_REMOVE(pt, pt_list);
741 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
742 timespecadd(&pt->pt_time.it_value,
743 &ptn->pt_time.it_value,
744 &ptn->pt_time.it_value);
745 }
746 if (timespecisset(&pt->pt_time.it_value)) {
747 if (pt->pt_type == CLOCK_VIRTUAL)
748 ptl = &pt->pt_proc->p_timers->pts_virtual;
749 else
750 ptl = &pt->pt_proc->p_timers->pts_prof;
751
752 for (ptn = LIST_FIRST(ptl), pptn = NULL;
753 ptn && timespeccmp(&pt->pt_time.it_value,
754 &ptn->pt_time.it_value, >);
755 pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
756 timespecsub(&pt->pt_time.it_value,
757 &ptn->pt_time.it_value,
758 &pt->pt_time.it_value);
759
760 if (pptn)
761 LIST_INSERT_AFTER(pptn, pt, pt_list);
762 else
763 LIST_INSERT_HEAD(ptl, pt, pt_list);
764
765 for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
766 timespecsub(&ptn->pt_time.it_value,
767 &pt->pt_time.it_value,
768 &ptn->pt_time.it_value);
769
770 pt->pt_active = 1;
771 } else
772 pt->pt_active = 0;
773 }
774 }
775
776 void
777 timer_gettime(struct ptimer *pt, struct itimerspec *aits)
778 {
779 struct timespec now;
780 struct ptimer *ptn;
781
782 KASSERT(mutex_owned(&timer_lock));
783
784 *aits = pt->pt_time;
785 if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
786 /*
787 * Convert from absolute to relative time in .it_value
788 * part of real time timer. If time for real time
789 * timer has passed return 0, else return difference
790 * between current time and time for the timer to go
791 * off.
792 */
793 if (timespecisset(&aits->it_value)) {
794 if (pt->pt_type == CLOCK_REALTIME) {
795 getnanotime(&now);
796 } else { /* CLOCK_MONOTONIC */
797 getnanouptime(&now);
798 }
799 if (timespeccmp(&aits->it_value, &now, <))
800 timespecclear(&aits->it_value);
801 else
802 timespecsub(&aits->it_value, &now,
803 &aits->it_value);
804 }
805 } else if (pt->pt_active) {
806 if (pt->pt_type == CLOCK_VIRTUAL)
807 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
808 else
809 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
810 for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
811 timespecadd(&aits->it_value,
812 &ptn->pt_time.it_value, &aits->it_value);
813 KASSERT(ptn != NULL); /* pt should be findable on the list */
814 } else
815 timespecclear(&aits->it_value);
816 }
817
818
819
820 /* Set and arm a POSIX realtime timer */
821 int
822 sys___timer_settime50(struct lwp *l,
823 const struct sys___timer_settime50_args *uap,
824 register_t *retval)
825 {
826 /* {
827 syscallarg(timer_t) timerid;
828 syscallarg(int) flags;
829 syscallarg(const struct itimerspec *) value;
830 syscallarg(struct itimerspec *) ovalue;
831 } */
832 int error;
833 struct itimerspec value, ovalue, *ovp = NULL;
834
835 if ((error = copyin(SCARG(uap, value), &value,
836 sizeof(struct itimerspec))) != 0)
837 return (error);
838
839 if (SCARG(uap, ovalue))
840 ovp = &ovalue;
841
842 if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
843 SCARG(uap, flags), l->l_proc)) != 0)
844 return error;
845
846 if (ovp)
847 return copyout(&ovalue, SCARG(uap, ovalue),
848 sizeof(struct itimerspec));
849 return 0;
850 }
851
852 int
853 dotimer_settime(int timerid, struct itimerspec *value,
854 struct itimerspec *ovalue, int flags, struct proc *p)
855 {
856 struct timespec now;
857 struct itimerspec val, oval;
858 struct ptimers *pts;
859 struct ptimer *pt;
860 int error;
861
862 pts = p->p_timers;
863
864 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
865 return EINVAL;
866 val = *value;
867 if ((error = itimespecfix(&val.it_value)) != 0 ||
868 (error = itimespecfix(&val.it_interval)) != 0)
869 return error;
870
871 mutex_spin_enter(&timer_lock);
872 if ((pt = pts->pts_timers[timerid]) == NULL) {
873 mutex_spin_exit(&timer_lock);
874 return EINVAL;
875 }
876
877 oval = pt->pt_time;
878 pt->pt_time = val;
879
880 /*
881 * If we've been passed a relative time for a realtime timer,
882 * convert it to absolute; if an absolute time for a virtual
883 * timer, convert it to relative and make sure we don't set it
884 * to zero, which would cancel the timer, or let it go
885 * negative, which would confuse the comparison tests.
