Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.201
      1 /*	$NetBSD: kern_time.c,v 1.201 2019/10/05 12:57:40 kamil Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Christopher G. Demetriou, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1982, 1986, 1989, 1993
     34  *	The Regents of the University of California.  All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. Neither the name of the University nor the names of its contributors
     45  *    may be used to endorse or promote products derived from this software
     46  *    without specific prior written permission.
     47  *
     48  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58  * SUCH DAMAGE.
     59  *
     60  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     61  */
     62 
     63 #include <sys/cdefs.h>
     64 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.201 2019/10/05 12:57:40 kamil Exp $");
     65 
     66 #include <sys/param.h>
     67 #include <sys/resourcevar.h>
     68 #include <sys/kernel.h>
     69 #include <sys/systm.h>
     70 #include <sys/proc.h>
     71 #include <sys/vnode.h>
     72 #include <sys/signalvar.h>
     73 #include <sys/syslog.h>
     74 #include <sys/timetc.h>
     75 #include <sys/timex.h>
     76 #include <sys/kauth.h>
     77 #include <sys/mount.h>
     78 #include <sys/syscallargs.h>
     79 #include <sys/cpu.h>
     80 
     81 static void	timer_intr(void *);
     82 static void	itimerfire(struct ptimer *);
     83 static void	itimerfree(struct ptimers *, int);
     84 
     85 kmutex_t	timer_lock;
     86 
     87 static void	*timer_sih;
     88 static TAILQ_HEAD(, ptimer) timer_queue;
     89 
     90 struct pool ptimer_pool, ptimers_pool;
     91 
     92 #define	CLOCK_VIRTUAL_P(clockid)	\
     93 	((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)
     94 
     95 CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
     96 CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
     97 CTASSERT(ITIMER_PROF == CLOCK_PROF);
     98 CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC);
     99 
    100 #define	DELAYTIMER_MAX	32
    101 
    102 /*
    103  * Initialize timekeeping.
    104  */
    105 void
    106 time_init(void)
    107 {
    108 
    109 	pool_init(&ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
    110 	    &pool_allocator_nointr, IPL_NONE);
    111 	pool_init(&ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
    112 	    &pool_allocator_nointr, IPL_NONE);
    113 }
    114 
    115 void
    116 time_init2(void)
    117 {
    118 
    119 	TAILQ_INIT(&timer_queue);
    120 	mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
    121 	timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
    122 	    timer_intr, NULL);
    123 }
    124 
    125 /* Time of day and interval timer support.
    126  *
    127  * These routines provide the kernel entry points to get and set
    128  * the time-of-day and per-process interval timers.  Subroutines
    129  * here provide support for adding and subtracting timeval structures
    130  * and decrementing interval timers, optionally reloading the interval
    131  * timers when they expire.
    132  */
    133 
    134 /* This function is used by clock_settime and settimeofday */
    135 static int
    136 settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
    137 {
    138 	struct timespec delta, now;
    139 	int s;
    140 
    141 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    142 	s = splclock();
    143 	nanotime(&now);
    144 	timespecsub(ts, &now, &delta);
    145 
    146 	if (check_kauth && kauth_authorize_system(kauth_cred_get(),
    147 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
    148 	    &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
    149 		splx(s);
    150 		return (EPERM);
    151 	}
    152 
    153 #ifdef notyet
    154 	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
    155 		splx(s);
    156 		return (EPERM);
    157 	}
    158 #endif
    159 
    160 	tc_setclock(ts);
    161 
    162 	timespecadd(&boottime, &delta, &boottime);
    163 
    164 	resettodr();
    165 	splx(s);
    166 
    167 	return (0);
    168 }
    169 
    170 int
    171 settime(struct proc *p, struct timespec *ts)
    172 {
    173 	return (settime1(p, ts, true));
