kern_time.c revision 1.197 1 /* $NetBSD: kern_time.c,v 1.197 2019/03/10 14:45:53 kre Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1986, 1989, 1993
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
61 */
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.197 2019/03/10 14:45:53 kre Exp $");
65
66 #include <sys/param.h>
67 #include <sys/resourcevar.h>
68 #include <sys/kernel.h>
69 #include <sys/systm.h>
70 #include <sys/proc.h>
71 #include <sys/vnode.h>
72 #include <sys/signalvar.h>
73 #include <sys/syslog.h>
74 #include <sys/timetc.h>
75 #include <sys/timex.h>
76 #include <sys/kauth.h>
77 #include <sys/mount.h>
78 #include <sys/syscallargs.h>
79 #include <sys/cpu.h>
80
81 static void timer_intr(void *);
82 static void itimerfire(struct ptimer *);
83 static void itimerfree(struct ptimers *, int);
84
85 kmutex_t timer_lock;
86
87 static void *timer_sih;
88 static TAILQ_HEAD(, ptimer) timer_queue;
89
90 struct pool ptimer_pool, ptimers_pool;
91
92 #define CLOCK_VIRTUAL_P(clockid) \
93 ((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)
94
95 CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
96 CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
97 CTASSERT(ITIMER_PROF == CLOCK_PROF);
98 CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC);
99
100 #define DELAYTIMER_MAX 32
101
102 /*
103 * Initialize timekeeping.
104 */
105 void
106 time_init(void)
107 {
108
109 pool_init(&ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
110 &pool_allocator_nointr, IPL_NONE);
111 pool_init(&ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
112 &pool_allocator_nointr, IPL_NONE);
113 }
114
115 void
116 time_init2(void)
117 {
118
119 TAILQ_INIT(&timer_queue);
120 mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
121 timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
122 timer_intr, NULL);
123 }
124
125 /* Time of day and interval timer support.
126 *
127 * These routines provide the kernel entry points to get and set
128 * the time-of-day and per-process interval timers. Subroutines
129 * here provide support for adding and subtracting timeval structures
130 * and decrementing interval timers, optionally reloading the interval
131 * timers when they expire.
132 */
133
134 /* This function is used by clock_settime and settimeofday */
135 static int
136 settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
137 {
138 struct timespec delta, now;
139 int s;
140
141 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
142 s = splclock();
143 nanotime(&now);
144 timespecsub(ts, &now, &delta);
145
146 if (check_kauth && kauth_authorize_system(kauth_cred_get(),
147 KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
148 &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
149 splx(s);
150 return (EPERM);
151 }
152
153 #ifdef notyet
154 if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
155 splx(s);
156 return (EPERM);
157 }
158 #endif
159
160 tc_setclock(ts);
161
162 timespecadd(&boottime, &delta, &boottime);
163
164 resettodr();
165 splx(s);
166
167 return (0);
168 }
169
170 int
171 settime(struct proc *p, struct timespec *ts)
172 {
173 return (settime1(p, ts, true));
174 }
175
176 /* ARGSUSED */
177 int
178 sys___clock_gettime50(struct lwp *l,
179 const struct sys___clock_gettime50_args *uap, register_t *retval)
180 {
181 /* {
182 syscallarg(clockid_t) clock_id;
183 syscallarg(struct timespec *) tp;
184 } */
185 int error;
186 struct timespec ats;
187
188 error = clock_gettime1(SCARG(uap, clock_id), &ats);
189 if (error != 0)
190 return error;
191
192 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
193 }
194
195 /* ARGSUSED */
196 int
197 sys___clock_settime50(struct lwp *l,
198 const struct sys___clock_settime50_args *uap, register_t *retval)
199 {
200 /* {
201 syscallarg(clockid_t) clock_id;
202 syscallarg(const struct timespec *) tp;
203 } */
204 int error;
205 struct timespec ats;
206
207 if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
208 return error;
209
210 return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
211 }
212
213
214 int
215 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
216 bool check_kauth)
217 {
218 int error;
219
220 switch (clock_id) {
221 case CLOCK_REALTIME:
222 if ((error = settime1(p, tp, check_kauth)) != 0)
223 return (error);
224 break;
225 case CLOCK_MONOTONIC:
226 return (EINVAL); /* read-only clock */
227 default:
228 return (EINVAL);
229 }
230
231 return 0;
232 }
233
234 int
235 sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
236 register_t *retval)
237 {
238 /* {
239 syscallarg(clockid_t) clock_id;
240 syscallarg(struct timespec *) tp;
241 } */
242 struct timespec ts;
243 int error;
244
245 if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
246 return error;
247
248 if (SCARG(uap, tp))
249 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
250
251 return error;
252 }
253
254 int
255 clock_getres1(clockid_t clock_id, struct timespec *ts)
256 {
257
258 switch (clock_id) {
259 case CLOCK_REALTIME:
260 case CLOCK_MONOTONIC:
261 ts->tv_sec = 0;