886 */
887 if (timespecisset(&pt->pt_time.it_value)) {
888 if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
889 if ((flags & TIMER_ABSTIME) == 0) {
890 if (pt->pt_type == CLOCK_REALTIME) {
891 getnanotime(&now);
892 } else { /* CLOCK_MONOTONIC */
893 getnanouptime(&now);
894 }
895 timespecadd(&pt->pt_time.it_value, &now,
896 &pt->pt_time.it_value);
897 }
898 } else {
899 if ((flags & TIMER_ABSTIME) != 0) {
900 getnanotime(&now);
901 timespecsub(&pt->pt_time.it_value, &now,
902 &pt->pt_time.it_value);
903 if (!timespecisset(&pt->pt_time.it_value) ||
904 pt->pt_time.it_value.tv_sec < 0) {
905 pt->pt_time.it_value.tv_sec = 0;
906 pt->pt_time.it_value.tv_nsec = 1;
907 }
908 }
909 }
910 }
911
912 timer_settime(pt);
913 mutex_spin_exit(&timer_lock);
914
915 if (ovalue)
916 *ovalue = oval;
917
918 return (0);
919 }
920
921 /* Return the time remaining until a POSIX timer fires. */
922 int
923 sys___timer_gettime50(struct lwp *l,
924 const struct sys___timer_gettime50_args *uap, register_t *retval)
925 {
926 /* {
927 syscallarg(timer_t) timerid;
928 syscallarg(struct itimerspec *) value;
929 } */
930 struct itimerspec its;
931 int error;
932
933 if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
934 &its)) != 0)
935 return error;
936
937 return copyout(&its, SCARG(uap, value), sizeof(its));
938 }
939
940 int
941 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
942 {
943 struct ptimer *pt;
944 struct ptimers *pts;
945
946 pts = p->p_timers;
947 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
948 return (EINVAL);
949 mutex_spin_enter(&timer_lock);
950 if ((pt = pts->pts_timers[timerid]) == NULL) {
951 mutex_spin_exit(&timer_lock);
952 return (EINVAL);
953 }
954 timer_gettime(pt, its);
955 mutex_spin_exit(&timer_lock);
956
957 return 0;
958 }
959
960 /*
961 * Return the count of the number of times a periodic timer expired
962 * while a notification was already pending. The counter is reset when
963 * a timer expires and a notification can be posted.
964 */
965 int
966 sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
967 register_t *retval)
968 {
969 /* {
970 syscallarg(timer_t) timerid;
971 } */
972 struct proc *p = l->l_proc;
973 struct ptimers *pts;
974 int timerid;
975 struct ptimer *pt;
976
977 timerid = SCARG(uap, timerid);
978
979 pts = p->p_timers;
980 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
981 return (EINVAL);
982 mutex_spin_enter(&timer_lock);
983 if ((pt = pts->pts_timers[timerid]) == NULL) {
984 mutex_spin_exit(&timer_lock);
985 return (EINVAL);
986 }
987 *retval = pt->pt_poverruns;
988 if (*retval >= DELAYTIMER_MAX)
989 *retval = DELAYTIMER_MAX;
990 mutex_spin_exit(&timer_lock);
991
992 return (0);
993 }
994
995 /*
996 * Real interval timer expired:
997 * send process whose timer expired an alarm signal.
998 * If time is not set up to reload, then just return.
999 * Else compute next time timer should go off which is > current time.
1000 * This is where delay in processing this timeout causes multiple
1001 * SIGALRM calls to be compressed into one.
