kern_time.c revision 1.197.4.3 1 /* $NetBSD: kern_time.c,v 1.197.4.3 2020/05/18 19:05:32 martin Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1986, 1989, 1993
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
61 */
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.197.4.3 2020/05/18 19:05:32 martin Exp $");
65
66 #include <sys/param.h>
67 #include <sys/resourcevar.h>
68 #include <sys/kernel.h>
69 #include <sys/systm.h>
70 #include <sys/proc.h>
71 #include <sys/vnode.h>
72 #include <sys/signalvar.h>
73 #include <sys/syslog.h>
74 #include <sys/timetc.h>
75 #include <sys/timex.h>
76 #include <sys/kauth.h>
77 #include <sys/mount.h>
78 #include <sys/syscallargs.h>
79 #include <sys/cpu.h>
80
81 static void timer_intr(void *);
82 static void itimerfire(struct ptimer *);
83 static void itimerfree(struct ptimers *, int);
84
85 kmutex_t timer_lock;
86
87 static void *timer_sih;
88 static TAILQ_HEAD(, ptimer) timer_queue;
89
90 struct pool ptimer_pool, ptimers_pool;
91
92 #define CLOCK_VIRTUAL_P(clockid) \
93 ((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)
94
95 CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
96 CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
97 CTASSERT(ITIMER_PROF == CLOCK_PROF);
98 CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC);
99
100 #define DELAYTIMER_MAX 32
101
102 /*
103 * Initialize timekeeping.
104 */
105 void
106 time_init(void)
107 {
108
109 pool_init(&ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
110 &pool_allocator_nointr, IPL_NONE);
111 pool_init(&ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
112 &pool_allocator_nointr, IPL_NONE);
113 }
114
115 void
116 time_init2(void)
117 {
118
119 TAILQ_INIT(&timer_queue);
120 mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
121 timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
122 timer_intr, NULL);
123 }
124
125 /* Time of day and interval timer support.
126 *
127 * These routines provide the kernel entry points to get and set
128 * the time-of-day and per-process interval timers. Subroutines
129 * here provide support for adding and subtracting timeval structures
130 * and decrementing interval timers, optionally reloading the interval
131 * timers when they expire.
132 */
133
134 /* This function is used by clock_settime and settimeofday */
135 static int
136 settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
137 {
138 struct timespec delta, now;
139 int s;
140
141 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
142 s = splclock();
143 nanotime(&now);
144 timespecsub(ts, &now, &delta);
145
146 if (check_kauth && kauth_authorize_system(kauth_cred_get(),
147 KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
148 &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
149 splx(s);
150 return (EPERM);
151 }
152
153 #ifdef notyet
154 if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
155 splx(s);
156 return (EPERM);
157 }
158 #endif
159
160 tc_setclock(ts);
161
162 timespecadd(&boottime, &delta, &boottime);
163
164 resettodr();
165 splx(s);
166
167 return (0);
168 }
169
170 int
171 settime(struct proc *p, struct timespec *ts)
172 {
173 return (settime1(p, ts, true));
174 }
175
176 /* ARGSUSED */
177 int
178 sys___clock_gettime50(struct lwp *l,
179 const struct sys___clock_gettime50_args *uap, register_t *retval)
180 {
181 /* {
182 syscallarg(clockid_t) clock_id;
183 syscallarg(struct timespec *) tp;
184 } */
185 int error;
186 struct timespec ats;
187
188 error = clock_gettime1(SCARG(uap, clock_id), &ats);
189 if (error != 0)
190 return error;
191
192 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
193 }
194
195 /* ARGSUSED */
196 int
197 sys___clock_settime50(struct lwp *l,
198 const struct sys___clock_settime50_args *uap, register_t *retval)
199 {
200 /* {
201 syscallarg(clockid_t) clock_id;
202 syscallarg(const struct timespec *) tp;
203 } */
204 int error;
205 struct timespec ats;
206
207 if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
208 return error;
209
210 return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
211 }
212
213
214 int
215 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
216 bool check_kauth)
217 {
218 int error;
219
220 switch (clock_id) {
221 case CLOCK_REALTIME:
222 if ((error = settime1(p, tp, check_kauth)) != 0)
223 return (error);
224 break;
225 case CLOCK_MONOTONIC:
226 return (EINVAL); /* read-only clock */
227 default:
228 return (EINVAL);
229 }
230
231 return 0;
232 }
233
234 int
235 sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
236 register_t *retval)
237 {
238 /* {
239 syscallarg(clockid_t) clock_id;
240 syscallarg(struct timespec *) tp;
241 } */
242 struct timespec ts;
243 int error;
244
245 if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
246 return error;
247
248 if (SCARG(uap, tp))
249 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
250
251 return error;
252 }
253
254 int
255 clock_getres1(clockid_t clock_id, struct timespec *ts)
256 {
257
258 switch (clock_id) {
259 case CLOCK_REALTIME:
260 case CLOCK_MONOTONIC:
261 ts->tv_sec = 0;