262 if (tc_getfrequency() > 1000000000)
263 ts->tv_nsec = 1;
264 else
265 ts->tv_nsec = 1000000000 / tc_getfrequency();
266 break;
267 default:
268 return EINVAL;
269 }
270
271 return 0;
272 }
273
274 /* ARGSUSED */
275 int
276 sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
277 register_t *retval)
278 {
279 /* {
280 syscallarg(struct timespec *) rqtp;
281 syscallarg(struct timespec *) rmtp;
282 } */
283 struct timespec rmt, rqt;
284 int error, error1;
285
286 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
287 if (error)
288 return (error);
289
290 error = nanosleep1(l, CLOCK_MONOTONIC, 0, &rqt,
291 SCARG(uap, rmtp) ? &rmt : NULL);
292 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
293 return error;
294
295 error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
296 return error1 ? error1 : error;
297 }
298
299 /* ARGSUSED */
300 int
301 sys_clock_nanosleep(struct lwp *l, const struct sys_clock_nanosleep_args *uap,
302 register_t *retval)
303 {
304 /* {
305 syscallarg(clockid_t) clock_id;
306 syscallarg(int) flags;
307 syscallarg(struct timespec *) rqtp;
308 syscallarg(struct timespec *) rmtp;
309 } */
310 struct timespec rmt, rqt;
311 int error, error1;
312
313 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
314 if (error)
315 goto out;
316
317 error = nanosleep1(l, SCARG(uap, clock_id), SCARG(uap, flags), &rqt,
318 SCARG(uap, rmtp) ? &rmt : NULL);
319 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
320 goto out;
321
322 if ((SCARG(uap, flags) & TIMER_ABSTIME) == 0 &&
323 (error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt))) != 0)
324 error = error1;
325 out:
326 *retval = error;
327 return 0;
328 }
329
330 int
331 nanosleep1(struct lwp *l, clockid_t clock_id, int flags, struct timespec *rqt,
332 struct timespec *rmt)
333 {
334 struct timespec rmtstart;
335 int error, timo;
336
337 if ((error = ts2timo(clock_id, flags, rqt, &timo, &rmtstart)) != 0) {
338 if (error == ETIMEDOUT) {
339 error = 0;
340 if (rmt != NULL)
341 rmt->tv_sec = rmt->tv_nsec = 0;
342 }
343 return error;
344 }
345
346 /*
347 * Avoid inadvertently sleeping forever
348 */
349 if (timo == 0)
350 timo = 1;
351 again:
352 error = kpause("nanoslp", true, timo, NULL);
353 if (error == EWOULDBLOCK)
354 error = 0;
355 if (rmt != NULL || error == 0) {
356 struct timespec rmtend;
357 struct timespec t0;
358 struct timespec *t;
359
360 (void)clock_gettime1(clock_id, &rmtend);
361 t = (rmt != NULL) ? rmt : &t0;
362 if (flags & TIMER_ABSTIME) {
363 timespecsub(rqt, &rmtend, t);
364 } else {
365 timespecsub(&rmtend, &rmtstart, t);
366 timespecsub(rqt, t, t);
367 }
368 if (t->tv_sec < 0)
369 timespecclear(t);
370 if (error == 0) {
371 timo = tstohz(t);
372 if (timo > 0)
373 goto again;
374 }
375 }
376
377 if (error == ERESTART)
378 error = EINTR;
379
380 return error;
381 }
382
383 int
384 sys_clock_getcpuclockid2(struct lwp *l,
385 const struct sys_clock_getcpuclockid2_args *uap,
386 register_t *retval)
387 {
388 /* {
389 syscallarg(idtype_t idtype;
390 syscallarg(id_t id);
391 syscallarg(clockid_t *)clock_id;
392 } */
393 pid_t pid;
394 lwpid_t lid;
395 clockid_t clock_id;
396 id_t id = SCARG(uap, id);
397
398 switch (SCARG(uap, idtype)) {
399 case P_PID:
400 pid = id == 0 ? l->l_proc->p_pid : id;
401 clock_id = CLOCK_PROCESS_CPUTIME_ID | pid;
402 break;
403 case P_LWPID:
404 lid = id == 0 ? l->l_lid : id;
405 clock_id = CLOCK_THREAD_CPUTIME_ID | lid;
406 break;
407 default:
408 return EINVAL;
409 }
410 return copyout(&clock_id, SCARG(uap, clock_id), sizeof(clock_id));
411 }
412
413 /* ARGSUSED */
414 int
415 sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
416 register_t *retval)
417 {
418 /* {
419 syscallarg(struct timeval *) tp;
420 syscallarg(void *) tzp; really "struct timezone *";
421 } */
422 struct timeval atv;
423 int error = 0;
424 struct timezone tzfake;
425
426 if (SCARG(uap, tp)) {
427 memset(&atv, 0, sizeof(atv));
428 microtime(&atv);
429 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
430 if (error)
431 return (error);
432 }
433 if (SCARG(uap, tzp)) {
434 /*
435 * NetBSD has no kernel notion of time zone, so we just
436 * fake up a timezone struct and return it if demanded.
437 */
438 tzfake.tz_minuteswest = 0;
439 tzfake.tz_dsttime = 0;
440 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
441 }
442 return (error);
443 }
444
445 /* ARGSUSED */
446 int
447 sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
448 register_t *retval)
449 {
450 /* {
451 syscallarg(const struct timeval *) tv;
452 syscallarg(const void *) tzp; really "const struct timezone *";
453 } */
454
455 return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
456 }
457
458 int
459 settimeofday1(const struct timeval *utv, bool userspace,
460 const void *utzp, struct lwp *l, bool check_kauth)
461 {
462 struct timeval atv;
463 struct timespec ts;
464 int error;
465
466 /* Verify all parameters before changing time. */
467
468 /*
469 * NetBSD has no kernel notion of time zone, and only an
470 * obsolete program would try to set it, so we log a warning.