    174 }
    175 
    176 /* ARGSUSED */
    177 int
    178 sys___clock_gettime50(struct lwp *l,
    179     const struct sys___clock_gettime50_args *uap, register_t *retval)
    180 {
    181 	/* {
    182 		syscallarg(clockid_t) clock_id;
    183 		syscallarg(struct timespec *) tp;
    184 	} */
    185 	int error;
    186 	struct timespec ats;
    187 
    188 	error = clock_gettime1(SCARG(uap, clock_id), &ats);
    189 	if (error != 0)
    190 		return error;
    191 
    192 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    193 }
    194 
    195 /* ARGSUSED */
    196 int
    197 sys___clock_settime50(struct lwp *l,
    198     const struct sys___clock_settime50_args *uap, register_t *retval)
    199 {
    200 	/* {
    201 		syscallarg(clockid_t) clock_id;
    202 		syscallarg(const struct timespec *) tp;
    203 	} */
    204 	int error;
    205 	struct timespec ats;
    206 
    207 	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
    208 		return error;
    209 
    210 	return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
    211 }
    212 
    213 
    214 int
    215 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
    216     bool check_kauth)
    217 {
    218 	int error;
    219 
    220 	if (tp->tv_nsec < 0 || tp->tv_nsec >= 1000000000L)
    221 		return EINVAL;
    222 
    223 	switch (clock_id) {
    224 	case CLOCK_REALTIME:
    225 		if ((error = settime1(p, tp, check_kauth)) != 0)
    226 			return (error);
    227 		break;
    228 	case CLOCK_MONOTONIC:
    229 		return (EINVAL);	/* read-only clock */
    230 	default:
    231 		return (EINVAL);
    232 	}
    233 
    234 	return 0;
    235 }
    236 
    237 int
    238 sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
    239     register_t *retval)
    240 {
    241 	/* {
    242 		syscallarg(clockid_t) clock_id;
    243 		syscallarg(struct timespec *) tp;
    244 	} */
    245 	struct timespec ts;
    246 	int error;
    247 
    248 	if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
    249 		return error;
    250 
    251 	if (SCARG(uap, tp))
    252 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    253 
    254 	return error;
    255 }
    256 
    257 int
    258 clock_getres1(clockid_t clock_id, struct timespec *ts)
    259 {
    260 
    261 	switch (clock_id) {
    262 	case CLOCK_REALTIME:
    263 	case CLOCK_MONOTONIC:
    264 		ts->tv_sec = 0;
    265 		if (tc_getfrequency() > 1000000000)
    266 			ts->tv_nsec = 1;
    267 		else
    268 			ts->tv_nsec = 1000000000 / tc_getfrequency();
    269 		break;
    270 	default:
    271 		return EINVAL;
    272 	}
    273 
    274 	return 0;
    275 }
    276 
    277 /* ARGSUSED */
    278 int
    279 sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
    280     register_t *retval)
    281 {
    282 	/* {
    283 		syscallarg(struct timespec *) rqtp;
    284 		syscallarg(struct timespec *) rmtp;
    285 	} */
    286 	struct timespec rmt, rqt;
    287 	int error, error1;
    288 
    289 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    290 	if (error)
    291 		return (error);
    292 
    293 	error = nanosleep1(l, CLOCK_MONOTONIC, 0, &rqt,
    294 	    SCARG(uap, rmtp) ? &rmt : NULL);
    295 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
    296 		return error;
    297 
    298 	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
    299 	return error1 ? error1 : error;
    300 }
    301 
    302 /* ARGSUSED */
    303 int
    304 sys_clock_nanosleep(struct lwp *l, const struct sys_clock_nanosleep_args *uap,
    305     register_t *retval)
    306 {
    307 	/* {
    308 		syscallarg(clockid_t) clock_id;
    309 		syscallarg(int) flags;
    310 		syscallarg(struct timespec *) rqtp;
    311 		syscallarg(struct timespec *) rmtp;
    312 	} */
    313 	struct timespec rmt, rqt;
    314 	int error, error1;
    315 
    316 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    317 	if (error)
    318 		goto out;
    319 
    320 	error = nanosleep1(l, SCARG(uap, clock_id), SCARG(uap, flags), &rqt,
    321 	    SCARG(uap, rmtp) ? &rmt : NULL);
    322 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
    323 		goto out;
    324 
    325 	if ((SCARG(uap, flags) & TIMER_ABSTIME) == 0 &&