262 if (tc_getfrequency() > 1000000000)
263 ts->tv_nsec = 1;
264 else
265 ts->tv_nsec = 1000000000 / tc_getfrequency();
266 break;
267 default:
268 return EINVAL;
269 }
270
271 return 0;
272 }
273
274 /* ARGSUSED */
275 int
276 sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
277 register_t *retval)
278 {
279 /* {
280 syscallarg(struct timespec *) rqtp;
281 syscallarg(struct timespec *) rmtp;
282 } */
283 struct timespec rmt, rqt;
284 int error, error1;
285
286 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
287 if (error)
288 return (error);
289
290 error = nanosleep1(l, CLOCK_MONOTONIC, 0, &rqt,
291 SCARG(uap, rmtp) ? &rmt : NULL);
292 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
293 return error;
294
295 error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
296 return error1 ? error1 : error;
297 }
298
299 /* ARGSUSED */
300 int
301 sys_clock_nanosleep(struct lwp *l, const struct sys_clock_nanosleep_args *uap,
302 register_t *retval)
303 {
304 /* {
305 syscallarg(clockid_t) clock_id;
306 syscallarg(int) flags;
307 syscallarg(struct timespec *) rqtp;
308 syscallarg(struct timespec *) rmtp;
309 } */
310 struct timespec rmt, rqt;
311 int error, error1;
312
313 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
314 if (error)
315 goto out;
316
317 error = nanosleep1(l, SCARG(uap, clock_id), SCARG(uap, flags), &rqt,
318 SCARG(uap, rmtp) ? &rmt : NULL);
319 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
320 goto out;
321
322 if ((SCARG(uap, flags) & TIMER_ABSTIME) == 0 &&
323 (error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt))) != 0)
324 error = error1;
325 out:
326 *retval = error;
327 return 0;
328 }
329
330 int
331 nanosleep1(struct lwp *l, clockid_t clock_id, int flags, struct timespec *rqt,
332 struct timespec *rmt)
333 {
334 struct timespec rmtstart;
335 int error, timo;
336
337 if ((error = ts2timo(clock_id, flags, rqt, &timo, &rmtstart)) != 0) {
338 if (error == ETIMEDOUT) {
339 error = 0;
340 if (rmt != NULL)
341 rmt->tv_sec = rmt->tv_nsec = 0;
342 }
343 return error;
344 }
345
346 /*
347 * Avoid inadvertently sleeping forever
348 */
349 if (timo == 0)
350 timo = 1;
351 again:
352 error = kpause("nanoslp", true, timo, NULL);
353 if (error == EWOULDBLOCK)
354 error = 0;
355 if (rmt != NULL || error == 0) {
356 struct timespec rmtend;
357 struct timespec t0;
358 struct timespec *t;
359 int err;
360
361 err = clock_gettime1(clock_id, &rmtend);
362 if (err != 0)
363 return err;
364
365 t = (rmt != NULL) ? rmt : &t0;
366 if (flags & TIMER_ABSTIME) {
367 timespecsub(rqt, &rmtend, t);
368 } else {
369 timespecsub(&rmtend, &rmtstart, t);
370 timespecsub(rqt, t, t);
371 }
372 if (t->tv_sec < 0)
373 timespecclear(t);
374 if (error == 0) {
375 timo = tstohz(t);
376 if (timo > 0)
377 goto again;
378 }
379 }
380
381 if (error == ERESTART)
382 error = EINTR;
383
384 return error;
385 }
386
387 int
388 sys_clock_getcpuclockid2(struct lwp *l,
389 const struct sys_clock_getcpuclockid2_args *uap,
390 register_t *retval)
391 {
392 /* {
393 syscallarg(idtype_t idtype;
394 syscallarg(id_t id);
395 syscallarg(clockid_t *)clock_id;
396 } */
397 pid_t pid;
398 lwpid_t lid;
399 clockid_t clock_id;
400 id_t id = SCARG(uap, id);
401
402 switch (SCARG(uap, idtype)) {
403 case P_PID:
404 pid = id == 0 ? l->l_proc->p_pid : id;
405 clock_id = CLOCK_PROCESS_CPUTIME_ID | pid;
406 break;
407 case P_LWPID:
408 lid = id == 0 ? l->l_lid : id;
409 clock_id = CLOCK_THREAD_CPUTIME_ID | lid;
410 break;
411 default:
412 return EINVAL;
413 }
414 return copyout(&clock_id, SCARG(uap, clock_id), sizeof(clock_id));
415 }
416
417 /* ARGSUSED */
418 int
419 sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
420 register_t *retval)
421 {
422 /* {
423 syscallarg(struct timeval *) tp;
424 syscallarg(void *) tzp; really "struct timezone *";
425 } */
426 struct timeval atv;
427 int error = 0;
428 struct timezone tzfake;
429
430 if (SCARG(uap, tp)) {
431 memset(&atv, 0, sizeof(atv));
432 microtime(&atv);
433 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
434 if (error)
435 return (error);
436 }
437 if (SCARG(uap, tzp)) {
438 /*
439 * NetBSD has no kernel notion of time zone, so we just
440 * fake up a timezone struct and return it if demanded.
441 */
442 tzfake.tz_minuteswest = 0;
443 tzfake.tz_dsttime = 0;
444 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
445 }
446 return (error);
447 }
448
449 /* ARGSUSED */
450 int
451 sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
452 register_t *retval)
453 {
454 /* {
455 syscallarg(const struct timeval *) tv;
456 syscallarg(const void *) tzp; really "const struct timezone *";
457 } */
458
459 return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
460 }
461
462 int
463 settimeofday1(const struct timeval *utv, bool userspace,
464 const void *utzp, struct lwp *l, bool check_kauth)
465 {
466 struct timeval atv;
467 struct timespec ts;
468 int error;
469
470 /* Verify all parameters before changing time. */
471
472 /*
473 * NetBSD has no kernel notion of time zone, and only an
474 * obsolete program would try to set it, so we log a warning.