471 */
472 if (utzp)
473 log(LOG_WARNING, "pid %d attempted to set the "
474 "(obsolete) kernel time zone\n", l->l_proc->p_pid);
475
476 if (utv == NULL)
477 return 0;
478
479 if (userspace) {
480 if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
481 return error;
482 utv = &atv;
483 }
484
485 TIMEVAL_TO_TIMESPEC(utv, &ts);
486 return settime1(l->l_proc, &ts, check_kauth);
487 }
488
489 int time_adjusted; /* set if an adjustment is made */
490
491 /* ARGSUSED */
492 int
493 sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
494 register_t *retval)
495 {
496 /* {
497 syscallarg(const struct timeval *) delta;
498 syscallarg(struct timeval *) olddelta;
499 } */
500 int error;
501 struct timeval atv, oldatv;
502
503 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
504 KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
505 return error;
506
507 if (SCARG(uap, delta)) {
508 error = copyin(SCARG(uap, delta), &atv,
509 sizeof(*SCARG(uap, delta)));
510 if (error)
511 return (error);
512 }
513 adjtime1(SCARG(uap, delta) ? &atv : NULL,
514 SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
515 if (SCARG(uap, olddelta))
516 error = copyout(&oldatv, SCARG(uap, olddelta),
517 sizeof(*SCARG(uap, olddelta)));
518 return error;
519 }
520
521 void
522 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
523 {
524 extern int64_t time_adjtime; /* in kern_ntptime.c */
525
526 if (olddelta) {
527 memset(olddelta, 0, sizeof(*olddelta));
528 mutex_spin_enter(&timecounter_lock);
529 olddelta->tv_sec = time_adjtime / 1000000;
530 olddelta->tv_usec = time_adjtime % 1000000;
531 if (olddelta->tv_usec < 0) {
532 olddelta->tv_usec += 1000000;
533 olddelta->tv_sec--;
534 }
535 mutex_spin_exit(&timecounter_lock);
536 }
537
538 if (delta) {
539 mutex_spin_enter(&timecounter_lock);
540 time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
541
542 if (time_adjtime) {
543 /* We need to save the system time during shutdown */
544 time_adjusted |= 1;
545 }
546 mutex_spin_exit(&timecounter_lock);
547 }
548 }
549
550 /*
551 * Interval timer support. Both the BSD getitimer() family and the POSIX
552 * timer_*() family of routines are supported.
553 *
554 * All timers are kept in an array pointed to by p_timers, which is
555 * allocated on demand - many processes don't use timers at all. The
556 * first four elements in this array are reserved for the BSD timers:
557 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element
558 * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be
559 * allocated by the timer_create() syscall.
560 *
561 * Realtime timers are kept in the ptimer structure as an absolute
562 * time; virtual time timers are kept as a linked list of deltas.
563 * Virtual time timers are processed in the hardclock() routine of
564 * kern_clock.c. The real time timer is processed by a callout
565 * routine, called from the softclock() routine. Since a callout may
566 * be delayed in real time due to interrupt processing in the system,
567 * it is possible for the real time timeout routine (realtimeexpire,
568 * given below), to be delayed in real time past when it is supposed
569 * to occur. It does not suffice, therefore, to reload the real timer
570 * .it_value from the real time timers .it_interval. Rather, we
571 * compute the next time in absolute time the timer should go off. */
572
573 /* Allocate a POSIX realtime timer. */
574 int
575 sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
576 register_t *retval)
577 {
578 /* {
579 syscallarg(clockid_t) clock_id;
580 syscallarg(struct sigevent *) evp;
581 syscallarg(timer_t *) timerid;
582 } */
583
584 return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
585 SCARG(uap, evp), copyin, l);
586 }
587
588 int
589 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
590 copyin_t fetch_event, struct lwp *l)
591 {
592 int error;
593 timer_t timerid;
594 struct ptimers *pts;
595 struct ptimer *pt;
596 struct proc *p;
597
598 p = l->l_proc;
599
600 if ((u_int)id > CLOCK_MONOTONIC)
601 return (EINVAL);
602
603 if ((pts = p->p_timers) == NULL)
604 pts = timers_alloc(p);
605
606 pt = pool_get(&ptimer_pool, PR_WAITOK | PR_ZERO);
607 if (evp != NULL) {
608 if (((error =
609 (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
610 ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
611 (pt->pt_ev.sigev_notify > SIGEV_SA)) ||
612 (pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
613 (pt->pt_ev.sigev_signo <= 0 ||
614 pt->pt_ev.sigev_signo >= NSIG))) {
615 pool_put(&ptimer_pool, pt);
616 return (error ? error : EINVAL);
617 }
618 }
619
620 /* Find a free timer slot, skipping those reserved for setitimer(). */
621 mutex_spin_enter(&timer_lock);