1002 */
1003 void
1004 realtimerexpire(void *arg)
1005 {
1006 uint64_t last_val, next_val, interval, now_ns;
1007 struct timespec now, next;
1008 struct ptimer *pt;
1009 int backwards;
1010
1011 pt = arg;
1012
1013 mutex_spin_enter(&timer_lock);
1014 itimerfire(pt);
1015
1016 if (!timespecisset(&pt->pt_time.it_interval)) {
1017 timespecclear(&pt->pt_time.it_value);
1018 mutex_spin_exit(&timer_lock);
1019 return;
1020 }
1021
1022 if (pt->pt_type == CLOCK_MONOTONIC) {
1023 getnanouptime(&now);
1024 } else {
1025 getnanotime(&now);
1026 }
1027 backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
1028 timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
1029 /* Handle the easy case of non-overflown timers first. */
1030 if (!backwards && timespeccmp(&next, &now, >)) {
1031 pt->pt_time.it_value = next;
1032 } else {
1033 now_ns = timespec2ns(&now);
1034 last_val = timespec2ns(&pt->pt_time.it_value);
1035 interval = timespec2ns(&pt->pt_time.it_interval);
1036
1037 next_val = now_ns +
1038 (now_ns - last_val + interval - 1) % interval;
1039
1040 if (backwards)
1041 next_val += interval;
1042 else
1043 pt->pt_overruns += (now_ns - last_val) / interval;
1044
1045 pt->pt_time.it_value.tv_sec = next_val / 1000000000;
1046 pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
1047 }
1048
1049 /*
1050 * Don't need to check tshzto() return value, here.
1051 * callout_reset() does it for us.
1052 */
1053 callout_reset(&pt->pt_ch, pt->pt_type == CLOCK_MONOTONIC ?
1054 tshztoup(&pt->pt_time.it_value) : tshzto(&pt->pt_time.it_value),
1055 realtimerexpire, pt);
1056 mutex_spin_exit(&timer_lock);
1057 }
1058
1059 /* BSD routine to get the value of an interval timer. */
1060 /* ARGSUSED */
1061 int
1062 sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
1063 register_t *retval)
1064 {
1065 /* {
1066 syscallarg(int) which;
1067 syscallarg(struct itimerval *) itv;
1068 } */
1069 struct proc *p = l->l_proc;
1070 struct itimerval aitv;
1071 int error;
1072
1073 memset(&aitv, 0, sizeof(aitv));
1074 error = dogetitimer(p, SCARG(uap, which), &aitv);
1075 if (error)
1076 return error;
1077 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1078 }
1079
1080 int
1081 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1082 {
1083 struct ptimers *pts;
1084 struct ptimer *pt;
1085 struct itimerspec its;
1086
1087 if ((u_int)which > ITIMER_MONOTONIC)
1088 return (EINVAL);
1089
1090 mutex_spin_enter(&timer_lock);
1091 pts = p->p_timers;
1092 if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
1093 timerclear(&itvp->it_value);
1094 timerclear(&itvp->it_interval);
1095 } else {
1096 timer_gettime(pt, &its);
1097 TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
1098 TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
1099 }
1100 mutex_spin_exit(&timer_lock);
1101
1102 return 0;
1103 }
1104
1105 /* BSD routine to set/arm an interval timer. */
1106 /* ARGSUSED */
1107 int
1108 sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
1109 register_t *retval)
1110 {
1111 /* {
1112 syscallarg(int) which;
1113 syscallarg(const struct itimerval *) itv;
1114 syscallarg(struct itimerval *) oitv;
1115 } */
1116 struct proc *p = l->l_proc;
1117 int which = SCARG(uap, which);
1118 struct sys___getitimer50_args getargs;
1119 const struct itimerval *itvp;
1120 struct itimerval aitv;
1121 int error;
1122
1123 if ((u_int)which > ITIMER_MONOTONIC)
1124 return (EINVAL);
1125 itvp = SCARG(uap, itv);
1126 if (itvp &&
1127 (error = copyin(itvp, &aitv, sizeof(struct itimerval))) != 0)
1128 return (error);
1129 if (SCARG(uap, oitv) != NULL) {
1130 SCARG(&getargs, which) = which;
1131 SCARG(&getargs, itv) = SCARG(uap, oitv);
1132 if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
1133 return (error);
1134 }
1135 if (itvp == 0)
1136 return (0);
1137
1138 return dosetitimer(p, which, &aitv);
1139 }
1140
1141 int
1142 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1143 {
1144 struct timespec now;
1145 struct ptimers *pts;
1146 struct ptimer *pt, *spare;
1147
1148 KASSERT((u_int)which <= CLOCK_MONOTONIC);
1149 if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1150 return (EINVAL);
1151
1152 /*
1153 * Don't bother allocating data structures if the process just
1154 * wants to clear the timer.