    326 	    (error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt))) != 0)
    327 		error = error1;
    328 out:
    329 	*retval = error;
    330 	return 0;
    331 }
    332 
    333 int
    334 nanosleep1(struct lwp *l, clockid_t clock_id, int flags, struct timespec *rqt,
    335     struct timespec *rmt)
    336 {
    337 	struct timespec rmtstart;
    338 	int error, timo;
    339 
    340 	if ((error = ts2timo(clock_id, flags, rqt, &timo, &rmtstart)) != 0) {
    341 		if (error == ETIMEDOUT) {
    342 			error = 0;
    343 			if (rmt != NULL)
    344 				rmt->tv_sec = rmt->tv_nsec = 0;
    345 		}
    346 		return error;
    347 	}
    348 
    349 	/*
    350 	 * Avoid inadvertently sleeping forever
    351 	 */
    352 	if (timo == 0)
    353 		timo = 1;
    354 again:
    355 	error = kpause("nanoslp", true, timo, NULL);
    356 	if (error == EWOULDBLOCK)
    357 		error = 0;
    358 	if (rmt != NULL || error == 0) {
    359 		struct timespec rmtend;
    360 		struct timespec t0;
    361 		struct timespec *t;
    362 
    363 		(void)clock_gettime1(clock_id, &rmtend);
    364 		t = (rmt != NULL) ? rmt : &t0;
    365 		if (flags & TIMER_ABSTIME) {
    366 			timespecsub(rqt, &rmtend, t);
    367 		} else {
    368 			timespecsub(&rmtend, &rmtstart, t);
    369 			timespecsub(rqt, t, t);
    370 		}
    371 		if (t->tv_sec < 0)
    372 			timespecclear(t);
    373 		if (error == 0) {
    374 			timo = tstohz(t);
    375 			if (timo > 0)
    376 				goto again;
    377 		}
    378 	}
    379 
    380 	if (error == ERESTART)
    381 		error = EINTR;
    382 
    383 	return error;
    384 }
    385 
    386 int
    387 sys_clock_getcpuclockid2(struct lwp *l,
    388     const struct sys_clock_getcpuclockid2_args *uap,
    389     register_t *retval)
    390 {
    391 	/* {
    392 		syscallarg(idtype_t idtype;
    393 		syscallarg(id_t id);
    394 		syscallarg(clockid_t *)clock_id;
    395 	} */
    396 	pid_t pid;
    397 	lwpid_t lid;
    398 	clockid_t clock_id;
    399 	id_t id = SCARG(uap, id);
    400 
    401 	switch (SCARG(uap, idtype)) {
    402 	case P_PID:
    403 		pid = id == 0 ? l->l_proc->p_pid : id;
    404 		clock_id = CLOCK_PROCESS_CPUTIME_ID | pid;
    405 		break;
    406 	case P_LWPID:
    407 		lid = id == 0 ? l->l_lid : id;
    408 		clock_id = CLOCK_THREAD_CPUTIME_ID | lid;
    409 		break;
    410 	default:
    411 		return EINVAL;
    412 	}
    413 	return copyout(&clock_id, SCARG(uap, clock_id), sizeof(clock_id));
    414 }
    415 
    416 /* ARGSUSED */
    417 int
    418 sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
    419     register_t *retval)
    420 {
    421 	/* {
    422 		syscallarg(struct timeval *) tp;
    423 		syscallarg(void *) tzp;		really "struct timezone *";
    424 	} */
    425 	struct timeval atv;
    426 	int error = 0;
    427 	struct timezone tzfake;
    428 
    429 	if (SCARG(uap, tp)) {
    430 		memset(&atv, 0, sizeof(atv));
    431 		microtime(&atv);
    432 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    433 		if (error)
    434 			return (error);
    435 	}
    436 	if (SCARG(uap, tzp)) {
    437 		/*
    438 		 * NetBSD has no kernel notion of time zone, so we just
    439 		 * fake up a timezone struct and return it if demanded.
    440 		 */
    441 		tzfake.tz_minuteswest = 0;
    442 		tzfake.tz_dsttime = 0;
    443 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    444 	}
    445 	return (error);
    446 }
    447 
    448 /* ARGSUSED */
    449 int
    450 sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
    451     register_t *retval)
    452 {
    453 	/* {
    454 		syscallarg(const struct timeval *) tv;
    455 		syscallarg(const void *) tzp; really "const struct timezone *";
    456 	} */
    457 
    458 	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
    459 }
    460 
    461 int
    462 settimeofday1(const struct timeval *utv, bool userspace,
    463     const void *utzp, struct lwp *l, bool check_kauth)
    464 {
    465 	struct timeval atv;
    466 	struct timespec ts;
    467 	int error;
    468 
    469 	/* Verify all parameters before changing time. */
    470 
    471 	/*
    472 	 * NetBSD has no kernel notion of time zone, and only an
    473 	 * obsolete program would try to set it, so we log a warning.
