kern_time.c revision 1.201 1 /* $NetBSD: kern_time.c,v 1.201 2019/10/05 12:57:40 kamil Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1986, 1989, 1993
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
61 */
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.201 2019/10/05 12:57:40 kamil Exp $");
65
66 #include <sys/param.h>
67 #include <sys/resourcevar.h>
68 #include <sys/kernel.h>
69 #include <sys/systm.h>
70 #include <sys/proc.h>
71 #include <sys/vnode.h>
72 #include <sys/signalvar.h>
73 #include <sys/syslog.h>
74 #include <sys/timetc.h>
75 #include <sys/timex.h>
76 #include <sys/kauth.h>
77 #include <sys/mount.h>
78 #include <sys/syscallargs.h>
79 #include <sys/cpu.h>
80
81 static void timer_intr(void *);
82 static void itimerfire(struct ptimer *);
83 static void itimerfree(struct ptimers *, int);
84
85 kmutex_t timer_lock;
86
87 static void *timer_sih;
88 static TAILQ_HEAD(, ptimer) timer_queue;
89
90 struct pool ptimer_pool, ptimers_pool;
91
92 #define CLOCK_VIRTUAL_P(clockid) \
93 ((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)
94
95 CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
96 CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
97 CTASSERT(ITIMER_PROF == CLOCK_PROF);
98 CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC);
99
100 #define DELAYTIMER_MAX 32
101
102 /*
103 * Initialize timekeeping.
104 */
105 void
106 time_init(void)
107 {
108
109 pool_init(&ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
110 &pool_allocator_nointr, IPL_NONE);
111 pool_init(&ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
112 &pool_allocator_nointr, IPL_NONE);
113 }
114
115 void
116 time_init2(void)
117 {
118
119 TAILQ_INIT(&timer_queue);
120 mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
121 timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
122 timer_intr, NULL);
123 }
124
125 /* Time of day and interval timer support.
126 *
127 * These routines provide the kernel entry points to get and set
128 * the time-of-day and per-process interval timers. Subroutines
129 * here provide support for adding and subtracting timeval structures
130 * and decrementing interval timers, optionally reloading the interval
131 * timers when they expire.
132 */
133
134 /* This function is used by clock_settime and settimeofday */
135 static int
136 settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
137 {
138 struct timespec delta, now;
139 int s;
140
141 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
142 s = splclock();
143 nanotime(&now);
144 timespecsub(ts, &now, &delta);
145
146 if (check_kauth && kauth_authorize_system(kauth_cred_get(),
147 KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
148 &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
149 splx(s);
150 return (EPERM);
151 }
152
153 #ifdef notyet
154 if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
155 splx(s);
156 return (EPERM);
157 }
158 #endif
159
160 tc_setclock(ts);
161
162 timespecadd(&boottime, &delta, &boottime);
163
164 resettodr();
165 splx(s);
166
167 return (0);
168 }
169
170 int
171 settime(struct proc *p, struct timespec *ts)
172 {
173 return (settime1(p, ts, true));
174 }
175
176 /* ARGSUSED */
177 int
178 sys___clock_gettime50(struct lwp *l,
179 const struct sys___clock_gettime50_args *uap, register_t *retval)
180 {
181 /* {
182 syscallarg(clockid_t) clock_id;
183 syscallarg(struct timespec *) tp;
184 } */
185 int error;
186 struct timespec ats;
187
188 error = clock_gettime1(SCARG(uap, clock_id), &ats);
189 if (error != 0)
190 return error;
191
192 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
193 }
194
195 /* ARGSUSED */
196 int
197 sys___clock_settime50(struct lwp *l,
198 const struct sys___clock_settime50_args *uap, register_t *retval)
199 {
200 /* {
201 syscallarg(clockid_t) clock_id;
202 syscallarg(const struct timespec *) tp;
203 } */
204 int error;
205 struct timespec ats;
206
207 if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
208 return error;
209
210 return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
211 }
212
213
214 int
215 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
216 bool check_kauth)
217 {
218 int error;
219
220 if (tp->tv_nsec < 0 || tp->tv_nsec >= 1000000000L)
221 return EINVAL;
222
223 switch (clock_id) {
224 case CLOCK_REALTIME:
225 if ((error = settime1(p, tp, check_kauth)) != 0)
226 return (error);
227 break;
228 case CLOCK_MONOTONIC:
229 return (EINVAL); /* read-only clock */
230 default:
231 return (EINVAL);
232 }
233
234 return 0;
235 }
236
237 int
238 sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
239 register_t *retval)
240 {
241 /* {
242 syscallarg(clockid_t) clock_id;
243 syscallarg(struct timespec *) tp;
244 } */
245 struct timespec ts;
246 int error;
247
248 if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
249 return error;
250
251 if (SCARG(uap, tp))
252 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
253
254 return error;
255 }
256
257 int
258 clock_getres1(clockid_t clock_id, struct timespec *ts)
259 {
260
261 switch (clock_id) {
262 case CLOCK_REALTIME:
