kern_time.c revision 1.190 1 /* $NetBSD: kern_time.c,v 1.190 2018/11/11 11:17:49 maxv Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1986, 1989, 1993
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
61 */
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.190 2018/11/11 11:17:49 maxv Exp $");
65
66 #include <sys/param.h>
67 #include <sys/resourcevar.h>
68 #include <sys/kernel.h>
69 #include <sys/systm.h>
70 #include <sys/proc.h>
71 #include <sys/vnode.h>
72 #include <sys/signalvar.h>
73 #include <sys/syslog.h>
74 #include <sys/timetc.h>
75 #include <sys/timex.h>
76 #include <sys/kauth.h>
77 #include <sys/mount.h>
78 #include <sys/syscallargs.h>
79 #include <sys/cpu.h>
80
81 static void timer_intr(void *);
82 static void itimerfire(struct ptimer *);
83 static void itimerfree(struct ptimers *, int);
84
85 kmutex_t timer_lock;
86
87 static void *timer_sih;
88 static TAILQ_HEAD(, ptimer) timer_queue;
89
90 struct pool ptimer_pool, ptimers_pool;
91
92 #define CLOCK_VIRTUAL_P(clockid) \
93 ((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)
94
95 CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
96 CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
97 CTASSERT(ITIMER_PROF == CLOCK_PROF);
98 CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC);
99
100 #define DELAYTIMER_MAX 32
101
102 /*
103 * Initialize timekeeping.
104 */
105 void
106 time_init(void)
107 {
108
109 pool_init(&ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
110 &pool_allocator_nointr, IPL_NONE);
111 pool_init(&ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
112 &pool_allocator_nointr, IPL_NONE);
113 }
114
115 void
116 time_init2(void)
117 {
118
119 TAILQ_INIT(&timer_queue);
120 mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
121 timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
122 timer_intr, NULL);
123 }
124
125 /* Time of day and interval timer support.
126 *
127 * These routines provide the kernel entry points to get and set
128 * the time-of-day and per-process interval timers. Subroutines
129 * here provide support for adding and subtracting timeval structures
130 * and decrementing interval timers, optionally reloading the interval
131 * timers when they expire.
132 */
133
134 /* This function is used by clock_settime and settimeofday */
135 static int
136 settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
137 {
138 struct timespec delta, now;
139 int s;
140
141 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
142 s = splclock();
143 nanotime(&now);
144 timespecsub(ts, &now, &delta);
145
146 if (check_kauth && kauth_authorize_system(kauth_cred_get(),
147 KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
148 &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
149 splx(s);
150 return (EPERM);
151 }
152
153 #ifdef notyet
154 if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
155 splx(s);
156 return (EPERM);
157 }
158 #endif
159
160 tc_setclock(ts);
161
162 timespecadd(&boottime, &delta, &boottime);
163
164 resettodr();
165 splx(s);
166
167 return (0);
168 }
169
170 int
171 settime(struct proc *p, struct timespec *ts)
172 {
173 return (settime1(p, ts, true));
174 }
175
176 /* ARGSUSED */
177 int
178 sys___clock_gettime50(struct lwp *l,
179 const struct sys___clock_gettime50_args *uap, register_t *retval)
180 {
181 /* {
182 syscallarg(clockid_t) clock_id;
183 syscallarg(struct timespec *) tp;
184 } */
185 int error;
186 struct timespec ats;
187
188 error = clock_gettime1(SCARG(uap, clock_id), &ats);
189 if (error != 0)
190 return error;
191
192 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
193 }
194
195 /* ARGSUSED */
196 int
197 sys___clock_settime50(struct lwp *l,
198 const struct sys___clock_settime50_args *uap, register_t *retval)
199 {
200 /* {
201 syscallarg(clockid_t) clock_id;
202 syscallarg(const struct timespec *) tp;
203 } */
204 int error;
205 struct timespec ats;
206
207 if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
208 return error;
209
210 return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
211 }
212
213
214 int
215 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
216 bool check_kauth)
217 {
218 int error;
219
220 switch (clock_id) {
221 case CLOCK_REALTIME:
222 if ((error = settime1(p, tp, check_kauth)) != 0)
223 return (error);
224 break;
225 case CLOCK_MONOTONIC:
226 return (EINVAL); /* read-only clock */
227 default:
228 return (EINVAL);
229 }
230
231 return 0;
232 }
233
234 int
235 sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
236 register_t *retval)
237 {
238 /* {
239 syscallarg(clockid_t) clock_id;
240 syscallarg(struct timespec *) tp;
241 } */
242 struct timespec ts;
243 int error;
244
245 if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
246 return error;
247
248 if (SCARG(uap, tp))
249 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
250
251 return error;
252 }
253
254 int
255 clock_getres1(clockid_t clock_id, struct timespec *ts)
256 {
257
258 switch (clock_id) {
259 case CLOCK_REALTIME:
260 case CLOCK_MONOTONIC:
261 ts->tv_sec = 0;