1155 */
1156 spare = NULL;
1157 pts = p->p_timers;
1158 retry:
1159 if (!timerisset(&itvp->it_value) && (pts == NULL ||
1160 pts->pts_timers[which] == NULL))
1161 return (0);
1162 if (pts == NULL)
1163 pts = timers_alloc(p);
1164 mutex_spin_enter(&timer_lock);
1165 pt = pts->pts_timers[which];
1166 if (pt == NULL) {
1167 if (spare == NULL) {
1168 mutex_spin_exit(&timer_lock);
1169 spare = pool_get(&ptimer_pool, PR_WAITOK);
1170 memset(spare, 0, sizeof(*spare));
1171 goto retry;
1172 }
1173 pt = spare;
1174 spare = NULL;
1175 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1176 pt->pt_ev.sigev_value.sival_int = which;
1177 pt->pt_overruns = 0;
1178 pt->pt_proc = p;
1179 pt->pt_type = which;
1180 pt->pt_entry = which;
1181 pt->pt_queued = false;
1182 if (pt->pt_type == CLOCK_REALTIME)
1183 callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
1184 else
1185 pt->pt_active = 0;
1186
1187 switch (which) {
1188 case ITIMER_REAL:
1189 case ITIMER_MONOTONIC:
1190 pt->pt_ev.sigev_signo = SIGALRM;
1191 break;
1192 case ITIMER_VIRTUAL:
1193 pt->pt_ev.sigev_signo = SIGVTALRM;
1194 break;
1195 case ITIMER_PROF:
1196 pt->pt_ev.sigev_signo = SIGPROF;
1197 break;
1198 }
1199 pts->pts_timers[which] = pt;
1200 }
1201
1202 TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
1203 TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
1204
1205 if (timespecisset(&pt->pt_time.it_value)) {
1206 /* Convert to absolute time */
1207 /* XXX need to wrap in splclock for timecounters case? */
1208 switch (which) {
1209 case ITIMER_REAL:
1210 getnanotime(&now);
1211 timespecadd(&pt->pt_time.it_value, &now,
1212 &pt->pt_time.it_value);
1213 break;
1214 case ITIMER_MONOTONIC:
1215 getnanouptime(&now);
1216 timespecadd(&pt->pt_time.it_value, &now,
1217 &pt->pt_time.it_value);
1218 break;
1219 default:
1220 break;
1221 }
1222 }
1223 timer_settime(pt);
1224 mutex_spin_exit(&timer_lock);
1225 if (spare != NULL)
1226 pool_put(&ptimer_pool, spare);
1227
1228 return (0);
1229 }
1230
1231 /* Utility routines to manage the array of pointers to timers. */
1232 struct ptimers *
1233 timers_alloc(struct proc *p)
1234 {
1235 struct ptimers *pts;
1236 int i;
1237
1238 pts = pool_get(&ptimers_pool, PR_WAITOK);
1239 LIST_INIT(&pts->pts_virtual);
1240 LIST_INIT(&pts->pts_prof);
1241 for (i = 0; i < TIMER_MAX; i++)
1242 pts->pts_timers[i] = NULL;
1243 mutex_spin_enter(&timer_lock);
1244 if (p->p_timers == NULL) {
1245 p->p_timers = pts;
1246 mutex_spin_exit(&timer_lock);
1247 return pts;
1248 }
1249 mutex_spin_exit(&timer_lock);
1250 pool_put(&ptimers_pool, pts);
1251 return p->p_timers;
1252 }
1253
1254 /*
1255 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1256 * then clean up all timers and free all the data structures. If
1257 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1258 * by timer_create(), not the BSD setitimer() timers, and only free the
1259 * structure if none of those remain.