475 */
476 if (utzp)
477 log(LOG_WARNING, "pid %d attempted to set the "
478 "(obsolete) kernel time zone\n", l->l_proc->p_pid);
479
480 if (utv == NULL)
481 return 0;
482
483 if (userspace) {
484 if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
485 return error;
486 utv = &atv;
487 }
488
489 TIMEVAL_TO_TIMESPEC(utv, &ts);
490 return settime1(l->l_proc, &ts, check_kauth);
491 }
492
493 int time_adjusted; /* set if an adjustment is made */
494
495 /* ARGSUSED */
496 int
497 sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
498 register_t *retval)
499 {
500 /* {
501 syscallarg(const struct timeval *) delta;
502 syscallarg(struct timeval *) olddelta;
503 } */
504 int error;
505 struct timeval atv, oldatv;
506
507 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
508 KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
509 return error;
510
511 if (SCARG(uap, delta)) {
512 error = copyin(SCARG(uap, delta), &atv,
513 sizeof(*SCARG(uap, delta)));
514 if (error)
515 return (error);
516 }
517 adjtime1(SCARG(uap, delta) ? &atv : NULL,
518 SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
519 if (SCARG(uap, olddelta))
520 error = copyout(&oldatv, SCARG(uap, olddelta),
521 sizeof(*SCARG(uap, olddelta)));
522 return error;
523 }
524
525 void
526 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
527 {
528 extern int64_t time_adjtime; /* in kern_ntptime.c */
529
530 if (olddelta) {
531 memset(olddelta, 0, sizeof(*olddelta));
532 mutex_spin_enter(&timecounter_lock);
533 olddelta->tv_sec = time_adjtime / 1000000;
534 olddelta->tv_usec = time_adjtime % 1000000;
535 if (olddelta->tv_usec < 0) {
536 olddelta->tv_usec += 1000000;
537 olddelta->tv_sec--;
538 }
539 mutex_spin_exit(&timecounter_lock);
540 }
541
542 if (delta) {
543 mutex_spin_enter(&timecounter_lock);
544 time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
545
546 if (time_adjtime) {
547 /* We need to save the system time during shutdown */
548 time_adjusted |= 1;
549 }
550 mutex_spin_exit(&timecounter_lock);
551 }
552 }
553
554 /*
555 * Interval timer support. Both the BSD getitimer() family and the POSIX
556 * timer_*() family of routines are supported.
557 *
558 * All timers are kept in an array pointed to by p_timers, which is
559 * allocated on demand - many processes don't use timers at all. The
560 * first four elements in this array are reserved for the BSD timers:
561 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element
562 * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be
563 * allocated by the timer_create() syscall.
564 *
565 * Realtime timers are kept in the ptimer structure as an absolute
566 * time; virtual time timers are kept as a linked list of deltas.
567 * Virtual time timers are processed in the hardclock() routine of
568 * kern_clock.c. The real time timer is processed by a callout
569 * routine, called from the softclock() routine. Since a callout may
570 * be delayed in real time due to interrupt processing in the system,
571 * it is possible for the real time timeout routine (realtimeexpire,
572 * given below), to be delayed in real time past when it is supposed
573 * to occur. It does not suffice, therefore, to reload the real timer
574 * .it_value from the real time timers .it_interval. Rather, we
575 * compute the next time in absolute time the timer should go off. */
576
577 /* Allocate a POSIX realtime timer. */
578 int
579 sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
580 register_t *retval)
581 {
582 /* {
583 syscallarg(clockid_t) clock_id;
584 syscallarg(struct sigevent *) evp;
585 syscallarg(timer_t *) timerid;
586 } */
587
588 return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
589 SCARG(uap, evp), copyin, l);
590 }
591
592 int
593 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
594 copyin_t fetch_event, struct lwp *l)
595 {
596 int error;
597 timer_t timerid;
598 struct ptimers *pts;
599 struct ptimer *pt;
600 struct proc *p;
601
602 p = l->l_proc;
603
604 if ((u_int)id > CLOCK_MONOTONIC)
605 return (EINVAL);
606
607 if ((pts = p->p_timers) == NULL)
608 pts = timers_alloc(p);
609
610 pt = pool_get(&ptimer_pool, PR_WAITOK | PR_ZERO);
611 if (evp != NULL) {
612 if (((error =
613 (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
614 ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
615 (pt->pt_ev.sigev_notify > SIGEV_SA)) ||
616 (pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
617 (pt->pt_ev.sigev_signo <= 0 ||
618 pt->pt_ev.sigev_signo >= NSIG))) {
619 pool_put(&ptimer_pool, pt);
620 return (error ? error : EINVAL);
621 }
622 }
623
624 /* Find a free timer slot, skipping those reserved for setitimer(). */
625 mutex_spin_enter(&timer_lock);
626 for (timerid = TIMER_MIN; timerid < TIMER_MAX; timerid++)
627 if (pts->pts_timers[timerid] == NULL)
628 break;
629 if (timerid == TIMER_MAX) {
630 mutex_spin_exit(&timer_lock);
631 pool_put(&ptimer_pool, pt);
632 return EAGAIN;
633 }
634 if (evp == NULL) {
635 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
636 switch (id) {
637 case CLOCK_REALTIME:
638 case CLOCK_MONOTONIC:
639 pt->pt_ev.sigev_signo = SIGALRM;
640 break;
641 case CLOCK_VIRTUAL:
642 pt->pt_ev.sigev_signo = SIGVTALRM;
643 break;
644 case CLOCK_PROF:
645 pt->pt_ev.sigev_signo = SIGPROF;
646 break;
647 }
648 pt->pt_ev.sigev_value.sival_int = timerid;
649 }
650 pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
651 pt->pt_info.ksi_errno = 0;
652 pt->pt_info.ksi_code = 0;
653 pt->pt_info.ksi_pid = p->p_pid;
654 pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
655 pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
656 pt->pt_type = id;
657 pt->pt_proc = p;
658 pt->pt_overruns = 0;
659 pt->pt_poverruns = 0;
660 pt->pt_entry = timerid;
661 pt->pt_queued = false;
662 timespecclear(&pt->pt_time.it_value);
663 if (!CLOCK_VIRTUAL_P(id))
664 callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
665 else
666 pt->pt_active = 0;
667
668 pts->pts_timers[timerid] = pt;
669 mutex_spin_exit(&timer_lock);
670
671 return copyout(&timerid, tid, sizeof(timerid));
672 }
673
674 /* Delete a POSIX realtime timer */
675 int
676 sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
677 register_t *retval)
678 {
679 /* {
680 syscallarg(timer_t) timerid;
681 } */
682 struct proc *p = l->l_proc;
683 timer_t timerid;
684 struct ptimers *pts;
685 struct ptimer *pt, *ptn;
686
687 timerid = SCARG(uap, timerid);
688 pts = p->p_timers;
689
690 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
691 return (EINVAL);
692
693 mutex_spin_enter(&timer_lock);
694 if ((pt = pts->pts_timers[timerid]) == NULL) {
695 mutex_spin_exit(&timer_lock);
696 return (EINVAL);
697 }
698 if (CLOCK_VIRTUAL_P(pt->pt_type)) {
699 if (pt->pt_active) {
700 ptn = LIST_NEXT(pt, pt_list);
701 LIST_REMOVE(pt, pt_list);
702 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
703 timespecadd(&pt->pt_time.it_value,
704 &ptn->pt_time.it_value,
705 &ptn->pt_time.it_value);
706 pt->pt_active = 0;
707 }
708 }
709
710 /* Free the timer and release the lock. */
711 itimerfree(pts, timerid);
712
713 return (0);
714 }
715
716 /*
717 * Set up the given timer. The value in pt->pt_time.it_value is taken
718 * to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC timers and
719 * a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
720 *
721 * If the callout had already fired but not yet run, fails with
722 * ERESTART -- caller must restart from the top to look up a timer.