622 for (timerid = TIMER_MIN; timerid < TIMER_MAX; timerid++)
623 if (pts->pts_timers[timerid] == NULL)
624 break;
625 if (timerid == TIMER_MAX) {
626 mutex_spin_exit(&timer_lock);
627 pool_put(&ptimer_pool, pt);
628 return EAGAIN;
629 }
630 if (evp == NULL) {
631 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
632 switch (id) {
633 case CLOCK_REALTIME:
634 case CLOCK_MONOTONIC:
635 pt->pt_ev.sigev_signo = SIGALRM;
636 break;
637 case CLOCK_VIRTUAL:
638 pt->pt_ev.sigev_signo = SIGVTALRM;
639 break;
640 case CLOCK_PROF:
641 pt->pt_ev.sigev_signo = SIGPROF;
642 break;
643 }
644 pt->pt_ev.sigev_value.sival_int = timerid;
645 }
646 pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
647 pt->pt_info.ksi_errno = 0;
648 pt->pt_info.ksi_code = 0;
649 pt->pt_info.ksi_pid = p->p_pid;
650 pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
651 pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
652 pt->pt_type = id;
653 pt->pt_proc = p;
654 pt->pt_overruns = 0;
655 pt->pt_poverruns = 0;
656 pt->pt_entry = timerid;
657 pt->pt_queued = false;
658 timespecclear(&pt->pt_time.it_value);
659 if (!CLOCK_VIRTUAL_P(id))
660 callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
661 else
662 pt->pt_active = 0;
663
664 pts->pts_timers[timerid] = pt;
665 mutex_spin_exit(&timer_lock);
666
667 return copyout(&timerid, tid, sizeof(timerid));
668 }
669
670 /* Delete a POSIX realtime timer */
671 int
672 sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
673 register_t *retval)
674 {
675 /* {
676 syscallarg(timer_t) timerid;
677 } */
678 struct proc *p = l->l_proc;
679 timer_t timerid;
680 struct ptimers *pts;
681 struct ptimer *pt, *ptn;
682
683 timerid = SCARG(uap, timerid);
684 pts = p->p_timers;
685
686 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
687 return (EINVAL);
688
689 mutex_spin_enter(&timer_lock);
690 if ((pt = pts->pts_timers[timerid]) == NULL) {
691 mutex_spin_exit(&timer_lock);
692 return (EINVAL);
693 }
694 if (CLOCK_VIRTUAL_P(pt->pt_type)) {
695 if (pt->pt_active) {
696 ptn = LIST_NEXT(pt, pt_list);
697 LIST_REMOVE(pt, pt_list);
698 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
699 timespecadd(&pt->pt_time.it_value,
700 &ptn->pt_time.it_value,
701 &ptn->pt_time.it_value);
702 pt->pt_active = 0;
703 }
704 }
705 itimerfree(pts, timerid);
706
707 return (0);
708 }
709
710 /*
711 * Set up the given timer. The value in pt->pt_time.it_value is taken
712 * to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC timers and
713 * a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
714 */
715 void
716 timer_settime(struct ptimer *pt)
717 {
718 struct ptimer *ptn, *pptn;
719 struct ptlist *ptl;
720
721 KASSERT(mutex_owned(&timer_lock));
722
723 if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
724 callout_halt(&pt->pt_ch, &timer_lock);
725 if (timespecisset(&pt->pt_time.it_value)) {
726 /*
727 * Don't need to check tshzto() return value, here.
728 * callout_reset() does it for us.
729 */
730 callout_reset(&pt->pt_ch,
731 pt->pt_type == CLOCK_MONOTONIC ?
732 tshztoup(&pt->pt_time.it_value) :
733 tshzto(&pt->pt_time.it_value),
734 realtimerexpire, pt);
735 }
736 } else {
737 if (pt->pt_active) {
738 ptn = LIST_NEXT(pt, pt_list);
739 LIST_REMOVE(pt, pt_list);
740 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
741 timespecadd(&pt->pt_time.it_value,
742 &ptn->pt_time.it_value,
743 &ptn->pt_time.it_value);
744 }
745 if (timespecisset(&pt->pt_time.it_value)) {
746 if (pt->pt_type == CLOCK_VIRTUAL)
747 ptl = &pt->pt_proc->p_timers->pts_virtual;
748 else
749 ptl = &pt->pt_proc->p_timers->pts_prof;
750
751 for (ptn = LIST_FIRST(ptl), pptn = NULL;
752 ptn && timespeccmp(&pt->pt_time.it_value,
753 &ptn->pt_time.it_value, >);
754 pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
755 timespecsub(&pt->pt_time.it_value,
756 &ptn->pt_time.it_value,
757 &pt->pt_time.it_value);
758
759 if (pptn)
760 LIST_INSERT_AFTER(pptn, pt, pt_list);
761 else
762 LIST_INSERT_HEAD(ptl, pt, pt_list);
763
764 for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
765 timespecsub(&ptn->pt_time.it_value,
766 &pt->pt_time.it_value,
767 &ptn->pt_time.it_value);
768
769 pt->pt_active = 1;
770 } else
771 pt->pt_active = 0;
772 }
773 }
774
775 void
776 timer_gettime(struct ptimer *pt, struct itimerspec *aits)
777 {
778 struct timespec now;
779 struct ptimer *ptn;
780
781 KASSERT(mutex_owned(&timer_lock));
782
783 *aits = pt->pt_time;
784 if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
785 /*
786 * Convert from absolute to relative time in .it_value
787 * part of real time timer. If time for real time
788 * timer has passed return 0, else return difference
789 * between current time and time for the timer to go
790 * off.