263 case CLOCK_MONOTONIC:
264 ts->tv_sec = 0;
265 if (tc_getfrequency() > 1000000000)
266 ts->tv_nsec = 1;
267 else
268 ts->tv_nsec = 1000000000 / tc_getfrequency();
269 break;
270 default:
271 return EINVAL;
272 }
273
274 return 0;
275 }
276
277 /* ARGSUSED */
278 int
279 sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
280 register_t *retval)
281 {
282 /* {
283 syscallarg(struct timespec *) rqtp;
284 syscallarg(struct timespec *) rmtp;
285 } */
286 struct timespec rmt, rqt;
287 int error, error1;
288
289 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
290 if (error)
291 return (error);
292
293 error = nanosleep1(l, CLOCK_MONOTONIC, 0, &rqt,
294 SCARG(uap, rmtp) ? &rmt : NULL);
295 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
296 return error;
297
298 error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
299 return error1 ? error1 : error;
300 }
301
302 /* ARGSUSED */
303 int
304 sys_clock_nanosleep(struct lwp *l, const struct sys_clock_nanosleep_args *uap,
305 register_t *retval)
306 {
307 /* {
308 syscallarg(clockid_t) clock_id;
309 syscallarg(int) flags;
310 syscallarg(struct timespec *) rqtp;
311 syscallarg(struct timespec *) rmtp;
312 } */
313 struct timespec rmt, rqt;
314 int error, error1;
315
316 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
317 if (error)
318 goto out;
319
320 error = nanosleep1(l, SCARG(uap, clock_id), SCARG(uap, flags), &rqt,
321 SCARG(uap, rmtp) ? &rmt : NULL);
322 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
323 goto out;
324
325 if ((SCARG(uap, flags) & TIMER_ABSTIME) == 0 &&
326 (error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt))) != 0)
327 error = error1;
328 out:
329 *retval = error;
330 return 0;
331 }
332
333 int
334 nanosleep1(struct lwp *l, clockid_t clock_id, int flags, struct timespec *rqt,
335 struct timespec *rmt)
336 {
337 struct timespec rmtstart;
338 int error, timo;
339
340 if ((error = ts2timo(clock_id, flags, rqt, &timo, &rmtstart)) != 0) {
341 if (error == ETIMEDOUT) {
342 error = 0;
343 if (rmt != NULL)
344 rmt->tv_sec = rmt->tv_nsec = 0;
345 }
346 return error;
347 }
348
349 /*
350 * Avoid inadvertently sleeping forever
351 */
352 if (timo == 0)
353 timo = 1;
354 again:
355 error = kpause("nanoslp", true, timo, NULL);
356 if (error == EWOULDBLOCK)
357 error = 0;
358 if (rmt != NULL || error == 0) {
359 struct timespec rmtend;
360 struct timespec t0;
361 struct timespec *t;
362
363 (void)clock_gettime1(clock_id, &rmtend);
364 t = (rmt != NULL) ? rmt : &t0;
365 if (flags & TIMER_ABSTIME) {
366 timespecsub(rqt, &rmtend, t);
367 } else {
368 timespecsub(&rmtend, &rmtstart, t);
369 timespecsub(rqt, t, t);
370 }
371 if (t->tv_sec < 0)
372 timespecclear(t);
373 if (error == 0) {
374 timo = tstohz(t);
375 if (timo > 0)
376 goto again;
377 }
378 }
379
380 if (error == ERESTART)
381 error = EINTR;
382
383 return error;
384 }
385
386 int
387 sys_clock_getcpuclockid2(struct lwp *l,
388 const struct sys_clock_getcpuclockid2_args *uap,
389 register_t *retval)
390 {
391 /* {
392 syscallarg(idtype_t idtype;
393 syscallarg(id_t id);
394 syscallarg(clockid_t *)clock_id;
395 } */
396 pid_t pid;
397 lwpid_t lid;
398 clockid_t clock_id;
399 id_t id = SCARG(uap, id);
400
401 switch (SCARG(uap, idtype)) {
402 case P_PID:
403 pid = id == 0 ? l->l_proc->p_pid : id;
404 clock_id = CLOCK_PROCESS_CPUTIME_ID | pid;
405 break;
406 case P_LWPID:
407 lid = id == 0 ? l->l_lid : id;
408 clock_id = CLOCK_THREAD_CPUTIME_ID | lid;
409 break;
410 default:
411 return EINVAL;
412 }
413 return copyout(&clock_id, SCARG(uap, clock_id), sizeof(clock_id));
414 }
415
416 /* ARGSUSED */
417 int
418 sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
419 register_t *retval)
420 {
421 /* {
422 syscallarg(struct timeval *) tp;
423 syscallarg(void *) tzp; really "struct timezone *";
424 } */
425 struct timeval atv;
426 int error = 0;
427 struct timezone tzfake;
428
429 if (SCARG(uap, tp)) {
430 memset(&atv, 0, sizeof(atv));
431 microtime(&atv);
432 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
433 if (error)
434 return (error);
435 }
436 if (SCARG(uap, tzp)) {
437 /*
438 * NetBSD has no kernel notion of time zone, so we just
439 * fake up a timezone struct and return it if demanded.
440 */
441 tzfake.tz_minuteswest = 0;
442 tzfake.tz_dsttime = 0;
443 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
444 }
445 return (error);
446 }
447
448 /* ARGSUSED */
449 int
450 sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
451 register_t *retval)
452 {
453 /* {
454 syscallarg(const struct timeval *) tv;
455 syscallarg(const void *) tzp; really "const struct timezone *";
456 } */
457
458 return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
459 }
460
461 int
462 settimeofday1(const struct timeval *utv, bool userspace,
463 const void *utzp, struct lwp *l, bool check_kauth)
464 {
465 struct timeval atv;
466 struct timespec ts;
467 int error;
468
469 /* Verify all parameters before changing time. */
470
471 /*
472 * NetBSD has no kernel notion of time zone, and only an
473 * obsolete program would try to set it, so we log a warning.