262 if (tc_getfrequency() > 1000000000)
263 ts->tv_nsec = 1;
264 else
265 ts->tv_nsec = 1000000000 / tc_getfrequency();
266 break;
267 default:
268 return EINVAL;
269 }
270
271 return 0;
272 }
273
274 /* ARGSUSED */
275 int
276 sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
277 register_t *retval)
278 {
279 /* {
280 syscallarg(struct timespec *) rqtp;
281 syscallarg(struct timespec *) rmtp;
282 } */
283 struct timespec rmt, rqt;
284 int error, error1;
285
286 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
287 if (error)
288 return (error);
289
290 error = nanosleep1(l, CLOCK_MONOTONIC, 0, &rqt,
291 SCARG(uap, rmtp) ? &rmt : NULL);
292 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
293 return error;
294
295 error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
296 return error1 ? error1 : error;
297 }
298
299 /* ARGSUSED */
300 int
301 sys_clock_nanosleep(struct lwp *l, const struct sys_clock_nanosleep_args *uap,
302 register_t *retval)
303 {
304 /* {
305 syscallarg(clockid_t) clock_id;
306 syscallarg(int) flags;
307 syscallarg(struct timespec *) rqtp;
308 syscallarg(struct timespec *) rmtp;
309 } */
310 struct timespec rmt, rqt;
311 int error, error1;
312
313 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
314 if (error)
315 goto out;
316
317 error = nanosleep1(l, SCARG(uap, clock_id), SCARG(uap, flags), &rqt,
318 SCARG(uap, rmtp) ? &rmt : NULL);
319 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
320 goto out;
321
322 if ((SCARG(uap, flags) & TIMER_ABSTIME) == 0 &&
323 (error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt))) != 0)
324 error = error1;
325 out:
326 *retval = error;
327 return 0;
328 }
329
330 int
331 nanosleep1(struct lwp *l, clockid_t clock_id, int flags, struct timespec *rqt,
332 struct timespec *rmt)
333 {
334 struct timespec rmtstart;
335 int error, timo;
336
337 if ((error = ts2timo(clock_id, flags, rqt, &timo, &rmtstart)) != 0) {
338 if (error == ETIMEDOUT) {
339 error = 0;
340 if (rmt != NULL)
341 rmt->tv_sec = rmt->tv_nsec = 0;
342 }
343 return error;
344 }
345
346 /*
347 * Avoid inadvertently sleeping forever
348 */
349 if (timo == 0)
350 timo = 1;
351 again:
352 error = kpause("nanoslp", true, timo, NULL);
353 if (rmt != NULL || error == 0) {
354 struct timespec rmtend;
355 struct timespec t0;
356 struct timespec *t;
357
358 (void)clock_gettime1(clock_id, &rmtend);
359 t = (rmt != NULL) ? rmt : &t0;
360 if (flags & TIMER_ABSTIME) {
361 timespecsub(rqt, &rmtend, t);
362 } else {
363 timespecsub(&rmtend, &rmtstart, t);
364 timespecsub(rqt, t, t);
365 }
366 if (t->tv_sec < 0)
367 timespecclear(t);
368 if (error == 0) {
369 timo = tstohz(t);
370 if (timo > 0)
371 goto again;
372 }
373 }
374
375 if (error == ERESTART)
376 error = EINTR;
377 if (error == EWOULDBLOCK)
378 error = 0;
379
380 return error;
381 }
382
383 int
384 sys_clock_getcpuclockid2(struct lwp *l,
385 const struct sys_clock_getcpuclockid2_args *uap,
386 register_t *retval)
387 {
388 /* {
389 syscallarg(idtype_t idtype;
390 syscallarg(id_t id);
391 syscallarg(clockid_t *)clock_id;
392 } */
393 pid_t pid;
394 lwpid_t lid;
395 clockid_t clock_id;
396 id_t id = SCARG(uap, id);
397
398 switch (SCARG(uap, idtype)) {
399 case P_PID:
400 pid = id == 0 ? l->l_proc->p_pid : id;
401 clock_id = CLOCK_PROCESS_CPUTIME_ID | pid;
402 break;
403 case P_LWPID:
404 lid = id == 0 ? l->l_lid : id;
405 clock_id = CLOCK_THREAD_CPUTIME_ID | lid;
406 break;
407 default:
408 return EINVAL;
409 }
410 return copyout(&clock_id, SCARG(uap, clock_id), sizeof(clock_id));
411 }
412
413 /* ARGSUSED */
414 int
415 sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
416 register_t *retval)
417 {
418 /* {
419 syscallarg(struct timeval *) tp;
420 syscallarg(void *) tzp; really "struct timezone *";
421 } */
422 struct timeval atv;
423 int error = 0;
424 struct timezone tzfake;
425
426 if (SCARG(uap, tp)) {
427 memset(&atv, 0, sizeof(atv));
428 microtime(&atv);
429 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
430 if (error)
431 return (error);
432 }
433 if (SCARG(uap, tzp)) {
434 /*
435 * NetBSD has no kernel notion of time zone, so we just
436 * fake up a timezone struct and return it if demanded.
437 */
438 tzfake.tz_minuteswest = 0;
439 tzfake.tz_dsttime = 0;
440 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
441 }
442 return (error);
443 }
444
445 /* ARGSUSED */
446 int
447 sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
448 register_t *retval)
449 {
450 /* {
451 syscallarg(const struct timeval *) tv;
452 syscallarg(const void *) tzp; really "const struct timezone *";
453 } */
454
455 return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
456 }
457
458 int
459 settimeofday1(const struct timeval *utv, bool userspace,
460 const void *utzp, struct lwp *l, bool check_kauth)
461 {
462 struct timeval atv;
463 struct timespec ts;
464 int error;
465
466 /* Verify all parameters before changing time. */
467
468 /*
469 * NetBSD has no kernel notion of time zone, and only an
470 * obsolete program would try to set it, so we log a warning.