791 */
792 if (timespecisset(&aits->it_value)) {
793 if (pt->pt_type == CLOCK_REALTIME) {
794 getnanotime(&now);
795 } else { /* CLOCK_MONOTONIC */
796 getnanouptime(&now);
797 }
798 if (timespeccmp(&aits->it_value, &now, <))
799 timespecclear(&aits->it_value);
800 else
801 timespecsub(&aits->it_value, &now,
802 &aits->it_value);
803 }
804 } else if (pt->pt_active) {
805 if (pt->pt_type == CLOCK_VIRTUAL)
806 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
807 else
808 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
809 for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
810 timespecadd(&aits->it_value,
811 &ptn->pt_time.it_value, &aits->it_value);
812 KASSERT(ptn != NULL); /* pt should be findable on the list */
813 } else
814 timespecclear(&aits->it_value);
815 }
816
817
818
819 /* Set and arm a POSIX realtime timer */
820 int
821 sys___timer_settime50(struct lwp *l,
822 const struct sys___timer_settime50_args *uap,
823 register_t *retval)
824 {
825 /* {
826 syscallarg(timer_t) timerid;
827 syscallarg(int) flags;
828 syscallarg(const struct itimerspec *) value;
829 syscallarg(struct itimerspec *) ovalue;
830 } */
831 int error;
832 struct itimerspec value, ovalue, *ovp = NULL;
833
834 if ((error = copyin(SCARG(uap, value), &value,
835 sizeof(struct itimerspec))) != 0)
836 return (error);
837
838 if (SCARG(uap, ovalue))
839 ovp = &ovalue;
840
841 if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
842 SCARG(uap, flags), l->l_proc)) != 0)
843 return error;
844
845 if (ovp)
846 return copyout(&ovalue, SCARG(uap, ovalue),
847 sizeof(struct itimerspec));
848 return 0;
849 }
850
851 int
852 dotimer_settime(int timerid, struct itimerspec *value,
853 struct itimerspec *ovalue, int flags, struct proc *p)
854 {
855 struct timespec now;
856 struct itimerspec val, oval;
857 struct ptimers *pts;
858 struct ptimer *pt;
859 int error;
860
861 pts = p->p_timers;
862
863 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
864 return EINVAL;
865 val = *value;
866 if ((error = itimespecfix(&val.it_value)) != 0 ||
867 (error = itimespecfix(&val.it_interval)) != 0)
868 return error;
869
870 mutex_spin_enter(&timer_lock);
871 if ((pt = pts->pts_timers[timerid]) == NULL) {
872 mutex_spin_exit(&timer_lock);
873 return EINVAL;
874 }
875
876 oval = pt->pt_time;
877 pt->pt_time = val;
878
879 /*
880 * If we've been passed a relative time for a realtime timer,
881 * convert it to absolute; if an absolute time for a virtual
882 * timer, convert it to relative and make sure we don't set it
883 * to zero, which would cancel the timer, or let it go
884 * negative, which would confuse the comparison tests.
885 */
886 if (timespecisset(&pt->pt_time.it_value)) {
887 if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
888 if ((flags & TIMER_ABSTIME) == 0) {
889 if (pt->pt_type == CLOCK_REALTIME) {
890 getnanotime(&now);
891 } else { /* CLOCK_MONOTONIC */
892 getnanouptime(&now);
893 }
894 timespecadd(&pt->pt_time.it_value, &now,
895 &pt->pt_time.it_value);
896 }
897 } else {
898 if ((flags & TIMER_ABSTIME) != 0) {
899 getnanotime(&now);
900 timespecsub(&pt->pt_time.it_value, &now,
901 &pt->pt_time.it_value);
902 if (!timespecisset(&pt->pt_time.it_value) ||
903 pt->pt_time.it_value.tv_sec < 0) {
904 pt->pt_time.it_value.tv_sec = 0;
905 pt->pt_time.it_value.tv_nsec = 1;
906 }
907 }
908 }
909 }
910
911 timer_settime(pt);
912 mutex_spin_exit(&timer_lock);
913
914 if (ovalue)
915 *ovalue = oval;
916
917 return (0);
918 }
919
920 /* Return the time remaining until a POSIX timer fires. */
921 int
922 sys___timer_gettime50(struct lwp *l,
923 const struct sys___timer_gettime50_args *uap, register_t *retval)
924 {
925 /* {
926 syscallarg(timer_t) timerid;
927 syscallarg(struct itimerspec *) value;
928 } */
929 struct itimerspec its;
930 int error;
931
932 if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
933 &its)) != 0)
934 return error;
935
936 return copyout(&its, SCARG(uap, value), sizeof(its));
937 }
938
939 int
940 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
941 {
942 struct ptimer *pt;
943 struct ptimers *pts;
944
945 pts = p->p_timers;
946 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
947 return (EINVAL);
948 mutex_spin_enter(&timer_lock);
949 if ((pt = pts->pts_timers[timerid]) == NULL) {
950 mutex_spin_exit(&timer_lock);
951 return (EINVAL);
952 }
953 timer_gettime(pt, its);
954 mutex_spin_exit(&timer_lock);
955
956 return 0;
957 }
958
959 /*
960 * Return the count of the number of times a periodic timer expired
961 * while a notification was already pending. The counter is reset when
962 * a timer expires and a notification can be posted.
963 */
964 int
965 sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
966 register_t *retval)
967 {
968 /* {
969 syscallarg(timer_t) timerid;
970 } */
971 struct proc *p = l->l_proc;
972 struct ptimers *pts;
973 int timerid;
974 struct ptimer *pt;
975
976 timerid = SCARG(uap, timerid);
977
978 pts = p->p_timers;
979 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
980 return (EINVAL);
981 mutex_spin_enter(&timer_lock);
982 if ((pt = pts->pts_timers[timerid]) == NULL) {
983 mutex_spin_exit(&timer_lock);
984 return (EINVAL);
985 }
986 *retval = pt->pt_poverruns;
987 if (*retval >= DELAYTIMER_MAX)
988 *retval = DELAYTIMER_MAX;
989 mutex_spin_exit(&timer_lock);
990
991 return (0);
992 }
993
994 /*
995 * Real interval timer expired:
996 * send process whose timer expired an alarm signal.
997 * If time is not set up to reload, then just return.
998 * Else compute next time timer should go off which is > current time.
999 * This is where delay in processing this timeout causes multiple
1000 * SIGALRM calls to be compressed into one.