474 */
475 if (utzp)
476 log(LOG_WARNING, "pid %d attempted to set the "
477 "(obsolete) kernel time zone\n", l->l_proc->p_pid);
478
479 if (utv == NULL)
480 return 0;
481
482 if (userspace) {
483 if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
484 return error;
485 utv = &atv;
486 }
487
488 if (utv->tv_usec < 0 || utv->tv_usec >= 1000000)
489 return EINVAL;
490
491 TIMEVAL_TO_TIMESPEC(utv, &ts);
492 return settime1(l->l_proc, &ts, check_kauth);
493 }
494
495 int time_adjusted; /* set if an adjustment is made */
496
497 /* ARGSUSED */
498 int
499 sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
500 register_t *retval)
501 {
502 /* {
503 syscallarg(const struct timeval *) delta;
504 syscallarg(struct timeval *) olddelta;
505 } */
506 int error;
507 struct timeval atv, oldatv;
508
509 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
510 KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
511 return error;
512
513 if (SCARG(uap, delta)) {
514 error = copyin(SCARG(uap, delta), &atv,
515 sizeof(*SCARG(uap, delta)));
516 if (error)
517 return (error);
518 }
519 adjtime1(SCARG(uap, delta) ? &atv : NULL,
520 SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
521 if (SCARG(uap, olddelta))
522 error = copyout(&oldatv, SCARG(uap, olddelta),
523 sizeof(*SCARG(uap, olddelta)));
524 return error;
525 }
526
527 void
528 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
529 {
530 extern int64_t time_adjtime; /* in kern_ntptime.c */
531
532 if (olddelta) {
533 memset(olddelta, 0, sizeof(*olddelta));
534 mutex_spin_enter(&timecounter_lock);
535 olddelta->tv_sec = time_adjtime / 1000000;
536 olddelta->tv_usec = time_adjtime % 1000000;
537 if (olddelta->tv_usec < 0) {
538 olddelta->tv_usec += 1000000;
539 olddelta->tv_sec--;
540 }
541 mutex_spin_exit(&timecounter_lock);
542 }
543
544 if (delta) {
545 mutex_spin_enter(&timecounter_lock);
546 time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
547
548 if (time_adjtime) {
549 /* We need to save the system time during shutdown */
550 time_adjusted |= 1;
551 }
552 mutex_spin_exit(&timecounter_lock);
553 }
554 }
555
556 /*
557 * Interval timer support. Both the BSD getitimer() family and the POSIX
558 * timer_*() family of routines are supported.
559 *
560 * All timers are kept in an array pointed to by p_timers, which is
561 * allocated on demand - many processes don't use timers at all. The
562 * first four elements in this array are reserved for the BSD timers:
563 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element
564 * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be
565 * allocated by the timer_create() syscall.
566 *
567 * Realtime timers are kept in the ptimer structure as an absolute
568 * time; virtual time timers are kept as a linked list of deltas.
569 * Virtual time timers are processed in the hardclock() routine of
570 * kern_clock.c. The real time timer is processed by a callout
571 * routine, called from the softclock() routine. Since a callout may
572 * be delayed in real time due to interrupt processing in the system,
573 * it is possible for the real time timeout routine (realtimeexpire,
574 * given below), to be delayed in real time past when it is supposed
575 * to occur. It does not suffice, therefore, to reload the real timer
576 * .it_value from the real time timers .it_interval. Rather, we
577 * compute the next time in absolute time the timer should go off. */
578
579 /* Allocate a POSIX realtime timer. */
580 int
581 sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
582 register_t *retval)
583 {
584 /* {
585 syscallarg(clockid_t) clock_id;
586 syscallarg(struct sigevent *) evp;
587 syscallarg(timer_t *) timerid;
588 } */
589
590 return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
591 SCARG(uap, evp), copyin, l);
592 }
593
594 int
595 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
596 copyin_t fetch_event, struct lwp *l)
597 {
598 int error;
599 timer_t timerid;
600 struct ptimers *pts;
601 struct ptimer *pt;
602 struct proc *p;
603
604 p = l->l_proc;
605
606 if ((u_int)id > CLOCK_MONOTONIC)
607 return (EINVAL);
608
609 if ((pts = p->p_timers) == NULL)
610 pts = timers_alloc(p);
611
612 pt = pool_get(&ptimer_pool, PR_WAITOK | PR_ZERO);
613 if (evp != NULL) {
614 if (((error =
615 (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
616 ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
617 (pt->pt_ev.sigev_notify > SIGEV_SA)) ||
618 (pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
619 (pt->pt_ev.sigev_signo <= 0 ||
620 pt->pt_ev.sigev_signo >= NSIG))) {
621 pool_put(&ptimer_pool, pt);
622 return (error ? error : EINVAL);
623 }
624 }
625
626 /* Find a free timer slot, skipping those reserved for setitimer(). */
627 mutex_spin_enter(&timer_lock);
628 for (timerid = TIMER_MIN; timerid < TIMER_MAX; timerid++)
629 if (pts->pts_timers[timerid] == NULL)
630 break;
631 if (timerid == TIMER_MAX) {
632 mutex_spin_exit(&timer_lock);
633 pool_put(&ptimer_pool, pt);
634 return EAGAIN;
635 }
636 if (evp == NULL) {
637 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
638 switch (id) {
639 case CLOCK_REALTIME:
640 case CLOCK_MONOTONIC:
641 pt->pt_ev.sigev_signo = SIGALRM;
642 break;
643 case CLOCK_VIRTUAL:
644 pt->pt_ev.sigev_signo = SIGVTALRM;
645 break;
646 case CLOCK_PROF:
647 pt->pt_ev.sigev_signo = SIGPROF;
648 break;
649 }
650 pt->pt_ev.sigev_value.sival_int = timerid;
651 }
652 pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
653 pt->pt_info.ksi_errno = 0;
654 pt->pt_info.ksi_code = 0;
655 pt->pt_info.ksi_pid = p->p_pid;
656 pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
657 pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
658 pt->pt_type = id;
659 pt->pt_proc = p;
660 pt->pt_overruns = 0;
661 pt->pt_poverruns = 0;
662 pt->pt_entry = timerid;
663 pt->pt_queued = false;
664 timespecclear(&pt->pt_time.it_value);
665 if (!CLOCK_VIRTUAL_P(id))
666 callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
667 else
668 pt->pt_active = 0;
669
670 pts->pts_timers[timerid] = pt;
671 mutex_spin_exit(&timer_lock);
672
673 return copyout(&timerid, tid, sizeof(timerid));
674 }
675
676 /* Delete a POSIX realtime timer */
677 int
678 sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
679 register_t *retval)
680 {
681 /* {
682 syscallarg(timer_t) timerid;
683 } */
684 struct proc *p = l->l_proc;
685 timer_t timerid;
686 struct ptimers *pts;
687 struct ptimer *pt, *ptn;
688
689 timerid = SCARG(uap, timerid);
690 pts = p->p_timers;
691
692 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
693 return (EINVAL);
694
695 mutex_spin_enter(&timer_lock);
696 if ((pt = pts->pts_timers[timerid]) == NULL) {
697 mutex_spin_exit(&timer_lock);
698 return (EINVAL);
699 }
700 if (CLOCK_VIRTUAL_P(pt->pt_type)) {
701 if (pt->pt_active) {
702 ptn = LIST_NEXT(pt, pt_list);
703 LIST_REMOVE(pt, pt_list);
704 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
705 timespecadd(&pt->pt_time.it_value,
706 &ptn->pt_time.it_value,
707 &ptn->pt_time.it_value);
708 pt->pt_active = 0;
709 }
710 }
711
712 /* Free the timer and release the lock. */
713 itimerfree(pts, timerid);
714
715 return (0);
716 }
717
718 /*
719 * Set up the given timer. The value in pt->pt_time.it_value is taken
720 * to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC timers and
721 * a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
722 *
723 * If the callout had already fired but not yet run, fails with
724 * ERESTART -- caller must restart from the top to look up a timer.