723 */
724 int
725 timer_settime(struct ptimer *pt)
726 {
727 struct ptimer *ptn, *pptn;
728 struct ptlist *ptl;
729
730 KASSERT(mutex_owned(&timer_lock));
731
732 if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
733 /*
734 * Try to stop the callout. However, if it had already
735 * fired, we have to drop the lock to wait for it, so
736 * the world may have changed and pt may not be there
737 * any more. In that case, tell the caller to start
738 * over from the top.
739 */
740 if (callout_halt(&pt->pt_ch, &timer_lock))
741 return ERESTART;
742
743 /* Now we can touch pt and start it up again. */
744 if (timespecisset(&pt->pt_time.it_value)) {
745 /*
746 * Don't need to check tshzto() return value, here.
747 * callout_reset() does it for us.
748 */
749 callout_reset(&pt->pt_ch,
750 pt->pt_type == CLOCK_MONOTONIC ?
751 tshztoup(&pt->pt_time.it_value) :
752 tshzto(&pt->pt_time.it_value),
753 realtimerexpire, pt);
754 }
755 } else {
756 if (pt->pt_active) {
757 ptn = LIST_NEXT(pt, pt_list);
758 LIST_REMOVE(pt, pt_list);
759 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
760 timespecadd(&pt->pt_time.it_value,
761 &ptn->pt_time.it_value,
762 &ptn->pt_time.it_value);
763 }
764 if (timespecisset(&pt->pt_time.it_value)) {
765 if (pt->pt_type == CLOCK_VIRTUAL)
766 ptl = &pt->pt_proc->p_timers->pts_virtual;
767 else
768 ptl = &pt->pt_proc->p_timers->pts_prof;
769
770 for (ptn = LIST_FIRST(ptl), pptn = NULL;
771 ptn && timespeccmp(&pt->pt_time.it_value,
772 &ptn->pt_time.it_value, >);
773 pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
774 timespecsub(&pt->pt_time.it_value,
775 &ptn->pt_time.it_value,
776 &pt->pt_time.it_value);
777
778 if (pptn)
779 LIST_INSERT_AFTER(pptn, pt, pt_list);
780 else
781 LIST_INSERT_HEAD(ptl, pt, pt_list);
782
783 for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
784 timespecsub(&ptn->pt_time.it_value,
785 &pt->pt_time.it_value,
786 &ptn->pt_time.it_value);
787
788 pt->pt_active = 1;
789 } else
790 pt->pt_active = 0;
791 }
792
793 /* Success! */
794 return 0;
795 }
796
797 void
798 timer_gettime(struct ptimer *pt, struct itimerspec *aits)
799 {
800 struct timespec now;
801 struct ptimer *ptn;
802
803 KASSERT(mutex_owned(&timer_lock));
804
805 *aits = pt->pt_time;
806 if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
807 /*
808 * Convert from absolute to relative time in .it_value
809 * part of real time timer. If time for real time
810 * timer has passed return 0, else return difference
811 * between current time and time for the timer to go
812 * off.