1001 */
1002 void
1003 realtimerexpire(void *arg)
1004 {
1005 uint64_t last_val, next_val, interval, now_ns;
1006 struct timespec now, next;
1007 struct ptimer *pt;
1008 int backwards;
1009
1010 pt = arg;
1011
1012 mutex_spin_enter(&timer_lock);
1013 itimerfire(pt);
1014
1015 if (!timespecisset(&pt->pt_time.it_interval)) {
1016 timespecclear(&pt->pt_time.it_value);
1017 mutex_spin_exit(&timer_lock);
1018 return;
1019 }
1020
1021 if (pt->pt_type == CLOCK_MONOTONIC) {
1022 getnanouptime(&now);
1023 } else {
1024 getnanotime(&now);
1025 }
1026 backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
1027 timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
1028 /* Handle the easy case of non-overflown timers first. */
1029 if (!backwards && timespeccmp(&next, &now, >)) {
1030 pt->pt_time.it_value = next;
1031 } else {
1032 now_ns = timespec2ns(&now);
1033 last_val = timespec2ns(&pt->pt_time.it_value);
1034 interval = timespec2ns(&pt->pt_time.it_interval);
1035
1036 next_val = now_ns +
1037 (now_ns - last_val + interval - 1) % interval;
1038
1039 if (backwards)
1040 next_val += interval;
1041 else
1042 pt->pt_overruns += (now_ns - last_val) / interval;
1043
1044 pt->pt_time.it_value.tv_sec = next_val / 1000000000;
1045 pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
1046 }
1047
1048 /*
1049 * Don't need to check tshzto() return value, here.
1050 * callout_reset() does it for us.
1051 */
1052 callout_reset(&pt->pt_ch, pt->pt_type == CLOCK_MONOTONIC ?
1053 tshztoup(&pt->pt_time.it_value) : tshzto(&pt->pt_time.it_value),
1054 realtimerexpire, pt);
1055 mutex_spin_exit(&timer_lock);
1056 }
1057
1058 /* BSD routine to get the value of an interval timer. */
1059 /* ARGSUSED */
1060 int
1061 sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
1062 register_t *retval)
1063 {
1064 /* {
1065 syscallarg(int) which;
1066 syscallarg(struct itimerval *) itv;
1067 } */
1068 struct proc *p = l->l_proc;
1069 struct itimerval aitv;
1070 int error;
1071
1072 memset(&aitv, 0, sizeof(aitv));
1073 error = dogetitimer(p, SCARG(uap, which), &aitv);
1074 if (error)
1075 return error;
1076 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1077 }
1078
1079 int
1080 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1081 {
1082 struct ptimers *pts;
1083 struct ptimer *pt;
1084 struct itimerspec its;
1085
1086 if ((u_int)which > ITIMER_MONOTONIC)
1087 return (EINVAL);
1088
1089 mutex_spin_enter(&timer_lock);
1090 pts = p->p_timers;
1091 if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
1092 timerclear(&itvp->it_value);
1093 timerclear(&itvp->it_interval);
1094 } else {
1095 timer_gettime(pt, &its);
1096 TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
1097 TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
1098 }
1099 mutex_spin_exit(&timer_lock);
1100
1101 return 0;
1102 }
1103
1104 /* BSD routine to set/arm an interval timer. */
1105 /* ARGSUSED */
1106 int
1107 sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
1108 register_t *retval)
1109 {
1110 /* {
1111 syscallarg(int) which;
1112 syscallarg(const struct itimerval *) itv;
1113 syscallarg(struct itimerval *) oitv;
1114 } */
1115 struct proc *p = l->l_proc;
1116 int which = SCARG(uap, which);
1117 struct sys___getitimer50_args getargs;
1118 const struct itimerval *itvp;
1119 struct itimerval aitv;
1120 int error;
1121
1122 if ((u_int)which > ITIMER_MONOTONIC)
1123 return (EINVAL);
1124 itvp = SCARG(uap, itv);
1125 if (itvp &&
1126 (error = copyin(itvp, &aitv, sizeof(struct itimerval))) != 0)
1127 return (error);
1128 if (SCARG(uap, oitv) != NULL) {
1129 SCARG(&getargs, which) = which;
1130 SCARG(&getargs, itv) = SCARG(uap, oitv);
1131 if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
1132 return (error);
1133 }
1134 if (itvp == 0)
1135 return (0);
1136
1137 return dosetitimer(p, which, &aitv);
1138 }
1139
1140 int
1141 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1142 {
1143 struct timespec now;
1144 struct ptimers *pts;
1145 struct ptimer *pt, *spare;
1146
1147 KASSERT((u_int)which <= CLOCK_MONOTONIC);
1148 if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1149 return (EINVAL);
1150
1151 /*
1152 * Don't bother allocating data structures if the process just
1153 * wants to clear the timer.