471 */
472 if (utzp)
473 log(LOG_WARNING, "pid %d attempted to set the "
474 "(obsolete) kernel time zone\n", l->l_proc->p_pid);
475
476 if (utv == NULL)
477 return 0;
478
479 if (userspace) {
480 if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
481 return error;
482 utv = &atv;
483 }
484
485 TIMEVAL_TO_TIMESPEC(utv, &ts);
486 return settime1(l->l_proc, &ts, check_kauth);
487 }
488
489 int time_adjusted; /* set if an adjustment is made */
490
491 /* ARGSUSED */
492 int
493 sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
494 register_t *retval)
495 {
496 /* {
497 syscallarg(const struct timeval *) delta;
498 syscallarg(struct timeval *) olddelta;
499 } */
500 int error;
501 struct timeval atv, oldatv;
502
503 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
504 KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
505 return error;
506
507 if (SCARG(uap, delta)) {
508 error = copyin(SCARG(uap, delta), &atv,
509 sizeof(*SCARG(uap, delta)));
510 if (error)
511 return (error);
512 }
513 adjtime1(SCARG(uap, delta) ? &atv : NULL,
514 SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
515 if (SCARG(uap, olddelta))
516 error = copyout(&oldatv, SCARG(uap, olddelta),
517 sizeof(*SCARG(uap, olddelta)));
518 return error;
519 }
520
521 void
522 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
523 {
524 extern int64_t time_adjtime; /* in kern_ntptime.c */
525
526 if (olddelta) {
527 mutex_spin_enter(&timecounter_lock);
528 olddelta->tv_sec = time_adjtime / 1000000;
529 olddelta->tv_usec = time_adjtime % 1000000;
530 if (olddelta->tv_usec < 0) {
531 olddelta->tv_usec += 1000000;
532 olddelta->tv_sec--;
533 }
534 mutex_spin_exit(&timecounter_lock);
535 }
536
537 if (delta) {
538 mutex_spin_enter(&timecounter_lock);
539 time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
540
541 if (time_adjtime) {
542 /* We need to save the system time during shutdown */
543 time_adjusted |= 1;
544 }
545 mutex_spin_exit(&timecounter_lock);
546 }
547 }
548
549 /*
550 * Interval timer support. Both the BSD getitimer() family and the POSIX
551 * timer_*() family of routines are supported.
552 *
553 * All timers are kept in an array pointed to by p_timers, which is
554 * allocated on demand - many processes don't use timers at all. The
555 * first four elements in this array are reserved for the BSD timers:
556 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element
557 * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be
558 * allocated by the timer_create() syscall.
559 *
560 * Realtime timers are kept in the ptimer structure as an absolute
561 * time; virtual time timers are kept as a linked list of deltas.
562 * Virtual time timers are processed in the hardclock() routine of
563 * kern_clock.c. The real time timer is processed by a callout
564 * routine, called from the softclock() routine. Since a callout may
565 * be delayed in real time due to interrupt processing in the system,
566 * it is possible for the real time timeout routine (realtimeexpire,
567 * given below), to be delayed in real time past when it is supposed
568 * to occur. It does not suffice, therefore, to reload the real timer
569 * .it_value from the real time timers .it_interval. Rather, we
570 * compute the next time in absolute time the timer should go off. */
571
572 /* Allocate a POSIX realtime timer. */
573 int
574 sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
575 register_t *retval)
576 {
577 /* {
578 syscallarg(clockid_t) clock_id;
579 syscallarg(struct sigevent *) evp;
580 syscallarg(timer_t *) timerid;
581 } */
582
583 return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
584 SCARG(uap, evp), copyin, l);
585 }
586
587 int
588 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
589 copyin_t fetch_event, struct lwp *l)
590 {
591 int error;
592 timer_t timerid;
593 struct ptimers *pts;
594 struct ptimer *pt;
595 struct proc *p;
596
597 p = l->l_proc;
598
599 if ((u_int)id > CLOCK_MONOTONIC)
600 return (EINVAL);
601
602 if ((pts = p->p_timers) == NULL)
603 pts = timers_alloc(p);
604
605 pt = pool_get(&ptimer_pool, PR_WAITOK);
606 if (evp != NULL) {
607 if (((error =
608 (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
609 ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
610 (pt->pt_ev.sigev_notify > SIGEV_SA)) ||
611 (pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
612 (pt->pt_ev.sigev_signo <= 0 ||
613 pt->pt_ev.sigev_signo >= NSIG))) {
614 pool_put(&ptimer_pool, pt);
615 return (error ? error : EINVAL);
616 }
617 }
618
619 /* Find a free timer slot, skipping those reserved for setitimer(). */
620 mutex_spin_enter(&timer_lock);
621 for (timerid = TIMER_MIN; timerid < TIMER_MAX; timerid++)