813 */
814 if (timespecisset(&aits->it_value)) {
815 if (pt->pt_type == CLOCK_REALTIME) {
816 getnanotime(&now);
817 } else { /* CLOCK_MONOTONIC */
818 getnanouptime(&now);
819 }
820 if (timespeccmp(&aits->it_value, &now, <))
821 timespecclear(&aits->it_value);
822 else
823 timespecsub(&aits->it_value, &now,
824 &aits->it_value);
825 }
826 } else if (pt->pt_active) {
827 if (pt->pt_type == CLOCK_VIRTUAL)
828 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
829 else
830 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
831 for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
832 timespecadd(&aits->it_value,
833 &ptn->pt_time.it_value, &aits->it_value);
834 KASSERT(ptn != NULL); /* pt should be findable on the list */
835 } else
836 timespecclear(&aits->it_value);
837 }
838
839
840
841 /* Set and arm a POSIX realtime timer */
842 int
843 sys___timer_settime50(struct lwp *l,
844 const struct sys___timer_settime50_args *uap,
845 register_t *retval)
846 {
847 /* {
848 syscallarg(timer_t) timerid;
849 syscallarg(int) flags;
850 syscallarg(const struct itimerspec *) value;
851 syscallarg(struct itimerspec *) ovalue;
852 } */
853 int error;
854 struct itimerspec value, ovalue, *ovp = NULL;
855
856 if ((error = copyin(SCARG(uap, value), &value,
857 sizeof(struct itimerspec))) != 0)
858 return (error);
859
860 if (SCARG(uap, ovalue))
861 ovp = &ovalue;
862
863 if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
864 SCARG(uap, flags), l->l_proc)) != 0)
865 return error;
866
867 if (ovp)
868 return copyout(&ovalue, SCARG(uap, ovalue),
869 sizeof(struct itimerspec));
870 return 0;
871 }
872
873 int
874 dotimer_settime(int timerid, struct itimerspec *value,
875 struct itimerspec *ovalue, int flags, struct proc *p)
876 {
877 struct timespec now;
878 struct itimerspec val, oval;
879 struct ptimers *pts;
880 struct ptimer *pt;
881 int error;
882
883 pts = p->p_timers;
884
885 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
886 return EINVAL;
887 val = *value;
888 if ((error = itimespecfix(&val.it_value)) != 0 ||
889 (error = itimespecfix(&val.it_interval)) != 0)
890 return error;
891
892 mutex_spin_enter(&timer_lock);
893 restart:
894 if ((pt = pts->pts_timers[timerid]) == NULL) {
895 mutex_spin_exit(&timer_lock);
896 return EINVAL;
897 }
898
899 oval = pt->pt_time;
900 pt->pt_time = val;
901
902 /*
903 * If we've been passed a relative time for a realtime timer,
904 * convert it to absolute; if an absolute time for a virtual
905 * timer, convert it to relative and make sure we don't set it
906 * to zero, which would cancel the timer, or let it go
907 * negative, which would confuse the comparison tests.
908 */
909 if (timespecisset(&pt->pt_time.it_value)) {
910 if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
911 if ((flags & TIMER_ABSTIME) == 0) {
912 if (pt->pt_type == CLOCK_REALTIME) {
913 getnanotime(&now);
914 } else { /* CLOCK_MONOTONIC */
915 getnanouptime(&now);
916 }
917 timespecadd(&pt->pt_time.it_value, &now,
918 &pt->pt_time.it_value);
919 }
920 } else {
921 if ((flags & TIMER_ABSTIME) != 0) {
922 getnanotime(&now);
923 timespecsub(&pt->pt_time.it_value, &now,
924 &pt->pt_time.it_value);
925 if (!timespecisset(&pt->pt_time.it_value) ||
926 pt->pt_time.it_value.tv_sec < 0) {
927 pt->pt_time.it_value.tv_sec = 0;
928 pt->pt_time.it_value.tv_nsec = 1;
929 }
930 }
931 }
932 }
933
934 error = timer_settime(pt);
935 if (error == ERESTART) {
936 KASSERT(!CLOCK_VIRTUAL_P(pt->pt_type));
937 goto restart;
938 }
939 KASSERT(error == 0);
940 mutex_spin_exit(&timer_lock);
941
942 if (ovalue)
943 *ovalue = oval;
944
945 return (0);
946 }
947
948 /* Return the time remaining until a POSIX timer fires. */
949 int
950 sys___timer_gettime50(struct lwp *l,
951 const struct sys___timer_gettime50_args *uap, register_t *retval)
952 {
953 /* {
954 syscallarg(timer_t) timerid;
955 syscallarg(struct itimerspec *) value;
956 } */
957 struct itimerspec its;
958 int error;
959
960 if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
961 &its)) != 0)
962 return error;
963
964 return copyout(&its, SCARG(uap, value), sizeof(its));
965 }
966
967 int
968 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
969 {
970 struct ptimer *pt;
971 struct ptimers *pts;
972
973 pts = p->p_timers;
974 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
975 return (EINVAL);
976 mutex_spin_enter(&timer_lock);
977 if ((pt = pts->pts_timers[timerid]) == NULL) {
978 mutex_spin_exit(&timer_lock);
979 return (EINVAL);
980 }
981 timer_gettime(pt, its);
982 mutex_spin_exit(&timer_lock);
983
984 return 0;
985 }
986
987 /*
988 * Return the count of the number of times a periodic timer expired
989 * while a notification was already pending. The counter is reset when
990 * a timer expires and a notification can be posted.
991 */
992 int
993 sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
994 register_t *retval)
995 {
996 /* {
997 syscallarg(timer_t) timerid;
998 } */
999 struct proc *p = l->l_proc;
1000 struct ptimers *pts;
1001 int timerid;
1002 struct ptimer *pt;
1003
1004 timerid = SCARG(uap, timerid);
1005
1006 pts = p->p_timers;
1007 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
1008 return (EINVAL);
1009 mutex_spin_enter(&timer_lock);
1010 if ((pt = pts->pts_timers[timerid]) == NULL) {
1011 mutex_spin_exit(&timer_lock);
1012 return (EINVAL);
1013 }
1014 *retval = pt->pt_poverruns;
1015 if (*retval >= DELAYTIMER_MAX)
1016 *retval = DELAYTIMER_MAX;
1017 mutex_spin_exit(&timer_lock);
1018
1019 return (0);
1020 }
1021
1022 /*
1023 * Real interval timer expired:
1024 * send process whose timer expired an alarm signal.
1025 * If time is not set up to reload, then just return.
1026 * Else compute next time timer should go off which is > current time.
1027 * This is where delay in processing this timeout causes multiple
1028 * SIGALRM calls to be compressed into one.