1154 */
1155 spare = NULL;
1156 pts = p->p_timers;
1157 retry:
1158 if (!timerisset(&itvp->it_value) && (pts == NULL ||
1159 pts->pts_timers[which] == NULL))
1160 return (0);
1161 if (pts == NULL)
1162 pts = timers_alloc(p);
1163 mutex_spin_enter(&timer_lock);
1164 pt = pts->pts_timers[which];
1165 if (pt == NULL) {
1166 if (spare == NULL) {
1167 mutex_spin_exit(&timer_lock);
1168 spare = pool_get(&ptimer_pool, PR_WAITOK | PR_ZERO);
1169 goto retry;
1170 }
1171 pt = spare;
1172 spare = NULL;
1173 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1174 pt->pt_ev.sigev_value.sival_int = which;
1175 pt->pt_overruns = 0;
1176 pt->pt_proc = p;
1177 pt->pt_type = which;
1178 pt->pt_entry = which;
1179 pt->pt_queued = false;
1180 if (!CLOCK_VIRTUAL_P(which))
1181 callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
1182 else
1183 pt->pt_active = 0;
1184
1185 switch (which) {
1186 case ITIMER_REAL:
1187 case ITIMER_MONOTONIC:
1188 pt->pt_ev.sigev_signo = SIGALRM;
1189 break;
1190 case ITIMER_VIRTUAL:
1191 pt->pt_ev.sigev_signo = SIGVTALRM;
1192 break;
1193 case ITIMER_PROF:
1194 pt->pt_ev.sigev_signo = SIGPROF;
1195 break;
1196 }
1197 pts->pts_timers[which] = pt;
1198 }
1199
1200 TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
1201 TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
1202
1203 if (timespecisset(&pt->pt_time.it_value)) {
1204 /* Convert to absolute time */
1205 /* XXX need to wrap in splclock for timecounters case? */
1206 switch (which) {
1207 case ITIMER_REAL:
1208 getnanotime(&now);
1209 timespecadd(&pt->pt_time.it_value, &now,
1210 &pt->pt_time.it_value);
1211 break;
1212 case ITIMER_MONOTONIC:
1213 getnanouptime(&now);
1214 timespecadd(&pt->pt_time.it_value, &now,
1215 &pt->pt_time.it_value);
1216 break;
1217 default:
1218 break;
1219 }
1220 }
1221 timer_settime(pt);
1222 mutex_spin_exit(&timer_lock);
1223 if (spare != NULL)
1224 pool_put(&ptimer_pool, spare);
1225
1226 return (0);
1227 }
1228
1229 /* Utility routines to manage the array of pointers to timers. */
1230 struct ptimers *
1231 timers_alloc(struct proc *p)
1232 {
1233 struct ptimers *pts;
1234 int i;
1235
1236 pts = pool_get(&ptimers_pool, PR_WAITOK);
1237 LIST_INIT(&pts->pts_virtual);
1238 LIST_INIT(&pts->pts_prof);
1239 for (i = 0; i < TIMER_MAX; i++)
1240 pts->pts_timers[i] = NULL;
1241 mutex_spin_enter(&timer_lock);
1242 if (p->p_timers == NULL) {
1243 p->p_timers = pts;
1244 mutex_spin_exit(&timer_lock);
1245 return pts;
1246 }
1247 mutex_spin_exit(&timer_lock);
1248 pool_put(&ptimers_pool, pts);
1249 return p->p_timers;
1250 }
1251
1252 /*
1253 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1254 * then clean up all timers and free all the data structures. If
1255 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1256 * by timer_create(), not the BSD setitimer() timers, and only free the
1257 * structure if none of those remain.
1258 */
1259 void
1260 timers_free(struct proc *p, int which)
1261 {
1262 struct ptimers *pts;
1263 struct ptimer *ptn;
1264 struct timespec ts;
1265 int i;
1266
1267 if (p->p_timers == NULL)
1268 return;
1269
1270 pts = p->p_timers;
1271 mutex_spin_enter(&timer_lock);
1272 if (which == TIMERS_ALL) {
1273 p->p_timers = NULL;
1274 i = 0;
1275 } else {
1276 timespecclear(&ts);
1277 for (ptn = LIST_FIRST(&pts->pts_virtual);
1278 ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1279 ptn = LIST_NEXT(ptn, pt_list)) {
1280 KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1281 timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1282 }
1283 LIST_FIRST(&pts->pts_virtual) = NULL;
1284 if (ptn) {
1285 KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1286 timespecadd(&ts, &ptn->pt_time.it_value,
1287 &ptn->pt_time.it_value);
1288 LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
1289 }
1290 timespecclear(&ts);
1291 for (ptn = LIST_FIRST(&pts->pts_prof);
1292 ptn && ptn != pts->pts_timers[ITIMER_PROF];
1293 ptn = LIST_NEXT(ptn, pt_list)) {
1294 KASSERT(ptn->pt_type == CLOCK_PROF);
1295 timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1296 }
1297 LIST_FIRST(&pts->pts_prof) = NULL;
1298 if (ptn) {
1299 KASSERT(ptn->pt_type == CLOCK_PROF);
1300 timespecadd(&ts, &ptn->pt_time.it_value,
1301 &ptn->pt_time.it_value);
1302 LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
1303 }
1304 i = TIMER_MIN;
1305 }
1306 for ( ; i < TIMER_MAX; i++) {
1307 if (pts->pts_timers[i] != NULL) {
1308 itimerfree(pts, i);
1309 mutex_spin_enter(&timer_lock);
1310 }
1311 }
1312 if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
1313 pts->pts_timers[2] == NULL && pts->pts_timers[3] == NULL) {
1314 p->p_timers = NULL;
1315 mutex_spin_exit(&timer_lock);
1316 pool_put(&ptimers_pool, pts);
1317 } else
1318 mutex_spin_exit(&timer_lock);
1319 }
1320
1321 static void
1322 itimerfree(struct ptimers *pts, int index)
1323 {
1324 struct ptimer *pt;
1325
1326 KASSERT(mutex_owned(&timer_lock));
1327
1328 pt = pts->pts_timers[index];
1329 pts->pts_timers[index] = NULL;
1330 if (!CLOCK_VIRTUAL_P(pt->pt_type))
1331 callout_halt(&pt->pt_ch, &timer_lock);
1332 if (pt->pt_queued)
1333 TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1334 mutex_spin_exit(&timer_lock);
1335 if (!CLOCK_VIRTUAL_P(pt->pt_type))
1336 callout_destroy(&pt->pt_ch);
1337 pool_put(&ptimer_pool, pt);
1338 }
1339
1340 /*
1341 * Decrement an interval timer by a specified number
1342 * of nanoseconds, which must be less than a second,
1343 * i.e. < 1000000000. If the timer expires, then reload
1344 * it. In this case, carry over (nsec - old value) to
1345 * reduce the value reloaded into the timer so that
1346 * the timer does not drift. This routine assumes
1347 * that it is called in a context where the timers
1348 * on which it is operating cannot change in value.