    474 	 */
    475 	if (utzp)
    476 		log(LOG_WARNING, "pid %d attempted to set the "
    477 		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
    478 
    479 	if (utv == NULL)
    480 		return 0;
    481 
    482 	if (userspace) {
    483 		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
    484 			return error;
    485 		utv = &atv;
    486 	}
    487 
    488 	if (utv->tv_usec < 0 || utv->tv_usec >= 1000000)
    489 		return EINVAL;
    490 
    491 	TIMEVAL_TO_TIMESPEC(utv, &ts);
    492 	return settime1(l->l_proc, &ts, check_kauth);
    493 }
    494 
    495 int	time_adjusted;			/* set if an adjustment is made */
    496 
    497 /* ARGSUSED */
    498 int
    499 sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
    500     register_t *retval)
    501 {
    502 	/* {
    503 		syscallarg(const struct timeval *) delta;
    504 		syscallarg(struct timeval *) olddelta;
    505 	} */
    506 	int error;
    507 	struct timeval atv, oldatv;
    508 
    509 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
    510 	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
    511 		return error;
    512 
    513 	if (SCARG(uap, delta)) {
    514 		error = copyin(SCARG(uap, delta), &atv,
    515 		    sizeof(*SCARG(uap, delta)));
    516 		if (error)
    517 			return (error);
    518 	}
    519 	adjtime1(SCARG(uap, delta) ? &atv : NULL,
    520 	    SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
    521 	if (SCARG(uap, olddelta))
    522 		error = copyout(&oldatv, SCARG(uap, olddelta),
    523 		    sizeof(*SCARG(uap, olddelta)));
    524 	return error;
    525 }
    526 
    527 void
    528 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
    529 {
    530 	extern int64_t time_adjtime;  /* in kern_ntptime.c */
    531 
    532 	if (olddelta) {
    533 		memset(olddelta, 0, sizeof(*olddelta));
    534 		mutex_spin_enter(&timecounter_lock);
    535 		olddelta->tv_sec = time_adjtime / 1000000;
    536 		olddelta->tv_usec = time_adjtime % 1000000;
    537 		if (olddelta->tv_usec < 0) {
    538 			olddelta->tv_usec += 1000000;
    539 			olddelta->tv_sec--;
    540 		}
    541 		mutex_spin_exit(&timecounter_lock);
    542 	}
    543 
    544 	if (delta) {
    545 		mutex_spin_enter(&timecounter_lock);
    546 		time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
    547 
    548 		if (time_adjtime) {
    549 			/* We need to save the system time during shutdown */
    550 			time_adjusted |= 1;
    551 		}
    552 		mutex_spin_exit(&timecounter_lock);
    553 	}
    554 }
    555 
    556 /*
    557  * Interval timer support. Both the BSD getitimer() family and the POSIX
    558  * timer_*() family of routines are supported.
    559  *
    560  * All timers are kept in an array pointed to by p_timers, which is
    561  * allocated on demand - many processes don't use timers at all. The
    562  * first four elements in this array are reserved for the BSD timers:
    563  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element
    564  * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be
    565  * allocated by the timer_create() syscall.
    566  *
    567  * Realtime timers are kept in the ptimer structure as an absolute
    568  * time; virtual time timers are kept as a linked list of deltas.