622 if (pts->pts_timers[timerid] == NULL)
623 break;
624 if (timerid == TIMER_MAX) {
625 mutex_spin_exit(&timer_lock);
626 pool_put(&ptimer_pool, pt);
627 return EAGAIN;
628 }
629 if (evp == NULL) {
630 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
631 switch (id) {
632 case CLOCK_REALTIME:
633 case CLOCK_MONOTONIC:
634 pt->pt_ev.sigev_signo = SIGALRM;
635 break;
636 case CLOCK_VIRTUAL:
637 pt->pt_ev.sigev_signo = SIGVTALRM;
638 break;
639 case CLOCK_PROF:
640 pt->pt_ev.sigev_signo = SIGPROF;
641 break;
642 }
643 pt->pt_ev.sigev_value.sival_int = timerid;
644 }
645 pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
646 pt->pt_info.ksi_errno = 0;
647 pt->pt_info.ksi_code = 0;
648 pt->pt_info.ksi_pid = p->p_pid;
649 pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
650 pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
651 pt->pt_type = id;
652 pt->pt_proc = p;
653 pt->pt_overruns = 0;
654 pt->pt_poverruns = 0;
655 pt->pt_entry = timerid;
656 pt->pt_queued = false;
657 timespecclear(&pt->pt_time.it_value);
658 if (!CLOCK_VIRTUAL_P(id))
659 callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
660 else
661 pt->pt_active = 0;
662
663 pts->pts_timers[timerid] = pt;
664 mutex_spin_exit(&timer_lock);
665
666 return copyout(&timerid, tid, sizeof(timerid));
667 }
668
669 /* Delete a POSIX realtime timer */
670 int
671 sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
672 register_t *retval)
673 {
674 /* {
675 syscallarg(timer_t) timerid;
676 } */
677 struct proc *p = l->l_proc;
678 timer_t timerid;
679 struct ptimers *pts;
680 struct ptimer *pt, *ptn;
681
682 timerid = SCARG(uap, timerid);
683 pts = p->p_timers;
684
685 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
686 return (EINVAL);
687
688 mutex_spin_enter(&timer_lock);
689 if ((pt = pts->pts_timers[timerid]) == NULL) {
690 mutex_spin_exit(&timer_lock);
691 return (EINVAL);
692 }
693 if (CLOCK_VIRTUAL_P(pt->pt_type)) {
694 if (pt->pt_active) {
695 ptn = LIST_NEXT(pt, pt_list);
696 LIST_REMOVE(pt, pt_list);
697 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
698 timespecadd(&pt->pt_time.it_value,
699 &ptn->pt_time.it_value,
700 &ptn->pt_time.it_value);
701 pt->pt_active = 0;
702 }
703 }
704 itimerfree(pts, timerid);
705
706 return (0);
707 }
708
709 /*
710 * Set up the given timer. The value in pt->pt_time.it_value is taken
711 * to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC timers and
712 * a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
713 */
714 void
715 timer_settime(struct ptimer *pt)
716 {
717 struct ptimer *ptn, *pptn;
718 struct ptlist *ptl;
719
720 KASSERT(mutex_owned(&timer_lock));
721
722 if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
723 callout_halt(&pt->pt_ch, &timer_lock);
724 if (timespecisset(&pt->pt_time.it_value)) {
725 /*
726 * Don't need to check tshzto() return value, here.
727 * callout_reset() does it for us.
728 */
729 callout_reset(&pt->pt_ch,
730 pt->pt_type == CLOCK_MONOTONIC ?
731 tshztoup(&pt->pt_time.it_value) :
732 tshzto(&pt->pt_time.it_value),
733 realtimerexpire, pt);
734 }
735 } else {
736 if (pt->pt_active) {
737 ptn = LIST_NEXT(pt, pt_list);
738 LIST_REMOVE(pt, pt_list);
739 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
740 timespecadd(&pt->pt_time.it_value,
741 &ptn->pt_time.it_value,
742 &ptn->pt_time.it_value);
743 }
744 if (timespecisset(&pt->pt_time.it_value)) {
745 if (pt->pt_type == CLOCK_VIRTUAL)
746 ptl = &pt->pt_proc->p_timers->pts_virtual;
747 else
748 ptl = &pt->pt_proc->p_timers->pts_prof;
749
750 for (ptn = LIST_FIRST(ptl), pptn = NULL;
751 ptn && timespeccmp(&pt->pt_time.it_value,
752 &ptn->pt_time.it_value, >);
753 pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
754 timespecsub(&pt->pt_time.it_value,
755 &ptn->pt_time.it_value,
756 &pt->pt_time.it_value);
757
758 if (pptn)
759 LIST_INSERT_AFTER(pptn, pt, pt_list);
760 else
761 LIST_INSERT_HEAD(ptl, pt, pt_list);
762
763 for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
764 timespecsub(&ptn->pt_time.it_value,
765 &pt->pt_time.it_value,
766 &ptn->pt_time.it_value);
767
768 pt->pt_active = 1;
769 } else
770 pt->pt_active = 0;
771 }
772 }
773
774 void
775 timer_gettime(struct ptimer *pt, struct itimerspec *aits)
776 {
777 struct timespec now;
778 struct ptimer *ptn;
779
780 KASSERT(mutex_owned(&timer_lock));
781
782 *aits = pt->pt_time;
783 if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
784 /*
785 * Convert from absolute to relative time in .it_value
786 * part of real time timer. If time for real time
787 * timer has passed return 0, else return difference
788 * between current time and time for the timer to go
789 * off.