1349 */
1350 static int
1351 itimerdecr(struct ptimer *pt, int nsec)
1352 {
1353 struct itimerspec *itp;
1354
1355 KASSERT(mutex_owned(&timer_lock));
1356 KASSERT(CLOCK_VIRTUAL_P(pt->pt_type));
1357
1358 itp = &pt->pt_time;
1359 if (itp->it_value.tv_nsec < nsec) {
1360 if (itp->it_value.tv_sec == 0) {
1361 /* expired, and already in next interval */
1362 nsec -= itp->it_value.tv_nsec;
1363 goto expire;
1364 }
1365 itp->it_value.tv_nsec += 1000000000;
1366 itp->it_value.tv_sec--;
1367 }
1368 itp->it_value.tv_nsec -= nsec;
1369 nsec = 0;
1370 if (timespecisset(&itp->it_value))
1371 return (1);
1372 /* expired, exactly at end of interval */
1373 expire:
1374 if (timespecisset(&itp->it_interval)) {
1375 itp->it_value = itp->it_interval;
1376 itp->it_value.tv_nsec -= nsec;
1377 if (itp->it_value.tv_nsec < 0) {
1378 itp->it_value.tv_nsec += 1000000000;
1379 itp->it_value.tv_sec--;
1380 }
1381 timer_settime(pt);
1382 } else
1383 itp->it_value.tv_nsec = 0; /* sec is already 0 */
1384 return (0);
1385 }
1386
1387 static void
1388 itimerfire(struct ptimer *pt)
1389 {
1390
1391 KASSERT(mutex_owned(&timer_lock));
1392
1393 /*
1394 * XXX Can overrun, but we don't do signal queueing yet, anyway.
1395 * XXX Relying on the clock interrupt is stupid.
1396 */
1397 if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL || pt->pt_queued) {
1398 return;
1399 }
1400 TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
1401 pt->pt_queued = true;
1402 softint_schedule(timer_sih);
1403 }
1404
1405 void
1406 timer_tick(lwp_t *l, bool user)
1407 {
1408 struct ptimers *pts;
1409 struct ptimer *pt;
1410 proc_t *p;
1411
1412 p = l->l_proc;
1413 if (p->p_timers == NULL)
1414 return;
1415
1416 mutex_spin_enter(&timer_lock);
1417 if ((pts = l->l_proc->p_timers) != NULL) {
1418 /*
1419 * Run current process's virtual and profile time, as needed.
1420 */
1421 if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
1422 if (itimerdecr(pt, tick * 1000) == 0)
1423 itimerfire(pt);
1424 if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
1425 if (itimerdecr(pt, tick * 1000) == 0)
1426 itimerfire(pt);
1427 }
1428 mutex_spin_exit(&timer_lock);
1429 }
1430
1431 static void
1432 timer_intr(void *cookie)
1433 {
1434 ksiginfo_t ksi;
1435 struct ptimer *pt;
1436 proc_t *p;
1437
1438 mutex_enter(proc_lock);
1439 mutex_spin_enter(&timer_lock);
1440 while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
1441 TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1442 KASSERT(pt->pt_queued);
1443 pt->pt_queued = false;
1444
1445 if (pt->pt_proc->p_timers == NULL) {
1446 /* Process is dying. */
1447 continue;
1448 }
1449 p = pt->pt_proc;
1450 if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
1451 continue;
1452 }
1453 if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
1454 pt->pt_overruns++;
1455 continue;
1456 }
1457
1458 KSI_INIT(&ksi);
1459 ksi.ksi_signo = pt->pt_ev.sigev_signo;
1460 ksi.ksi_code = SI_TIMER;
1461 ksi.ksi_value = pt->pt_ev.sigev_value;
1462 pt->pt_poverruns = pt->pt_overruns;
1463 pt->pt_overruns = 0;
1464 mutex_spin_exit(&timer_lock);
1465 kpsignal(p, &ksi, NULL);
1466 mutex_spin_enter(&timer_lock);
1467 }
1468 mutex_spin_exit(&timer_lock);
1469 mutex_exit(proc_lock);
1470 }
1471
1472 /*
1473 * Check if the time will wrap if set to ts.
1474 *
1475 * ts - timespec describing the new time
1476 * delta - the delta between the current time and ts
1477 */
1478 bool
1479 time_wraps(struct timespec *ts, struct timespec *delta)
1480 {
1481
1482 /*
1483 * Don't allow the time to be set forward so far it
1484 * will wrap and become negative, thus allowing an
1485 * attacker to bypass the next check below. The
1486 * cutoff is 1 year before rollover occurs, so even
1487 * if the attacker uses adjtime(2) to move the time
1488 * past the cutoff, it will take a very long time
1489 * to get to the wrap point.
1490 */
1491 if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
1492 (delta->tv_sec < 0 || delta->tv_nsec < 0))
1493 return true;
1494
1495 return false;
1496 }
1497