    569  * Virtual time timers are processed in the hardclock() routine of
    570  * kern_clock.c.  The real time timer is processed by a callout
    571  * routine, called from the softclock() routine.  Since a callout may
    572  * be delayed in real time due to interrupt processing in the system,
    573  * it is possible for the real time timeout routine (realtimeexpire,
    574  * given below), to be delayed in real time past when it is supposed
    575  * to occur.  It does not suffice, therefore, to reload the real timer
    576  * .it_value from the real time timers .it_interval.  Rather, we
    577  * compute the next time in absolute time the timer should go off.  */
    578 
    579 /* Allocate a POSIX realtime timer. */
    580 int
    581 sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
    582     register_t *retval)
    583 {
    584 	/* {
    585 		syscallarg(clockid_t) clock_id;
    586 		syscallarg(struct sigevent *) evp;
    587 		syscallarg(timer_t *) timerid;
    588 	} */
    589 
    590 	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
    591 	    SCARG(uap, evp), copyin, l);
    592 }
    593 
    594 int
    595 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
    596     copyin_t fetch_event, struct lwp *l)
    597 {
    598 	int error;
    599 	timer_t timerid;
    600 	struct ptimers *pts;
    601 	struct ptimer *pt;
    602 	struct proc *p;
    603 
    604 	p = l->l_proc;
    605 
    606 	if ((u_int)id > CLOCK_MONOTONIC)
    607 		return (EINVAL);
    608 
    609 	if ((pts = p->p_timers) == NULL)
    610 		pts = timers_alloc(p);
    611 
    612 	pt = pool_get(&ptimer_pool, PR_WAITOK | PR_ZERO);
    613 	if (evp != NULL) {
    614 		if (((error =
    615 		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
    616 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
    617 			(pt->pt_ev.sigev_notify > SIGEV_SA)) ||
    618 			(pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
    619 			 (pt->pt_ev.sigev_signo <= 0 ||
    620 			  pt->pt_ev.sigev_signo >= NSIG))) {
    621 			pool_put(&ptimer_pool, pt);
    622 			return (error ? error : EINVAL);
    623 		}
    624 	}
    625 
    626 	/* Find a free timer slot, skipping those reserved for setitimer(). */
    627 	mutex_spin_enter(&timer_lock);
    628 	for (timerid = TIMER_MIN; timerid < TIMER_MAX; timerid++)
    629 		if (pts->pts_timers[timerid] == NULL)
    630 			break;
    631 	if (timerid == TIMER_MAX) {
    632 		mutex_spin_exit(&timer_lock);
    633 		pool_put(&ptimer_pool, pt);
    634 		return EAGAIN;
    635 	}
    636 	if (evp == NULL) {
    637 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    638 		switch (id) {
    639 		case CLOCK_REALTIME:
    640 		case CLOCK_MONOTONIC:
    641 			pt->pt_ev.sigev_signo = SIGALRM;
    642 			break;
    643 		case CLOCK_VIRTUAL:
    644 			pt->pt_ev.sigev_signo = SIGVTALRM;
    645 			break;
    646 		case CLOCK_PROF:
    647 			pt->pt_ev.sigev_signo = SIGPROF;
    648 			break;
    649 		}
    650 		pt->pt_ev.sigev_value.sival_int = timerid;
    651 	}
    652 	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
    653 	pt->pt_info.ksi_errno = 0;
    654 	pt->pt_info.ksi_code = 0;
    655 	pt->pt_info.ksi_pid = p->p_pid;
    656 	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
    657 	pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
    658 	pt->pt_type = id;
    659 	pt->pt_proc = p;
    660 	pt->pt_overruns = 0;
    661 	pt->pt_poverruns = 0;
    662 	pt->pt_entry = timerid;
    663 	pt->pt_queued = false;
    664 	timespecclear(&pt->pt_time.it_value);
    665 	if (!CLOCK_VIRTUAL_P(id))
    666 		callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
    667 	else
    668 		pt->pt_active = 0;
    669 
    670 	pts->pts_timers[timerid] = pt;
    671 	mutex_spin_exit(&timer_lock);
    672 
    673 	return copyout(&timerid, tid, sizeof(timerid));
    674 }
    675 
    676 /* Delete a POSIX realtime timer */
    677 int
    678 sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
    679     register_t *retval)
    680 {
    681 	/* {
    682 		syscallarg(timer_t) timerid;
    683 	} */
    684 	struct proc *p = l->l_proc;
    685 	timer_t timerid;
    686 	struct ptimers *pts;
    687 	struct ptimer *pt, *ptn;
    688 
    689 	timerid = SCARG(uap, timerid);
    690 	pts = p->p_timers;
    691 
    692 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    693 		return (EINVAL);
    694 
    695 	mutex_spin_enter(&timer_lock);
    696 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    697 		mutex_spin_exit(&timer_lock);
    698 		return (EINVAL);
    699 	}
    700 	if (CLOCK_VIRTUAL_P(pt->pt_type)) {
    701 		if (pt->pt_active) {
    702 			ptn = LIST_NEXT(pt, pt_list);
    703 			LIST_REMOVE(pt, pt_list);
    704 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    705 				timespecadd(&pt->pt_time.it_value,
    706 				    &ptn->pt_time.it_value,
    707 				    &ptn->pt_time.it_value);
    708 			pt->pt_active = 0;
    709 		}
    710 	}
    711 
    712 	/* Free the timer and release the lock.  */
    713 	itimerfree(pts, timerid);
    714 
    715 	return (0);
    716 }
    717 
    718 /*
    719  * Set up the given timer. The value in pt->pt_time.it_value is taken
    720  * to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC timers and
    721  * a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
    722  *
    723  * If the callout had already fired but not yet run, fails with
    724  * ERESTART -- caller must restart from the top to look up a timer.