725 */
726 int
727 timer_settime(struct ptimer *pt)
728 {
729 struct ptimer *ptn, *pptn;
730 struct ptlist *ptl;
731
732 KASSERT(mutex_owned(&timer_lock));
733
734 if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
735 /*
736 * Try to stop the callout. However, if it had already
737 * fired, we have to drop the lock to wait for it, so
738 * the world may have changed and pt may not be there
739 * any more. In that case, tell the caller to start
740 * over from the top.
741 */
742 if (callout_halt(&pt->pt_ch, &timer_lock))
743 return ERESTART;
744
745 /* Now we can touch pt and start it up again. */
746 if (timespecisset(&pt->pt_time.it_value)) {
747 /*
748 * Don't need to check tshzto() return value, here.
749 * callout_reset() does it for us.
750 */
751 callout_reset(&pt->pt_ch,
752 pt->pt_type == CLOCK_MONOTONIC ?
753 tshztoup(&pt->pt_time.it_value) :
754 tshzto(&pt->pt_time.it_value),
755 realtimerexpire, pt);
756 }
757 } else {
758 if (pt->pt_active) {
759 ptn = LIST_NEXT(pt, pt_list);
760 LIST_REMOVE(pt, pt_list);
761 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
762 timespecadd(&pt->pt_time.it_value,
763 &ptn->pt_time.it_value,
764 &ptn->pt_time.it_value);
765 }
766 if (timespecisset(&pt->pt_time.it_value)) {
767 if (pt->pt_type == CLOCK_VIRTUAL)
768 ptl = &pt->pt_proc->p_timers->pts_virtual;
769 else
770 ptl = &pt->pt_proc->p_timers->pts_prof;
771
772 for (ptn = LIST_FIRST(ptl), pptn = NULL;
773 ptn && timespeccmp(&pt->pt_time.it_value,
774 &ptn->pt_time.it_value, >);
775 pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
776 timespecsub(&pt->pt_time.it_value,
777 &ptn->pt_time.it_value,
778 &pt->pt_time.it_value);
779
780 if (pptn)
781 LIST_INSERT_AFTER(pptn, pt, pt_list);
782 else
783 LIST_INSERT_HEAD(ptl, pt, pt_list);
784
785 for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
786 timespecsub(&ptn->pt_time.it_value,
787 &pt->pt_time.it_value,
788 &ptn->pt_time.it_value);
789
790 pt->pt_active = 1;
791 } else
792 pt->pt_active = 0;
793 }
794
795 /* Success! */
796 return 0;
797 }
798
799 void
800 timer_gettime(struct ptimer *pt, struct itimerspec *aits)
801 {
802 struct timespec now;
803 struct ptimer *ptn;
804
805 KASSERT(mutex_owned(&timer_lock));
806
807 *aits = pt->pt_time;
808 if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
809 /*
810 * Convert from absolute to relative time in .it_value
811 * part of real time timer. If time for real time
812 * timer has passed return 0, else return difference
813 * between current time and time for the timer to go
814 * off.