1260 */
1261 void
1262 timers_free(struct proc *p, int which)
1263 {
1264 struct ptimers *pts;
1265 struct ptimer *ptn;
1266 struct timespec ts;
1267 int i;
1268
1269 if (p->p_timers == NULL)
1270 return;
1271
1272 pts = p->p_timers;
1273 mutex_spin_enter(&timer_lock);
1274 if (which == TIMERS_ALL) {
1275 p->p_timers = NULL;
1276 i = 0;
1277 } else {
1278 timespecclear(&ts);
1279 for (ptn = LIST_FIRST(&pts->pts_virtual);
1280 ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1281 ptn = LIST_NEXT(ptn, pt_list)) {
1282 KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1283 timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1284 }
1285 LIST_FIRST(&pts->pts_virtual) = NULL;
1286 if (ptn) {
1287 KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1288 timespecadd(&ts, &ptn->pt_time.it_value,
1289 &ptn->pt_time.it_value);
1290 LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
1291 }
1292 timespecclear(&ts);
1293 for (ptn = LIST_FIRST(&pts->pts_prof);
1294 ptn && ptn != pts->pts_timers[ITIMER_PROF];
1295 ptn = LIST_NEXT(ptn, pt_list)) {
1296 KASSERT(ptn->pt_type == CLOCK_PROF);
1297 timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1298 }
1299 LIST_FIRST(&pts->pts_prof) = NULL;
1300 if (ptn) {
1301 KASSERT(ptn->pt_type == CLOCK_PROF);
1302 timespecadd(&ts, &ptn->pt_time.it_value,
1303 &ptn->pt_time.it_value);
1304 LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
1305 }
1306 i = TIMER_MIN;
1307 }
1308 for ( ; i < TIMER_MAX; i++) {
1309 if (pts->pts_timers[i] != NULL) {
1310 itimerfree(pts, i);
1311 mutex_spin_enter(&timer_lock);
1312 }
1313 }
1314 if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
1315 pts->pts_timers[2] == NULL && pts->pts_timers[3] == NULL) {
1316 p->p_timers = NULL;
1317 mutex_spin_exit(&timer_lock);
1318 pool_put(&ptimers_pool, pts);
1319 } else
1320 mutex_spin_exit(&timer_lock);
1321 }
1322
1323 static void
1324 itimerfree(struct ptimers *pts, int index)
1325 {
1326 struct ptimer *pt;
1327
1328 KASSERT(mutex_owned(&timer_lock));
1329
1330 pt = pts->pts_timers[index];
1331 pts->pts_timers[index] = NULL;
1332 if (!CLOCK_VIRTUAL_P(pt->pt_type))
1333 callout_halt(&pt->pt_ch, &timer_lock);
1334 if (pt->pt_queued)
1335 TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1336 mutex_spin_exit(&timer_lock);
1337 if (!CLOCK_VIRTUAL_P(pt->pt_type))
1338 callout_destroy(&pt->pt_ch);
1339 pool_put(&ptimer_pool, pt);
1340 }
1341
1342 /*
1343 * Decrement an interval timer by a specified number
1344 * of nanoseconds, which must be less than a second,
1345 * i.e. < 1000000000. If the timer expires, then reload
1346 * it. In this case, carry over (nsec - old value) to
1347 * reduce the value reloaded into the timer so that
1348 * the timer does not drift. This routine assumes
1349 * that it is called in a context where the timers
1350 * on which it is operating cannot change in value.