1029 */
1030 void
1031 realtimerexpire(void *arg)
1032 {
1033 uint64_t last_val, next_val, interval, now_ns;
1034 struct timespec now, next;
1035 struct ptimer *pt;
1036 int backwards;
1037
1038 pt = arg;
1039
1040 mutex_spin_enter(&timer_lock);
1041 itimerfire(pt);
1042
1043 if (!timespecisset(&pt->pt_time.it_interval)) {
1044 timespecclear(&pt->pt_time.it_value);
1045 mutex_spin_exit(&timer_lock);
1046 return;
1047 }
1048
1049 if (pt->pt_type == CLOCK_MONOTONIC) {
1050 getnanouptime(&now);
1051 } else {
1052 getnanotime(&now);
1053 }
1054 backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
1055 timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
1056 /* Handle the easy case of non-overflown timers first. */
1057 if (!backwards && timespeccmp(&next, &now, >)) {
1058 pt->pt_time.it_value = next;
1059 } else {
1060 now_ns = timespec2ns(&now);
1061 last_val = timespec2ns(&pt->pt_time.it_value);
1062 interval = timespec2ns(&pt->pt_time.it_interval);
1063
1064 next_val = now_ns +
1065 (now_ns - last_val + interval - 1) % interval;
1066
1067 if (backwards)
1068 next_val += interval;
1069 else
1070 pt->pt_overruns += (now_ns - last_val) / interval;
1071
1072 pt->pt_time.it_value.tv_sec = next_val / 1000000000;
1073 pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
1074 }
1075
1076 /*
1077 * Reset the callout, if it's not going away.
1078 *
1079 * Don't need to check tshzto() return value, here.
1080 * callout_reset() does it for us.
1081 */
1082 if (!pt->pt_dying)
1083 callout_reset(&pt->pt_ch,
1084 (pt->pt_type == CLOCK_MONOTONIC
1085 ? tshztoup(&pt->pt_time.it_value)
1086 : tshzto(&pt->pt_time.it_value)),
1087 realtimerexpire, pt);
1088 mutex_spin_exit(&timer_lock);
1089 }
1090
1091 /* BSD routine to get the value of an interval timer. */
1092 /* ARGSUSED */
1093 int
1094 sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
1095 register_t *retval)
1096 {
1097 /* {
1098 syscallarg(int) which;
1099 syscallarg(struct itimerval *) itv;
1100 } */
1101 struct proc *p = l->l_proc;
1102 struct itimerval aitv;
1103 int error;
1104
1105 memset(&aitv, 0, sizeof(aitv));
1106 error = dogetitimer(p, SCARG(uap, which), &aitv);
1107 if (error)
1108 return error;
1109 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1110 }
1111
1112 int
1113 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1114 {
1115 struct ptimers *pts;
1116 struct ptimer *pt;
1117 struct itimerspec its;
1118
1119 if ((u_int)which > ITIMER_MONOTONIC)
1120 return (EINVAL);
1121
1122 mutex_spin_enter(&timer_lock);
1123 pts = p->p_timers;
1124 if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
1125 timerclear(&itvp->it_value);
1126 timerclear(&itvp->it_interval);
1127 } else {
1128 timer_gettime(pt, &its);
1129 TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
1130 TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
1131 }
1132 mutex_spin_exit(&timer_lock);
1133
1134 return 0;
1135 }
1136
1137 /* BSD routine to set/arm an interval timer. */
1138 /* ARGSUSED */
1139 int
1140 sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
1141 register_t *retval)
1142 {
1143 /* {
1144 syscallarg(int) which;
1145 syscallarg(const struct itimerval *) itv;
1146 syscallarg(struct itimerval *) oitv;
1147 } */
1148 struct proc *p = l->l_proc;
1149 int which = SCARG(uap, which);
1150 struct sys___getitimer50_args getargs;
1151 const struct itimerval *itvp;
1152 struct itimerval aitv;
1153 int error;
1154
1155 if ((u_int)which > ITIMER_MONOTONIC)
1156 return (EINVAL);
1157 itvp = SCARG(uap, itv);
1158 if (itvp &&
1159 (error = copyin(itvp, &aitv, sizeof(struct itimerval))) != 0)
1160 return (error);
1161 if (SCARG(uap, oitv) != NULL) {
1162 SCARG(&getargs, which) = which;
1163 SCARG(&getargs, itv) = SCARG(uap, oitv);
1164 if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
1165 return (error);
1166 }
1167 if (itvp == 0)
1168 return (0);
1169
1170 return dosetitimer(p, which, &aitv);
1171 }
1172
1173 int
1174 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1175 {
1176 struct timespec now;
1177 struct ptimers *pts;
1178 struct ptimer *pt, *spare;
1179 int error;
1180
1181 KASSERT((u_int)which <= CLOCK_MONOTONIC);
1182 if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1183 return (EINVAL);
1184
1185 /*
1186 * Don't bother allocating data structures if the process just
1187 * wants to clear the timer.