815 */
816 if (timespecisset(&aits->it_value)) {
817 if (pt->pt_type == CLOCK_REALTIME) {
818 getnanotime(&now);
819 } else { /* CLOCK_MONOTONIC */
820 getnanouptime(&now);
821 }
822 if (timespeccmp(&aits->it_value, &now, <))
823 timespecclear(&aits->it_value);
824 else
825 timespecsub(&aits->it_value, &now,
826 &aits->it_value);
827 }
828 } else if (pt->pt_active) {
829 if (pt->pt_type == CLOCK_VIRTUAL)
830 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
831 else
832 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
833 for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
834 timespecadd(&aits->it_value,
835 &ptn->pt_time.it_value, &aits->it_value);
836 KASSERT(ptn != NULL); /* pt should be findable on the list */
837 } else
838 timespecclear(&aits->it_value);
839 }
840
841
842
843 /* Set and arm a POSIX realtime timer */
844 int
845 sys___timer_settime50(struct lwp *l,
846 const struct sys___timer_settime50_args *uap,
847 register_t *retval)
848 {
849 /* {
850 syscallarg(timer_t) timerid;
851 syscallarg(int) flags;
852 syscallarg(const struct itimerspec *) value;
853 syscallarg(struct itimerspec *) ovalue;
854 } */
855 int error;
856 struct itimerspec value, ovalue, *ovp = NULL;
857
858 if ((error = copyin(SCARG(uap, value), &value,
859 sizeof(struct itimerspec))) != 0)
860 return (error);
861
862 if (SCARG(uap, ovalue))
863 ovp = &ovalue;
864
865 if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
866 SCARG(uap, flags), l->l_proc)) != 0)
867 return error;
868
869 if (ovp)
870 return copyout(&ovalue, SCARG(uap, ovalue),
871 sizeof(struct itimerspec));
872 return 0;
873 }
874
875 int
876 dotimer_settime(int timerid, struct itimerspec *value,
877 struct itimerspec *ovalue, int flags, struct proc *p)
878 {
879 struct timespec now;
880 struct itimerspec val, oval;
881 struct ptimers *pts;
882 struct ptimer *pt;
883 int error;
884
885 pts = p->p_timers;
886
887 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
888 return EINVAL;
889 val = *value;
890 if ((error = itimespecfix(&val.it_value)) != 0 ||
891 (error = itimespecfix(&val.it_interval)) != 0)
892 return error;
893
894 mutex_spin_enter(&timer_lock);
895 restart:
896 if ((pt = pts->pts_timers[timerid]) == NULL) {
897 mutex_spin_exit(&timer_lock);
898 return EINVAL;
899 }
900
901 oval = pt->pt_time;
902 pt->pt_time = val;
903
904 /*
905 * If we've been passed a relative time for a realtime timer,
906 * convert it to absolute; if an absolute time for a virtual
907 * timer, convert it to relative and make sure we don't set it
908 * to zero, which would cancel the timer, or let it go
909 * negative, which would confuse the comparison tests.
910 */
911 if (timespecisset(&pt->pt_time.it_value)) {
912 if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
913 if ((flags & TIMER_ABSTIME) == 0) {
914 if (pt->pt_type == CLOCK_REALTIME) {
915 getnanotime(&now);
916 } else { /* CLOCK_MONOTONIC */
917 getnanouptime(&now);
918 }
919 timespecadd(&pt->pt_time.it_value, &now,
920 &pt->pt_time.it_value);
921 }
922 } else {
923 if ((flags & TIMER_ABSTIME) != 0) {
924 getnanotime(&now);
925 timespecsub(&pt->pt_time.it_value, &now,
926 &pt->pt_time.it_value);
927 if (!timespecisset(&pt->pt_time.it_value) ||
928 pt->pt_time.it_value.tv_sec < 0) {
929 pt->pt_time.it_value.tv_sec = 0;
930 pt->pt_time.it_value.tv_nsec = 1;
931 }
932 }
933 }
934 }
935
936 error = timer_settime(pt);
937 if (error == ERESTART) {
938 KASSERT(!CLOCK_VIRTUAL_P(pt->pt_type));
939 goto restart;
940 }
941 KASSERT(error == 0);
942 mutex_spin_exit(&timer_lock);
943
944 if (ovalue)
945 *ovalue = oval;
946
947 return (0);
948 }
949
950 /* Return the time remaining until a POSIX timer fires. */
951 int
952 sys___timer_gettime50(struct lwp *l,
953 const struct sys___timer_gettime50_args *uap, register_t *retval)
954 {
955 /* {
956 syscallarg(timer_t) timerid;
957 syscallarg(struct itimerspec *) value;
958 } */
959 struct itimerspec its;
960 int error;
961
962 if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
963 &its)) != 0)
964 return error;
965
966 return copyout(&its, SCARG(uap, value), sizeof(its));
967 }
968
969 int
970 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
971 {
972 struct ptimer *pt;
973 struct ptimers *pts;
974
975 pts = p->p_timers;
976 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
977 return (EINVAL);
978 mutex_spin_enter(&timer_lock);
979 if ((pt = pts->pts_timers[timerid]) == NULL) {
980 mutex_spin_exit(&timer_lock);
981 return (EINVAL);
982 }
983 timer_gettime(pt, its);
984 mutex_spin_exit(&timer_lock);
985
986 return 0;
987 }
988
989 /*
990 * Return the count of the number of times a periodic timer expired
991 * while a notification was already pending. The counter is reset when
992 * a timer expires and a notification can be posted.
993 */
994 int
995 sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
996 register_t *retval)
997 {
998 /* {
999 syscallarg(timer_t) timerid;
1000 } */
1001 struct proc *p = l->l_proc;
1002 struct ptimers *pts;
1003 int timerid;
1004 struct ptimer *pt;
1005
1006 timerid = SCARG(uap, timerid);
1007
1008 pts = p->p_timers;
1009 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
1010 return (EINVAL);
1011 mutex_spin_enter(&timer_lock);
1012 if ((pt = pts->pts_timers[timerid]) == NULL) {
1013 mutex_spin_exit(&timer_lock);
1014 return (EINVAL);
1015 }
1016 *retval = pt->pt_poverruns;
1017 if (*retval >= DELAYTIMER_MAX)
1018 *retval = DELAYTIMER_MAX;
1019 mutex_spin_exit(&timer_lock);
1020
1021 return (0);
1022 }
1023
1024 /*
1025 * Real interval timer expired:
1026 * send process whose timer expired an alarm signal.
1027 * If time is not set up to reload, then just return.
1028 * Else compute next time timer should go off which is > current time.
1029 * This is where delay in processing this timeout causes multiple
1030 * SIGALRM calls to be compressed into one.