    725  */
    726 int
    727 timer_settime(struct ptimer *pt)
    728 {
    729 	struct ptimer *ptn, *pptn;
    730 	struct ptlist *ptl;
    731 
    732 	KASSERT(mutex_owned(&timer_lock));
    733 
    734 	if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
    735 		/*
    736 		 * Try to stop the callout.  However, if it had already
    737 		 * fired, we have to drop the lock to wait for it, so
    738 		 * the world may have changed and pt may not be there
    739 		 * any more.  In that case, tell the caller to start
    740 		 * over from the top.
    741 		 */
    742 		if (callout_halt(&pt->pt_ch, &timer_lock))
    743 			return ERESTART;
    744 
    745 		/* Now we can touch pt and start it up again.  */
    746 		if (timespecisset(&pt->pt_time.it_value)) {
    747 			/*
    748 			 * Don't need to check tshzto() return value, here.
    749 			 * callout_reset() does it for us.
    750 			 */
    751 			callout_reset(&pt->pt_ch,
    752 			    pt->pt_type == CLOCK_MONOTONIC ?
    753 			    tshztoup(&pt->pt_time.it_value) :
    754 			    tshzto(&pt->pt_time.it_value),
    755 			    realtimerexpire, pt);
    756 		}
    757 	} else {
    758 		if (pt->pt_active) {
    759 			ptn = LIST_NEXT(pt, pt_list);
    760 			LIST_REMOVE(pt, pt_list);
    761 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    762 				timespecadd(&pt->pt_time.it_value,
    763 				    &ptn->pt_time.it_value,
    764 				    &ptn->pt_time.it_value);
    765 		}
    766 		if (timespecisset(&pt->pt_time.it_value)) {
    767 			if (pt->pt_type == CLOCK_VIRTUAL)
    768 				ptl = &pt->pt_proc->p_timers->pts_virtual;
    769 			else
    770 				ptl = &pt->pt_proc->p_timers->pts_prof;
    771 
    772 			for (ptn = LIST_FIRST(ptl), pptn = NULL;
    773 			     ptn && timespeccmp(&pt->pt_time.it_value,
    774 				 &ptn->pt_time.it_value, >);
    775 			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
    776 				timespecsub(&pt->pt_time.it_value,
    777 				    &ptn->pt_time.it_value,
    778 				    &pt->pt_time.it_value);
    779 
    780 			if (pptn)
    781 				LIST_INSERT_AFTER(pptn, pt, pt_list);
    782 			else
    783 				LIST_INSERT_HEAD(ptl, pt, pt_list);
    784 
    785 			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
    786 				timespecsub(&ptn->pt_time.it_value,
    787 				    &pt->pt_time.it_value,
    788 				    &ptn->pt_time.it_value);
    789 
    790 			pt->pt_active = 1;
    791 		} else
    792 			pt->pt_active = 0;
    793 	}
    794 
    795 	/* Success!  */
    796 	return 0;
    797 }
    798 
    799 void
    800 timer_gettime(struct ptimer *pt, struct itimerspec *aits)
    801 {
    802 	struct timespec now;
    803 	struct ptimer *ptn;
    804 
    805 	KASSERT(mutex_owned(&timer_lock));
    806 
    807 	*aits = pt->pt_time;
    808 	if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
    809 		/*
    810 		 * Convert from absolute to relative time in .it_value
    811 		 * part of real time timer.  If time for real time
    812 		 * timer has passed return 0, else return difference
    813 		 * between current time and time for the timer to go
    814 		 * off.