1188 */
1189 spare = NULL;
1190 pts = p->p_timers;
1191 retry:
1192 if (!timerisset(&itvp->it_value) && (pts == NULL ||
1193 pts->pts_timers[which] == NULL))
1194 return (0);
1195 if (pts == NULL)
1196 pts = timers_alloc(p);
1197 mutex_spin_enter(&timer_lock);
1198 restart:
1199 pt = pts->pts_timers[which];
1200 if (pt == NULL) {
1201 if (spare == NULL) {
1202 mutex_spin_exit(&timer_lock);
1203 spare = pool_get(&ptimer_pool, PR_WAITOK | PR_ZERO);
1204 goto retry;
1205 }
1206 pt = spare;
1207 spare = NULL;
1208 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1209 pt->pt_ev.sigev_value.sival_int = which;
1210 pt->pt_overruns = 0;
1211 pt->pt_proc = p;
1212 pt->pt_type = which;
1213 pt->pt_entry = which;
1214 pt->pt_queued = false;
1215 if (!CLOCK_VIRTUAL_P(which))
1216 callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
1217 else
1218 pt->pt_active = 0;
1219
1220 switch (which) {
1221 case ITIMER_REAL:
1222 case ITIMER_MONOTONIC:
1223 pt->pt_ev.sigev_signo = SIGALRM;
1224 break;
1225 case ITIMER_VIRTUAL:
1226 pt->pt_ev.sigev_signo = SIGVTALRM;
1227 break;
1228 case ITIMER_PROF:
1229 pt->pt_ev.sigev_signo = SIGPROF;
1230 break;
1231 }
1232 pts->pts_timers[which] = pt;
1233 }
1234
1235 TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
1236 TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
1237
1238 if (timespecisset(&pt->pt_time.it_value)) {
1239 /* Convert to absolute time */
1240 /* XXX need to wrap in splclock for timecounters case? */
1241 switch (which) {
1242 case ITIMER_REAL:
1243 getnanotime(&now);
1244 timespecadd(&pt->pt_time.it_value, &now,
1245 &pt->pt_time.it_value);
1246 break;
1247 case ITIMER_MONOTONIC:
1248 getnanouptime(&now);
1249 timespecadd(&pt->pt_time.it_value, &now,
1250 &pt->pt_time.it_value);
1251 break;
1252 default:
1253 break;
1254 }
1255 }
1256 error = timer_settime(pt);
1257 if (error == ERESTART) {
1258 KASSERT(!CLOCK_VIRTUAL_P(pt->pt_type));
1259 goto restart;
1260 }
1261 KASSERT(error == 0);
1262 mutex_spin_exit(&timer_lock);
1263 if (spare != NULL)
1264 pool_put(&ptimer_pool, spare);
1265
1266 return (0);
1267 }
1268
1269 /* Utility routines to manage the array of pointers to timers. */
1270 struct ptimers *
1271 timers_alloc(struct proc *p)
1272 {
1273 struct ptimers *pts;
1274 int i;
1275
1276 pts = pool_get(&ptimers_pool, PR_WAITOK);
1277 LIST_INIT(&pts->pts_virtual);
1278 LIST_INIT(&pts->pts_prof);
1279 for (i = 0; i < TIMER_MAX; i++)
1280 pts->pts_timers[i] = NULL;
1281 mutex_spin_enter(&timer_lock);
1282 if (p->p_timers == NULL) {
1283 p->p_timers = pts;
1284 mutex_spin_exit(&timer_lock);
1285 return pts;
1286 }
1287 mutex_spin_exit(&timer_lock);
1288 pool_put(&ptimers_pool, pts);
1289 return p->p_timers;
1290 }
1291
1292 /*
1293 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1294 * then clean up all timers and free all the data structures. If
1295 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1296 * by timer_create(), not the BSD setitimer() timers, and only free the
1297 * structure if none of those remain.
1298 */
1299 void
1300 timers_free(struct proc *p, int which)
1301 {
1302 struct ptimers *pts;
1303 struct ptimer *ptn;
1304 struct timespec ts;
1305 int i;
1306
1307 if (p->p_timers == NULL)
1308 return;
1309
1310 pts = p->p_timers;
1311 mutex_spin_enter(&timer_lock);
1312 if (which == TIMERS_ALL) {
1313 p->p_timers = NULL;
1314 i = 0;
1315 } else {
1316 timespecclear(&ts);
1317 for (ptn = LIST_FIRST(&pts->pts_virtual);
1318 ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1319 ptn = LIST_NEXT(ptn, pt_list)) {
1320 KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1321 timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1322 }
1323 LIST_FIRST(&pts->pts_virtual) = NULL;
1324 if (ptn) {
1325 KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1326 timespecadd(&ts, &ptn->pt_time.it_value,
1327 &ptn->pt_time.it_value);
1328 LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
1329 }
1330 timespecclear(&ts);
1331 for (ptn = LIST_FIRST(&pts->pts_prof);
1332 ptn && ptn != pts->pts_timers[ITIMER_PROF];
1333 ptn = LIST_NEXT(ptn, pt_list)) {
1334 KASSERT(ptn->pt_type == CLOCK_PROF);
1335 timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1336 }
1337 LIST_FIRST(&pts->pts_prof) = NULL;
1338 if (ptn) {
1339 KASSERT(ptn->pt_type == CLOCK_PROF);
1340 timespecadd(&ts, &ptn->pt_time.it_value,
1341 &ptn->pt_time.it_value);
1342 LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
1343 }
1344 i = TIMER_MIN;
1345 }
1346 for ( ; i < TIMER_MAX; i++) {
1347 if (pts->pts_timers[i] != NULL) {
1348 /* Free the timer and release the lock. */
1349 itimerfree(pts, i);
1350 /* Reacquire the lock for the next one. */
1351 mutex_spin_enter(&timer_lock);
1352 }
1353 }
1354 if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
1355 pts->pts_timers[2] == NULL && pts->pts_timers[3] == NULL) {
1356 p->p_timers = NULL;
1357 mutex_spin_exit(&timer_lock);
1358 pool_put(&ptimers_pool, pts);
1359 } else
1360 mutex_spin_exit(&timer_lock);
1361 }
1362
1363 static void
1364 itimerfree(struct ptimers *pts, int index)
1365 {
1366 struct ptimer *pt;
1367
1368 KASSERT(mutex_owned(&timer_lock));
1369
1370 pt = pts->pts_timers[index];
1371
1372 /*
1373 * Prevent new references, and notify the callout not to
1374 * restart itself.
1375 */
1376 pts->pts_timers[index] = NULL;
1377 pt->pt_dying = true;
1378
1379 /*
1380 * For non-virtual timers, stop the callout, or wait for it to
1381 * run if it has already fired. It cannot restart again after
1382 * this point: the callout won't restart itself when dying, no
1383 * other users holding the lock can restart it, and any other
1384 * users waiting for callout_halt concurrently (timer_settime)
1385 * will restart from the top.