1031 */
1032 void
1033 realtimerexpire(void *arg)
1034 {
1035 uint64_t last_val, next_val, interval, now_ns;
1036 struct timespec now, next;
1037 struct ptimer *pt;
1038 int backwards;
1039
1040 pt = arg;
1041
1042 mutex_spin_enter(&timer_lock);
1043 itimerfire(pt);
1044
1045 if (!timespecisset(&pt->pt_time.it_interval)) {
1046 timespecclear(&pt->pt_time.it_value);
1047 mutex_spin_exit(&timer_lock);
1048 return;
1049 }
1050
1051 if (pt->pt_type == CLOCK_MONOTONIC) {
1052 getnanouptime(&now);
1053 } else {
1054 getnanotime(&now);
1055 }
1056 backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
1057 timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
1058 /* Handle the easy case of non-overflown timers first. */
1059 if (!backwards && timespeccmp(&next, &now, >)) {
1060 pt->pt_time.it_value = next;
1061 } else {
1062 now_ns = timespec2ns(&now);
1063 last_val = timespec2ns(&pt->pt_time.it_value);
1064 interval = timespec2ns(&pt->pt_time.it_interval);
1065
1066 next_val = now_ns +
1067 (now_ns - last_val + interval - 1) % interval;
1068
1069 if (backwards)
1070 next_val += interval;
1071 else
1072 pt->pt_overruns += (now_ns - last_val) / interval;
1073
1074 pt->pt_time.it_value.tv_sec = next_val / 1000000000;
1075 pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
1076 }
1077
1078 /*
1079 * Reset the callout, if it's not going away.
1080 *
1081 * Don't need to check tshzto() return value, here.
1082 * callout_reset() does it for us.
1083 */
1084 if (!pt->pt_dying)
1085 callout_reset(&pt->pt_ch,
1086 (pt->pt_type == CLOCK_MONOTONIC
1087 ? tshztoup(&pt->pt_time.it_value)
1088 : tshzto(&pt->pt_time.it_value)),
1089 realtimerexpire, pt);
1090 mutex_spin_exit(&timer_lock);
1091 }
1092
1093 /* BSD routine to get the value of an interval timer. */
1094 /* ARGSUSED */
1095 int
1096 sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
1097 register_t *retval)
1098 {
1099 /* {
1100 syscallarg(int) which;
1101 syscallarg(struct itimerval *) itv;
1102 } */
1103 struct proc *p = l->l_proc;
1104 struct itimerval aitv;
1105 int error;
1106
1107 memset(&aitv, 0, sizeof(aitv));
1108 error = dogetitimer(p, SCARG(uap, which), &aitv);
1109 if (error)
1110 return error;
1111 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1112 }
1113
1114 int
1115 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1116 {
1117 struct ptimers *pts;
1118 struct ptimer *pt;
1119 struct itimerspec its;
1120
1121 if ((u_int)which > ITIMER_MONOTONIC)
1122 return (EINVAL);
1123
1124 mutex_spin_enter(&timer_lock);
1125 pts = p->p_timers;
1126 if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
1127 timerclear(&itvp->it_value);
1128 timerclear(&itvp->it_interval);
1129 } else {
1130 timer_gettime(pt, &its);
1131 TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
1132 TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
1133 }
1134 mutex_spin_exit(&timer_lock);
1135
1136 return 0;
1137 }
1138
1139 /* BSD routine to set/arm an interval timer. */
1140 /* ARGSUSED */
1141 int
1142 sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
1143 register_t *retval)
1144 {
1145 /* {
1146 syscallarg(int) which;
1147 syscallarg(const struct itimerval *) itv;
1148 syscallarg(struct itimerval *) oitv;
1149 } */
1150 struct proc *p = l->l_proc;
1151 int which = SCARG(uap, which);
1152 struct sys___getitimer50_args getargs;
1153 const struct itimerval *itvp;
1154 struct itimerval aitv;
1155 int error;
1156
1157 if ((u_int)which > ITIMER_MONOTONIC)
1158 return (EINVAL);
1159 itvp = SCARG(uap, itv);
1160 if (itvp &&
1161 (error = copyin(itvp, &aitv, sizeof(struct itimerval))) != 0)
1162 return (error);
1163 if (SCARG(uap, oitv) != NULL) {
1164 SCARG(&getargs, which) = which;
1165 SCARG(&getargs, itv) = SCARG(uap, oitv);
1166 if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
1167 return (error);
1168 }
1169 if (itvp == 0)
1170 return (0);
1171
1172 return dosetitimer(p, which, &aitv);
1173 }
1174
1175 int
1176 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1177 {
1178 struct timespec now;
1179 struct ptimers *pts;
1180 struct ptimer *pt, *spare;
1181 int error;
1182
1183 KASSERT((u_int)which <= CLOCK_MONOTONIC);
1184 if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1185 return (EINVAL);
1186
1187 /*
1188 * Don't bother allocating data structures if the process just
1189 * wants to clear the timer.