790 */
791 if (timespecisset(&aits->it_value)) {
792 if (pt->pt_type == CLOCK_REALTIME) {
793 getnanotime(&now);
794 } else { /* CLOCK_MONOTONIC */
795 getnanouptime(&now);
796 }
797 if (timespeccmp(&aits->it_value, &now, <))
798 timespecclear(&aits->it_value);
799 else
800 timespecsub(&aits->it_value, &now,
801 &aits->it_value);
802 }
803 } else if (pt->pt_active) {
804 if (pt->pt_type == CLOCK_VIRTUAL)
805 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
806 else
807 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
808 for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
809 timespecadd(&aits->it_value,
810 &ptn->pt_time.it_value, &aits->it_value);
811 KASSERT(ptn != NULL); /* pt should be findable on the list */
812 } else
813 timespecclear(&aits->it_value);
814 }
815
816
817
818 /* Set and arm a POSIX realtime timer */
819 int
820 sys___timer_settime50(struct lwp *l,
821 const struct sys___timer_settime50_args *uap,
822 register_t *retval)
823 {
824 /* {
825 syscallarg(timer_t) timerid;
826 syscallarg(int) flags;
827 syscallarg(const struct itimerspec *) value;
828 syscallarg(struct itimerspec *) ovalue;
829 } */
830 int error;
831 struct itimerspec value, ovalue, *ovp = NULL;
832
833 if ((error = copyin(SCARG(uap, value), &value,
834 sizeof(struct itimerspec))) != 0)
835 return (error);
836
837 if (SCARG(uap, ovalue))
838 ovp = &ovalue;
839
840 if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
841 SCARG(uap, flags), l->l_proc)) != 0)
842 return error;
843
844 if (ovp)
845 return copyout(&ovalue, SCARG(uap, ovalue),
846 sizeof(struct itimerspec));
847 return 0;
848 }
849
850 int
851 dotimer_settime(int timerid, struct itimerspec *value,
852 struct itimerspec *ovalue, int flags, struct proc *p)
853 {
854 struct timespec now;
855 struct itimerspec val, oval;
856 struct ptimers *pts;
857 struct ptimer *pt;
858 int error;
859
860 pts = p->p_timers;
861
862 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
863 return EINVAL;
864 val = *value;
865 if ((error = itimespecfix(&val.it_value)) != 0 ||
866 (error = itimespecfix(&val.it_interval)) != 0)
867 return error;
868
869 mutex_spin_enter(&timer_lock);
870 if ((pt = pts->pts_timers[timerid]) == NULL) {
871 mutex_spin_exit(&timer_lock);
872 return EINVAL;
873 }
874
875 oval = pt->pt_time;
876 pt->pt_time = val;
877
878 /*
879 * If we've been passed a relative time for a realtime timer,
880 * convert it to absolute; if an absolute time for a virtual
881 * timer, convert it to relative and make sure we don't set it
882 * to zero, which would cancel the timer, or let it go
883 * negative, which would confuse the comparison tests.
884 */
885 if (timespecisset(&pt->pt_time.it_value)) {
886 if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
887 if ((flags & TIMER_ABSTIME) == 0) {
888 if (pt->pt_type == CLOCK_REALTIME) {
889 getnanotime(&now);
890 } else { /* CLOCK_MONOTONIC */
891 getnanouptime(&now);
892 }
893 timespecadd(&pt->pt_time.it_value, &now,
894 &pt->pt_time.it_value);
895 }
896 } else {
897 if ((flags & TIMER_ABSTIME) != 0) {
898 getnanotime(&now);
899 timespecsub(&pt->pt_time.it_value, &now,
900 &pt->pt_time.it_value);
901 if (!timespecisset(&pt->pt_time.it_value) ||
902 pt->pt_time.it_value.tv_sec < 0) {
903 pt->pt_time.it_value.tv_sec = 0;
904 pt->pt_time.it_value.tv_nsec = 1;
905 }
906 }
907 }
908 }
909
910 timer_settime(pt);
911 mutex_spin_exit(&timer_lock);
912
913 if (ovalue)
914 *ovalue = oval;
915
916 return (0);
917 }
918
919 /* Return the time remaining until a POSIX timer fires. */
920 int
921 sys___timer_gettime50(struct lwp *l,
922 const struct sys___timer_gettime50_args *uap, register_t *retval)
923 {
924 /* {
925 syscallarg(timer_t) timerid;
926 syscallarg(struct itimerspec *) value;
927 } */
928 struct itimerspec its;
929 int error;
930
931 if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
932 &its)) != 0)
933 return error;
934
935 return copyout(&its, SCARG(uap, value), sizeof(its));
936 }
937
938 int
939 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
940 {
941 struct ptimer *pt;
942 struct ptimers *pts;
943
944 pts = p->p_timers;
945 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
946 return (EINVAL);
947 mutex_spin_enter(&timer_lock);
948 if ((pt = pts->pts_timers[timerid]) == NULL) {
949 mutex_spin_exit(&timer_lock);
950 return (EINVAL);
951 }
952 timer_gettime(pt, its);
953 mutex_spin_exit(&timer_lock);
954
955 return 0;
956 }
957
958 /*
959 * Return the count of the number of times a periodic timer expired
960 * while a notification was already pending. The counter is reset when
961 * a timer expires and a notification can be posted.
962 */
963 int
964 sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
965 register_t *retval)
966 {
967 /* {
968 syscallarg(timer_t) timerid;
969 } */
970 struct proc *p = l->l_proc;
971 struct ptimers *pts;
972 int timerid;
973 struct ptimer *pt;
974
975 timerid = SCARG(uap, timerid);
976
977 pts = p->p_timers;
978 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
979 return (EINVAL);
980 mutex_spin_enter(&timer_lock);
981 if ((pt = pts->pts_timers[timerid]) == NULL) {
982 mutex_spin_exit(&timer_lock);
983 return (EINVAL);
984 }
985 *retval = pt->pt_poverruns;
986 if (*retval >= DELAYTIMER_MAX)
987 *retval = DELAYTIMER_MAX;
988 mutex_spin_exit(&timer_lock);
989
990 return (0);
991 }
992
993 /*
994 * Real interval timer expired:
995 * send process whose timer expired an alarm signal.
996 * If time is not set up to reload, then just return.
997 * Else compute next time timer should go off which is > current time.
998 * This is where delay in processing this timeout causes multiple
999 * SIGALRM calls to be compressed into one.