1386 */
1387 if (!CLOCK_VIRTUAL_P(pt->pt_type))
1388 callout_halt(&pt->pt_ch, &timer_lock);
1389
1390 /* Remove it from the queue to be signalled. */
1391 if (pt->pt_queued)
1392 TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1393
1394 /* All done with the global state. */
1395 mutex_spin_exit(&timer_lock);
1396
1397 /* Destroy the callout, if needed, and free the ptimer. */
1398 if (!CLOCK_VIRTUAL_P(pt->pt_type))
1399 callout_destroy(&pt->pt_ch);
1400 pool_put(&ptimer_pool, pt);
1401 }
1402
1403 /*
1404 * Decrement an interval timer by a specified number
1405 * of nanoseconds, which must be less than a second,
1406 * i.e. < 1000000000. If the timer expires, then reload
1407 * it. In this case, carry over (nsec - old value) to
1408 * reduce the value reloaded into the timer so that
1409 * the timer does not drift. This routine assumes
1410 * that it is called in a context where the timers
1411 * on which it is operating cannot change in value.
1412 */
1413 static int
1414 itimerdecr(struct ptimer *pt, int nsec)
1415 {
1416 struct itimerspec *itp;
1417 int error __diagused;
1418
1419 KASSERT(mutex_owned(&timer_lock));
1420 KASSERT(CLOCK_VIRTUAL_P(pt->pt_type));
1421
1422 itp = &pt->pt_time;
1423 if (itp->it_value.tv_nsec < nsec) {
1424 if (itp->it_value.tv_sec == 0) {
1425 /* expired, and already in next interval */
1426 nsec -= itp->it_value.tv_nsec;
1427 goto expire;
1428 }
1429 itp->it_value.tv_nsec += 1000000000;
1430 itp->it_value.tv_sec--;
1431 }
1432 itp->it_value.tv_nsec -= nsec;
1433 nsec = 0;
1434 if (timespecisset(&itp->it_value))
1435 return (1);
1436 /* expired, exactly at end of interval */
1437 expire:
1438 if (timespecisset(&itp->it_interval)) {
1439 itp->it_value = itp->it_interval;
1440 itp->it_value.tv_nsec -= nsec;
1441 if (itp->it_value.tv_nsec < 0) {
1442 itp->it_value.tv_nsec += 1000000000;
1443 itp->it_value.tv_sec--;
1444 }
1445 error = timer_settime(pt);
1446 KASSERT(error == 0); /* virtual, never fails */
1447 } else
1448 itp->it_value.tv_nsec = 0; /* sec is already 0 */
1449 return (0);
1450 }
1451
1452 static void
1453 itimerfire(struct ptimer *pt)
1454 {
1455
1456 KASSERT(mutex_owned(&timer_lock));
1457
1458 /*
1459 * XXX Can overrun, but we don't do signal queueing yet, anyway.
1460 * XXX Relying on the clock interrupt is stupid.
1461 */
1462 if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL || pt->pt_queued) {
1463 return;
1464 }
1465 TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
1466 pt->pt_queued = true;
1467 softint_schedule(timer_sih);
1468 }
1469
1470 void
1471 timer_tick(lwp_t *l, bool user)
1472 {
1473 struct ptimers *pts;
1474 struct ptimer *pt;
1475 proc_t *p;
1476
1477 p = l->l_proc;
1478 if (p->p_timers == NULL)
1479 return;
1480
1481 mutex_spin_enter(&timer_lock);
1482 if ((pts = l->l_proc->p_timers) != NULL) {
1483 /*
1484 * Run current process's virtual and profile time, as needed.
1485 */
1486 if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
1487 if (itimerdecr(pt, tick * 1000) == 0)
1488 itimerfire(pt);
1489 if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
1490 if (itimerdecr(pt, tick * 1000) == 0)
1491 itimerfire(pt);
1492 }
1493 mutex_spin_exit(&timer_lock);
1494 }
1495
1496 static void
1497 timer_intr(void *cookie)
1498 {
1499 ksiginfo_t ksi;
1500 struct ptimer *pt;
1501 proc_t *p;
1502
1503 mutex_enter(proc_lock);
1504 mutex_spin_enter(&timer_lock);
1505 while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
1506 TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1507 KASSERT(pt->pt_queued);
1508 pt->pt_queued = false;
1509
1510 if (pt->pt_proc->p_timers == NULL) {
1511 /* Process is dying. */
1512 continue;
1513 }
1514 p = pt->pt_proc;
1515 if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
1516 continue;
1517 }
1518 if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
1519 pt->pt_overruns++;
1520 continue;
1521 }
1522
1523 KSI_INIT(&ksi);
1524 ksi.ksi_signo = pt->pt_ev.sigev_signo;
1525 ksi.ksi_code = SI_TIMER;
1526 ksi.ksi_value = pt->pt_ev.sigev_value;
1527 pt->pt_poverruns = pt->pt_overruns;
1528 pt->pt_overruns = 0;
1529 mutex_spin_exit(&timer_lock);
1530 kpsignal(p, &ksi, NULL);
1531 mutex_spin_enter(&timer_lock);
1532 }
1533 mutex_spin_exit(&timer_lock);
1534 mutex_exit(proc_lock);
1535 }
1536
1537 /*
1538 * Check if the time will wrap if set to ts.
1539 *
1540 * ts - timespec describing the new time
1541 * delta - the delta between the current time and ts
1542 */
1543 bool
1544 time_wraps(struct timespec *ts, struct timespec *delta)
1545 {
1546
1547 /*
1548 * Don't allow the time to be set forward so far it
1549 * will wrap and become negative, thus allowing an
1550 * attacker to bypass the next check below. The
1551 * cutoff is 1 year before rollover occurs, so even
1552 * if the attacker uses adjtime(2) to move the time
1553 * past the cutoff, it will take a very long time
1554 * to get to the wrap point.
1555 */
1556 if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
1557 (delta->tv_sec < 0 || delta->tv_nsec < 0))
1558 return true;
1559
1560 return false;
1561 }
1562