1190 */
1191 spare = NULL;
1192 pts = p->p_timers;
1193 retry:
1194 if (!timerisset(&itvp->it_value) && (pts == NULL ||
1195 pts->pts_timers[which] == NULL))
1196 return (0);
1197 if (pts == NULL)
1198 pts = timers_alloc(p);
1199 mutex_spin_enter(&timer_lock);
1200 restart:
1201 pt = pts->pts_timers[which];
1202 if (pt == NULL) {
1203 if (spare == NULL) {
1204 mutex_spin_exit(&timer_lock);
1205 spare = pool_get(&ptimer_pool, PR_WAITOK | PR_ZERO);
1206 goto retry;
1207 }
1208 pt = spare;
1209 spare = NULL;
1210 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1211 pt->pt_ev.sigev_value.sival_int = which;
1212 pt->pt_overruns = 0;
1213 pt->pt_proc = p;
1214 pt->pt_type = which;
1215 pt->pt_entry = which;
1216 pt->pt_queued = false;
1217 if (!CLOCK_VIRTUAL_P(which))
1218 callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
1219 else
1220 pt->pt_active = 0;
1221
1222 switch (which) {
1223 case ITIMER_REAL:
1224 case ITIMER_MONOTONIC:
1225 pt->pt_ev.sigev_signo = SIGALRM;
1226 break;
1227 case ITIMER_VIRTUAL:
1228 pt->pt_ev.sigev_signo = SIGVTALRM;
1229 break;
1230 case ITIMER_PROF:
1231 pt->pt_ev.sigev_signo = SIGPROF;
1232 break;
1233 }
1234 pts->pts_timers[which] = pt;
1235 }
1236
1237 TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
1238 TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
1239
1240 if (timespecisset(&pt->pt_time.it_value)) {
1241 /* Convert to absolute time */
1242 /* XXX need to wrap in splclock for timecounters case? */
1243 switch (which) {
1244 case ITIMER_REAL:
1245 getnanotime(&now);
1246 timespecadd(&pt->pt_time.it_value, &now,
1247 &pt->pt_time.it_value);
1248 break;
1249 case ITIMER_MONOTONIC:
1250 getnanouptime(&now);
1251 timespecadd(&pt->pt_time.it_value, &now,
1252 &pt->pt_time.it_value);
1253 break;
1254 default:
1255 break;
1256 }
1257 }
1258 error = timer_settime(pt);
1259 if (error == ERESTART) {
1260 KASSERT(!CLOCK_VIRTUAL_P(pt->pt_type));
1261 goto restart;
1262 }
1263 KASSERT(error == 0);
1264 mutex_spin_exit(&timer_lock);
1265 if (spare != NULL)
1266 pool_put(&ptimer_pool, spare);
1267
1268 return (0);
1269 }
1270
1271 /* Utility routines to manage the array of pointers to timers. */
1272 struct ptimers *
1273 timers_alloc(struct proc *p)
1274 {
1275 struct ptimers *pts;
1276 int i;
1277
1278 pts = pool_get(&ptimers_pool, PR_WAITOK);
1279 LIST_INIT(&pts->pts_virtual);
1280 LIST_INIT(&pts->pts_prof);
1281 for (i = 0; i < TIMER_MAX; i++)
1282 pts->pts_timers[i] = NULL;
1283 mutex_spin_enter(&timer_lock);
1284 if (p->p_timers == NULL) {
1285 p->p_timers = pts;
1286 mutex_spin_exit(&timer_lock);
1287 return pts;
1288 }
1289 mutex_spin_exit(&timer_lock);
1290 pool_put(&ptimers_pool, pts);
1291 return p->p_timers;
1292 }
1293
1294 /*
1295 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1296 * then clean up all timers and free all the data structures. If
1297 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1298 * by timer_create(), not the BSD setitimer() timers, and only free the
1299 * structure if none of those remain.
1300 */
1301 void
1302 timers_free(struct proc *p, int which)
1303 {
1304 struct ptimers *pts;
1305 struct ptimer *ptn;
1306 struct timespec ts;
1307 int i;
1308
1309 if (p->p_timers == NULL)
1310 return;
1311
1312 pts = p->p_timers;
1313 mutex_spin_enter(&timer_lock);
1314 if (which == TIMERS_ALL) {
1315 p->p_timers = NULL;
1316 i = 0;
1317 } else {
1318 timespecclear(&ts);
1319 for (ptn = LIST_FIRST(&pts->pts_virtual);
1320 ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1321 ptn = LIST_NEXT(ptn, pt_list)) {
1322 KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1323 timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1324 }
1325 LIST_FIRST(&pts->pts_virtual) = NULL;
1326 if (ptn) {
1327 KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1328 timespecadd(&ts, &ptn->pt_time.it_value,
1329 &ptn->pt_time.it_value);
1330 LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
1331 }
1332 timespecclear(&ts);
1333 for (ptn = LIST_FIRST(&pts->pts_prof);
1334 ptn && ptn != pts->pts_timers[ITIMER_PROF];
1335 ptn = LIST_NEXT(ptn, pt_list)) {
1336 KASSERT(ptn->pt_type == CLOCK_PROF);
1337 timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1338 }
1339 LIST_FIRST(&pts->pts_prof) = NULL;
1340 if (ptn) {
1341 KASSERT(ptn->pt_type == CLOCK_PROF);
1342 timespecadd(&ts, &ptn->pt_time.it_value,
1343 &ptn->pt_time.it_value);
1344 LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
1345 }
1346 i = TIMER_MIN;
1347 }
1348 for ( ; i < TIMER_MAX; i++) {
1349 if (pts->pts_timers[i] != NULL) {
1350 /* Free the timer and release the lock. */
1351 itimerfree(pts, i);
1352 /* Reacquire the lock for the next one. */
1353 mutex_spin_enter(&timer_lock);
1354 }
1355 }
1356 if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
1357 pts->pts_timers[2] == NULL && pts->pts_timers[3] == NULL) {
1358 p->p_timers = NULL;
1359 mutex_spin_exit(&timer_lock);
1360 pool_put(&ptimers_pool, pts);
1361 } else
1362 mutex_spin_exit(&timer_lock);
1363 }
1364
1365 static void
1366 itimerfree(struct ptimers *pts, int index)
1367 {
1368 struct ptimer *pt;
1369
1370 KASSERT(mutex_owned(&timer_lock));
1371
1372 pt = pts->pts_timers[index];
1373
1374 /*
1375 * Prevent new references, and notify the callout not to
1376 * restart itself.
1377 */
1378 pts->pts_timers[index] = NULL;
1379 pt->pt_dying = true;
1380
1381 /*
1382 * For non-virtual timers, stop the callout, or wait for it to
1383 * run if it has already fired. It cannot restart again after
1384 * this point: the callout won't restart itself when dying, no
1385 * other users holding the lock can restart it, and any other
1386 * users waiting for callout_halt concurrently (timer_settime)
1387 * will restart from the top.