1000 */
1001 void
1002 realtimerexpire(void *arg)
1003 {
1004 uint64_t last_val, next_val, interval, now_ns;
1005 struct timespec now, next;
1006 struct ptimer *pt;
1007 int backwards;
1008
1009 pt = arg;
1010
1011 mutex_spin_enter(&timer_lock);
1012 itimerfire(pt);
1013
1014 if (!timespecisset(&pt->pt_time.it_interval)) {
1015 timespecclear(&pt->pt_time.it_value);
1016 mutex_spin_exit(&timer_lock);
1017 return;
1018 }
1019
1020 if (pt->pt_type == CLOCK_MONOTONIC) {
1021 getnanouptime(&now);
1022 } else {
1023 getnanotime(&now);
1024 }
1025 backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
1026 timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
1027 /* Handle the easy case of non-overflown timers first. */
1028 if (!backwards && timespeccmp(&next, &now, >)) {
1029 pt->pt_time.it_value = next;
1030 } else {
1031 now_ns = timespec2ns(&now);
1032 last_val = timespec2ns(&pt->pt_time.it_value);
1033 interval = timespec2ns(&pt->pt_time.it_interval);
1034
1035 next_val = now_ns +
1036 (now_ns - last_val + interval - 1) % interval;
1037
1038 if (backwards)
1039 next_val += interval;
1040 else
1041 pt->pt_overruns += (now_ns - last_val) / interval;
1042
1043 pt->pt_time.it_value.tv_sec = next_val / 1000000000;
1044 pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
1045 }
1046
1047 /*
1048 * Don't need to check tshzto() return value, here.
1049 * callout_reset() does it for us.
1050 */
1051 callout_reset(&pt->pt_ch, pt->pt_type == CLOCK_MONOTONIC ?
1052 tshztoup(&pt->pt_time.it_value) : tshzto(&pt->pt_time.it_value),
1053 realtimerexpire, pt);
1054 mutex_spin_exit(&timer_lock);
1055 }
1056
1057 /* BSD routine to get the value of an interval timer. */
1058 /* ARGSUSED */
1059 int
1060 sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
1061 register_t *retval)
1062 {
1063 /* {
1064 syscallarg(int) which;
1065 syscallarg(struct itimerval *) itv;
1066 } */
1067 struct proc *p = l->l_proc;
1068 struct itimerval aitv;
1069 int error;
1070
1071 error = dogetitimer(p, SCARG(uap, which), &aitv);
1072 if (error)
1073 return error;
1074 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1075 }
1076
1077 int
1078 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1079 {
1080 struct ptimers *pts;
1081 struct ptimer *pt;
1082 struct itimerspec its;
1083
1084 if ((u_int)which > ITIMER_MONOTONIC)
1085 return (EINVAL);
1086
1087 mutex_spin_enter(&timer_lock);
1088 pts = p->p_timers;
1089 if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
1090 timerclear(&itvp->it_value);
1091 timerclear(&itvp->it_interval);
1092 } else {
1093 timer_gettime(pt, &its);
1094 TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
1095 TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
1096 }
1097 mutex_spin_exit(&timer_lock);
1098
1099 return 0;
1100 }
1101
1102 /* BSD routine to set/arm an interval timer. */
1103 /* ARGSUSED */
1104 int
1105 sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
1106 register_t *retval)
1107 {
1108 /* {
1109 syscallarg(int) which;
1110 syscallarg(const struct itimerval *) itv;
1111 syscallarg(struct itimerval *) oitv;
1112 } */
1113 struct proc *p = l->l_proc;
1114 int which = SCARG(uap, which);
1115 struct sys___getitimer50_args getargs;
1116 const struct itimerval *itvp;
1117 struct itimerval aitv;
1118 int error;
1119
1120 if ((u_int)which > ITIMER_MONOTONIC)
1121 return (EINVAL);
1122 itvp = SCARG(uap, itv);
1123 if (itvp &&
1124 (error = copyin(itvp, &aitv, sizeof(struct itimerval))) != 0)
1125 return (error);
1126 if (SCARG(uap, oitv) != NULL) {
1127 SCARG(&getargs, which) = which;
1128 SCARG(&getargs, itv) = SCARG(uap, oitv);
1129 if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
1130 return (error);
1131 }
1132 if (itvp == 0)
1133 return (0);
1134
1135 return dosetitimer(p, which, &aitv);
1136 }
1137
1138 int
1139 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1140 {
1141 struct timespec now;
1142 struct ptimers *pts;
1143 struct ptimer *pt, *spare;
1144
1145 KASSERT((u_int)which <= CLOCK_MONOTONIC);
1146 if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1147 return (EINVAL);
1148
1149 /*
1150 * Don't bother allocating data structures if the process just
1151 * wants to clear the timer.