1351 */
1352 static int
1353 itimerdecr(struct ptimer *pt, int nsec)
1354 {
1355 struct itimerspec *itp;
1356
1357 KASSERT(mutex_owned(&timer_lock));
1358 KASSERT(CLOCK_VIRTUAL_P(pt->pt_type));
1359
1360 itp = &pt->pt_time;
1361 if (itp->it_value.tv_nsec < nsec) {
1362 if (itp->it_value.tv_sec == 0) {
1363 /* expired, and already in next interval */
1364 nsec -= itp->it_value.tv_nsec;
1365 goto expire;
1366 }
1367 itp->it_value.tv_nsec += 1000000000;
1368 itp->it_value.tv_sec--;
1369 }
1370 itp->it_value.tv_nsec -= nsec;
1371 nsec = 0;
1372 if (timespecisset(&itp->it_value))
1373 return (1);
1374 /* expired, exactly at end of interval */
1375 expire:
1376 if (timespecisset(&itp->it_interval)) {
1377 itp->it_value = itp->it_interval;
1378 itp->it_value.tv_nsec -= nsec;
1379 if (itp->it_value.tv_nsec < 0) {
1380 itp->it_value.tv_nsec += 1000000000;
1381 itp->it_value.tv_sec--;
1382 }
1383 timer_settime(pt);
1384 } else
1385 itp->it_value.tv_nsec = 0; /* sec is already 0 */
1386 return (0);
1387 }
1388
1389 static void
1390 itimerfire(struct ptimer *pt)
1391 {
1392
1393 KASSERT(mutex_owned(&timer_lock));
1394
1395 /*
1396 * XXX Can overrun, but we don't do signal queueing yet, anyway.
1397 * XXX Relying on the clock interrupt is stupid.
1398 */
1399 if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL || pt->pt_queued) {
1400 return;
1401 }
1402 TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
1403 pt->pt_queued = true;
1404 softint_schedule(timer_sih);
1405 }
1406
1407 void
1408 timer_tick(lwp_t *l, bool user)
1409 {
1410 struct ptimers *pts;
1411 struct ptimer *pt;
1412 proc_t *p;
1413
1414 p = l->l_proc;
1415 if (p->p_timers == NULL)
1416 return;
1417
1418 mutex_spin_enter(&timer_lock);
1419 if ((pts = l->l_proc->p_timers) != NULL) {
1420 /*
1421 * Run current process's virtual and profile time, as needed.
1422 */
1423 if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
1424 if (itimerdecr(pt, tick * 1000) == 0)
1425 itimerfire(pt);
1426 if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
1427 if (itimerdecr(pt, tick * 1000) == 0)
1428 itimerfire(pt);
1429 }
1430 mutex_spin_exit(&timer_lock);
1431 }
1432
1433 static void
1434 timer_intr(void *cookie)
1435 {
1436 ksiginfo_t ksi;
1437 struct ptimer *pt;
1438 proc_t *p;
1439
1440 mutex_enter(proc_lock);
1441 mutex_spin_enter(&timer_lock);
1442 while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
1443 TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1444 KASSERT(pt->pt_queued);
1445 pt->pt_queued = false;
1446
1447 if (pt->pt_proc->p_timers == NULL) {
1448 /* Process is dying. */
1449 continue;
1450 }
1451 p = pt->pt_proc;
1452 if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
1453 continue;
1454 }
1455 if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
1456 pt->pt_overruns++;
1457 continue;
1458 }
1459
1460 KSI_INIT(&ksi);
1461 ksi.ksi_signo = pt->pt_ev.sigev_signo;
1462 ksi.ksi_code = SI_TIMER;
1463 ksi.ksi_value = pt->pt_ev.sigev_value;
1464 pt->pt_poverruns = pt->pt_overruns;
1465 pt->pt_overruns = 0;
1466 mutex_spin_exit(&timer_lock);
1467 kpsignal(p, &ksi, NULL);
1468 mutex_spin_enter(&timer_lock);
1469 }
1470 mutex_spin_exit(&timer_lock);
1471 mutex_exit(proc_lock);
1472 }
1473
1474 /*
1475 * Check if the time will wrap if set to ts.
1476 *
1477 * ts - timespec describing the new time
1478 * delta - the delta between the current time and ts
1479 */
1480 bool
1481 time_wraps(struct timespec *ts, struct timespec *delta)
1482 {
1483
1484 /*
1485 * Don't allow the time to be set forward so far it
1486 * will wrap and become negative, thus allowing an
1487 * attacker to bypass the next check below. The
1488 * cutoff is 1 year before rollover occurs, so even
1489 * if the attacker uses adjtime(2) to move the time
1490 * past the cutoff, it will take a very long time
1491 * to get to the wrap point.
1492 */
1493 if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
1494 (delta->tv_sec < 0 || delta->tv_nsec < 0))
1495 return true;
1496
1497 return false;
1498 }
1499