1388 */
1389 if (!CLOCK_VIRTUAL_P(pt->pt_type))
1390 callout_halt(&pt->pt_ch, &timer_lock);
1391
1392 /* Remove it from the queue to be signalled. */
1393 if (pt->pt_queued)
1394 TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1395
1396 /* All done with the global state. */
1397 mutex_spin_exit(&timer_lock);
1398
1399 /* Destroy the callout, if needed, and free the ptimer. */
1400 if (!CLOCK_VIRTUAL_P(pt->pt_type))
1401 callout_destroy(&pt->pt_ch);
1402 pool_put(&ptimer_pool, pt);
1403 }
1404
1405 /*
1406 * Decrement an interval timer by a specified number
1407 * of nanoseconds, which must be less than a second,
1408 * i.e. < 1000000000. If the timer expires, then reload
1409 * it. In this case, carry over (nsec - old value) to
1410 * reduce the value reloaded into the timer so that
1411 * the timer does not drift. This routine assumes
1412 * that it is called in a context where the timers
1413 * on which it is operating cannot change in value.
1414 */
1415 static int
1416 itimerdecr(struct ptimer *pt, int nsec)
1417 {
1418 struct itimerspec *itp;
1419 int error __diagused;
1420
1421 KASSERT(mutex_owned(&timer_lock));
1422 KASSERT(CLOCK_VIRTUAL_P(pt->pt_type));
1423
1424 itp = &pt->pt_time;
1425 if (itp->it_value.tv_nsec < nsec) {
1426 if (itp->it_value.tv_sec == 0) {
1427 /* expired, and already in next interval */
1428 nsec -= itp->it_value.tv_nsec;
1429 goto expire;
1430 }
1431 itp->it_value.tv_nsec += 1000000000;
1432 itp->it_value.tv_sec--;
1433 }
1434 itp->it_value.tv_nsec -= nsec;
1435 nsec = 0;
1436 if (timespecisset(&itp->it_value))
1437 return (1);
1438 /* expired, exactly at end of interval */
1439 expire:
1440 if (timespecisset(&itp->it_interval)) {
1441 itp->it_value = itp->it_interval;
1442 itp->it_value.tv_nsec -= nsec;
1443 if (itp->it_value.tv_nsec < 0) {
1444 itp->it_value.tv_nsec += 1000000000;
1445 itp->it_value.tv_sec--;
1446 }
1447 error = timer_settime(pt);
1448 KASSERT(error == 0); /* virtual, never fails */
1449 } else
1450 itp->it_value.tv_nsec = 0; /* sec is already 0 */
1451 return (0);
1452 }
1453
1454 static void
1455 itimerfire(struct ptimer *pt)
1456 {
1457
1458 KASSERT(mutex_owned(&timer_lock));
1459
1460 /*
1461 * XXX Can overrun, but we don't do signal queueing yet, anyway.
1462 * XXX Relying on the clock interrupt is stupid.
1463 */
1464 if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL || pt->pt_queued) {
1465 return;
1466 }
1467 TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
1468 pt->pt_queued = true;
1469 softint_schedule(timer_sih);
1470 }
1471
1472 void
1473 timer_tick(lwp_t *l, bool user)
1474 {
1475 struct ptimers *pts;
1476 struct ptimer *pt;
1477 proc_t *p;
1478
1479 p = l->l_proc;
1480 if (p->p_timers == NULL)
1481 return;
1482
1483 mutex_spin_enter(&timer_lock);
1484 if ((pts = l->l_proc->p_timers) != NULL) {
1485 /*
1486 * Run current process's virtual and profile time, as needed.
1487 */
1488 if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
1489 if (itimerdecr(pt, tick * 1000) == 0)
1490 itimerfire(pt);
1491 if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
1492 if (itimerdecr(pt, tick * 1000) == 0)
1493 itimerfire(pt);
1494 }
1495 mutex_spin_exit(&timer_lock);
1496 }
1497
1498 static void
1499 timer_intr(void *cookie)
1500 {
1501 ksiginfo_t ksi;
1502 struct ptimer *pt;
1503 proc_t *p;
1504
1505 mutex_enter(proc_lock);
1506 mutex_spin_enter(&timer_lock);
1507 while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
1508 TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1509 KASSERT(pt->pt_queued);
1510 pt->pt_queued = false;
1511
1512 if (pt->pt_proc->p_timers == NULL) {
1513 /* Process is dying. */
1514 continue;
1515 }
1516 p = pt->pt_proc;
1517 if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
1518 continue;
1519 }
1520 if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
1521 pt->pt_overruns++;
1522 continue;
1523 }
1524
1525 KSI_INIT(&ksi);
1526 ksi.ksi_signo = pt->pt_ev.sigev_signo;
1527 ksi.ksi_code = SI_TIMER;
1528 ksi.ksi_value = pt->pt_ev.sigev_value;
1529 pt->pt_poverruns = pt->pt_overruns;
1530 pt->pt_overruns = 0;
1531 mutex_spin_exit(&timer_lock);
1532 kpsignal(p, &ksi, NULL);
1533 mutex_spin_enter(&timer_lock);
1534 }
1535 mutex_spin_exit(&timer_lock);
1536 mutex_exit(proc_lock);
1537 }
1538
1539 /*
1540 * Check if the time will wrap if set to ts.
1541 *
1542 * ts - timespec describing the new time
1543 * delta - the delta between the current time and ts
1544 */
1545 bool
1546 time_wraps(struct timespec *ts, struct timespec *delta)
1547 {
1548
1549 /*
1550 * Don't allow the time to be set forward so far it
1551 * will wrap and become negative, thus allowing an
1552 * attacker to bypass the next check below. The
1553 * cutoff is 1 year before rollover occurs, so even
1554 * if the attacker uses adjtime(2) to move the time
1555 * past the cutoff, it will take a very long time
1556 * to get to the wrap point.
1557 */
1558 if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
1559 (delta->tv_sec < 0 || delta->tv_nsec < 0))
1560 return true;
1561
1562 return false;
1563 }
1564