1152 */
1153 spare = NULL;
1154 pts = p->p_timers;
1155 retry:
1156 if (!timerisset(&itvp->it_value) && (pts == NULL ||
1157 pts->pts_timers[which] == NULL))
1158 return (0);
1159 if (pts == NULL)
1160 pts = timers_alloc(p);
1161 mutex_spin_enter(&timer_lock);
1162 pt = pts->pts_timers[which];
1163 if (pt == NULL) {
1164 if (spare == NULL) {
1165 mutex_spin_exit(&timer_lock);
1166 spare = pool_get(&ptimer_pool, PR_WAITOK);
1167 goto retry;
1168 }
1169 pt = spare;
1170 spare = NULL;
1171 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1172 pt->pt_ev.sigev_value.sival_int = which;
1173 pt->pt_overruns = 0;
1174 pt->pt_proc = p;
1175 pt->pt_type = which;
1176 pt->pt_entry = which;
1177 pt->pt_queued = false;
1178 if (pt->pt_type == CLOCK_REALTIME)
1179 callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
1180 else
1181 pt->pt_active = 0;
1182
1183 switch (which) {
1184 case ITIMER_REAL:
1185 case ITIMER_MONOTONIC:
1186 pt->pt_ev.sigev_signo = SIGALRM;
1187 break;
1188 case ITIMER_VIRTUAL:
1189 pt->pt_ev.sigev_signo = SIGVTALRM;
1190 break;
1191 case ITIMER_PROF:
1192 pt->pt_ev.sigev_signo = SIGPROF;
1193 break;
1194 }
1195 pts->pts_timers[which] = pt;
1196 }
1197
1198 TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
1199 TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
1200
1201 if (timespecisset(&pt->pt_time.it_value)) {
1202 /* Convert to absolute time */
1203 /* XXX need to wrap in splclock for timecounters case? */
1204 switch (which) {
1205 case ITIMER_REAL:
1206 getnanotime(&now);
1207 timespecadd(&pt->pt_time.it_value, &now,
1208 &pt->pt_time.it_value);
1209 break;
1210 case ITIMER_MONOTONIC:
1211 getnanouptime(&now);
1212 timespecadd(&pt->pt_time.it_value, &now,
1213 &pt->pt_time.it_value);
1214 break;
1215 default:
1216 break;
1217 }
1218 }
1219 timer_settime(pt);
1220 mutex_spin_exit(&timer_lock);
1221 if (spare != NULL)
1222 pool_put(&ptimer_pool, spare);
1223
1224 return (0);
1225 }
1226
1227 /* Utility routines to manage the array of pointers to timers. */
1228 struct ptimers *
1229 timers_alloc(struct proc *p)
1230 {
1231 struct ptimers *pts;
1232 int i;
1233
1234 pts = pool_get(&ptimers_pool, PR_WAITOK);
1235 LIST_INIT(&pts->pts_virtual);
1236 LIST_INIT(&pts->pts_prof);
1237 for (i = 0; i < TIMER_MAX; i++)
1238 pts->pts_timers[i] = NULL;
1239 mutex_spin_enter(&timer_lock);
1240 if (p->p_timers == NULL) {
1241 p->p_timers = pts;
1242 mutex_spin_exit(&timer_lock);
1243 return pts;
1244 }
1245 mutex_spin_exit(&timer_lock);
1246 pool_put(&ptimers_pool, pts);
1247 return p->p_timers;
1248 }
1249
1250 /*
1251 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1252 * then clean up all timers and free all the data structures. If
1253 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1254 * by timer_create(), not the BSD setitimer() timers, and only free the
1255 * structure if none of those remain.
1256 */
1257 void
1258 timers_free(struct proc *p, int which)
1259 {
1260 struct ptimers *pts;
1261 struct ptimer *ptn;
1262 struct timespec ts;
1263 int i;
1264
1265 if (p->p_timers == NULL)
1266 return;
1267
1268 pts = p->p_timers;
1269 mutex_spin_enter(&timer_lock);
1270 if (which == TIMERS_ALL) {
1271 p->p_timers = NULL;
1272 i = 0;
1273 } else {
1274 timespecclear(&ts);
1275 for (ptn = LIST_FIRST(&pts->pts_virtual);
1276 ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1277 ptn = LIST_NEXT(ptn, pt_list)) {
1278 KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1279 timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1280 }
1281 LIST_FIRST(&pts->pts_virtual) = NULL;
1282 if (ptn) {
1283 KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1284 timespecadd(&ts, &ptn->pt_time.it_value,
1285 &ptn->pt_time.it_value);
1286 LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
1287 }
1288 timespecclear(&ts);
1289 for (ptn = LIST_FIRST(&pts->pts_prof);
1290 ptn && ptn != pts->pts_timers[ITIMER_PROF];
1291 ptn = LIST_NEXT(ptn, pt_list)) {
1292 KASSERT(ptn->pt_type == CLOCK_PROF);
1293 timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1294 }
1295 LIST_FIRST(&pts->pts_prof) = NULL;
1296 if (ptn) {
1297 KASSERT(ptn->pt_type == CLOCK_PROF);
1298 timespecadd(&ts, &ptn->pt_time.it_value,
1299 &ptn->pt_time.it_value);
1300 LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
1301 }
1302 i = TIMER_MIN;
1303 }
1304 for ( ; i < TIMER_MAX; i++) {
1305 if (pts->pts_timers[i] != NULL) {
1306 itimerfree(pts, i);
1307 mutex_spin_enter(&timer_lock);
1308 }
1309 }
1310 if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
1311 pts->pts_timers[2] == NULL && pts->pts_timers[3] == NULL) {
1312 p->p_timers = NULL;
1313 mutex_spin_exit(&timer_lock);
1314 pool_put(&ptimers_pool, pts);
1315 } else
1316 mutex_spin_exit(&timer_lock);
1317 }
1318
1319 static void
1320 itimerfree(struct ptimers *pts, int index)
1321 {
1322 struct ptimer *pt;
1323
1324 KASSERT(mutex_owned(&timer_lock));
1325
1326 pt = pts->pts_timers[index];
1327 pts->pts_timers[index] = NULL;
1328 if (!CLOCK_VIRTUAL_P(pt->pt_type))
1329 callout_halt(&pt->pt_ch, &timer_lock);
1330 if (pt->pt_queued)
1331 TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1332 mutex_spin_exit(&timer_lock);
1333 if (!CLOCK_VIRTUAL_P(pt->pt_type))
1334 callout_destroy(&pt->pt_ch);
1335 pool_put(&ptimer_pool, pt);
1336 }
1337
1338 /*
1339 * Decrement an interval timer by a specified number
1340 * of nanoseconds, which must be less than a second,
1341 * i.e. < 1000000000. If the timer expires, then reload
1342 * it. In this case, carry over (nsec - old value) to
1343 * reduce the value reloaded into the timer so that
1344 * the timer does not drift. This routine assumes
1345 * that it is called in a context where the timers
1346 * on which it is operating cannot change in value.
1347 */
1348 static int
1349 itimerdecr(struct ptimer *pt, int nsec)
1350 {
1351 struct itimerspec *itp;
1352
1353 KASSERT(mutex_owned(&timer_lock));
1354 KASSERT(CLOCK_VIRTUAL_P(pt->pt_type));
1355
1356 itp = &pt->pt_time;
1357 if (itp->it_value.tv_nsec < nsec) {
1358 if (itp->it_value.tv_sec == 0) {
1359 /* expired, and already in next interval */
1360 nsec -= itp->it_value.tv_nsec;
1361 goto expire;
1362 }
1363 itp->it_value.tv_nsec += 1000000000;
1364 itp->it_value.tv_sec--;
1365 }
1366 itp->it_value.tv_nsec -= nsec;
1367 nsec = 0;
1368 if (timespecisset(&itp->it_value))
1369 return (1);
1370 /* expired, exactly at end of interval */
1371 expire:
1372 if (timespecisset(&itp->it_interval)) {
1373 itp->it_value = itp->it_interval;
1374 itp->it_value.tv_nsec -= nsec;
1375 if (itp->it_value.tv_nsec < 0) {
1376 itp->it_value.tv_nsec += 1000000000;
1377 itp->it_value.tv_sec--;
1378 }
1379 timer_settime(pt);
1380 } else
1381 itp->it_value.tv_nsec = 0; /* sec is already 0 */
1382 return (0);
1383 }
1384
1385 static void
1386 itimerfire(struct ptimer *pt)
1387 {
1388
1389 KASSERT(mutex_owned(&timer_lock));
1390
1391 /*
1392 * XXX Can overrun, but we don't do signal queueing yet, anyway.
1393 * XXX Relying on the clock interrupt is stupid.
1394 */
1395 if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL || pt->pt_queued) {
1396 return;
1397 }
1398 TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
1399 pt->pt_queued = true;
1400 softint_schedule(timer_sih);
1401 }
1402
1403 void
1404 timer_tick(lwp_t *l, bool user)
1405 {
1406 struct ptimers *pts;
1407 struct ptimer *pt;
1408 proc_t *p;
1409
1410 p = l->l_proc;
1411 if (p->p_timers == NULL)
1412 return;
1413
1414 mutex_spin_enter(&timer_lock);
1415 if ((pts = l->l_proc->p_timers) != NULL) {
1416 /*
1417 * Run current process's virtual and profile time, as needed.
1418 */
1419 if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
1420 if (itimerdecr(pt, tick * 1000) == 0)
1421 itimerfire(pt);
1422 if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
1423 if (itimerdecr(pt, tick * 1000) == 0)
1424 itimerfire(pt);
1425 }
1426 mutex_spin_exit(&timer_lock);
1427 }
1428
1429 static void
1430 timer_intr(void *cookie)
1431 {
1432 ksiginfo_t ksi;
1433 struct ptimer *pt;
1434 proc_t *p;
1435
1436 mutex_enter(proc_lock);
1437 mutex_spin_enter(&timer_lock);
1438 while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
1439 TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1440 KASSERT(pt->pt_queued);
1441 pt->pt_queued = false;
1442
1443 if (pt->pt_proc->p_timers == NULL) {
1444 /* Process is dying. */
1445 continue;
1446 }
1447 p = pt->pt_proc;
1448 if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
1449 continue;
1450 }
1451 if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
1452 pt->pt_overruns++;
1453 continue;
1454 }
1455
1456 KSI_INIT(&ksi);
1457 ksi.ksi_signo = pt->pt_ev.sigev_signo;
1458 ksi.ksi_code = SI_TIMER;
1459 ksi.ksi_value = pt->pt_ev.sigev_value;
1460 pt->pt_poverruns = pt->pt_overruns;
1461 pt->pt_overruns = 0;
1462 mutex_spin_exit(&timer_lock);
1463 kpsignal(p, &ksi, NULL);
1464 mutex_spin_enter(&timer_lock);
1465 }
1466 mutex_spin_exit(&timer_lock);
1467 mutex_exit(proc_lock);
1468 }
1469
1470 /*
1471 * Check if the time will wrap if set to ts.
1472 *
1473 * ts - timespec describing the new time
1474 * delta - the delta between the current time and ts
1475 */
1476 bool
1477 time_wraps(struct timespec *ts, struct timespec *delta)
1478 {
1479
1480 /*
1481 * Don't allow the time to be set forward so far it
1482 * will wrap and become negative, thus allowing an
1483 * attacker to bypass the next check below. The
1484 * cutoff is 1 year before rollover occurs, so even
1485 * if the attacker uses adjtime(2) to move the time
1486 * past the cutoff, it will take a very long time
1487 * to get to the wrap point.
1488 */
1489 if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
1490 (delta->tv_sec < 0 || delta->tv_nsec < 0))
1491 return true;
1492
1493 return false;
1494 }
1495