    815 		 */
    816 		if (timespecisset(&aits->it_value)) {
    817 			if (pt->pt_type == CLOCK_REALTIME) {
    818 				getnanotime(&now);
    819 			} else { /* CLOCK_MONOTONIC */
    820 				getnanouptime(&now);
    821 			}
    822 			if (timespeccmp(&aits->it_value, &now, <))
    823 				timespecclear(&aits->it_value);
    824 			else
    825 				timespecsub(&aits->it_value, &now,
    826 				    &aits->it_value);
    827 		}
    828 	} else if (pt->pt_active) {
    829 		if (pt->pt_type == CLOCK_VIRTUAL)
    830 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
    831 		else
    832 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
    833 		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
    834 			timespecadd(&aits->it_value,
    835 			    &ptn->pt_time.it_value, &aits->it_value);
    836 		KASSERT(ptn != NULL); /* pt should be findable on the list */
    837 	} else
    838 		timespecclear(&aits->it_value);
    839 }
    840 
    841 
    842 
    843 /* Set and arm a POSIX realtime timer */
    844 int
    845 sys___timer_settime50(struct lwp *l,
    846     const struct sys___timer_settime50_args *uap,
    847     register_t *retval)
    848 {
    849 	/* {
    850 		syscallarg(timer_t) timerid;
    851 		syscallarg(int) flags;
    852 		syscallarg(const struct itimerspec *) value;
    853 		syscallarg(struct itimerspec *) ovalue;
    854 	} */
    855 	int error;
    856 	struct itimerspec value, ovalue, *ovp = NULL;
    857 
    858 	if ((error = copyin(SCARG(uap, value), &value,
    859 	    sizeof(struct itimerspec))) != 0)
    860 		return (error);
    861 
    862 	if (SCARG(uap, ovalue))
    863 		ovp = &ovalue;
    864 
    865 	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
    866 	    SCARG(uap, flags), l->l_proc)) != 0)
    867 		return error;
    868 
    869 	if (ovp)
    870 		return copyout(&ovalue, SCARG(uap, ovalue),
    871 		    sizeof(struct itimerspec));
    872 	return 0;
    873 }
    874 
    875 int
    876 dotimer_settime(int timerid, struct itimerspec *value,
    877     struct itimerspec *ovalue, int flags, struct proc *p)
    878 {
    879 	struct timespec now;
    880 	struct itimerspec val, oval;
    881 	struct ptimers *pts;
    882 	struct ptimer *pt;
    883 	int error;
    884 
    885 	pts = p->p_timers;
    886 
    887 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    888 		return EINVAL;
    889 	val = *value;
    890 	if ((error = itimespecfix(&val.it_value)) != 0 ||
    891 	    (error = itimespecfix(&val.it_interval)) != 0)
    892 		return error;
    893 
    894 	mutex_spin_enter(&timer_lock);
    895 restart:
    896 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    897 		mutex_spin_exit(&timer_lock);
    898 		return EINVAL;
    899 	}
    900 
    901 	oval = pt->pt_time;
    902 	pt->pt_time = val;
    903 
    904 	/*
    905 	 * If we've been passed a relative time for a realtime timer,
    906 	 * convert it to absolute; if an absolute time for a virtual
    907 	 * timer, convert it to relative and make sure we don't set it
    908 	 * to zero, which would cancel the timer, or let it go
    909 	 * negative, which would confuse the comparison tests.
    910 	 */
    911 	if (timespecisset(&pt->pt_time.it_value)) {
    912 		if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
    913 			if ((flags & TIMER_ABSTIME) == 0) {
    914 				if (pt->pt_type == CLOCK_REALTIME) {
    915 					getnanotime(&now);
    916 				} else { /* CLOCK_MONOTONIC */
    917 					getnanouptime(&now);
    918 				}
    919 				timespecadd(&pt->pt_time.it_value, &now,
    920 				    &pt->pt_time.it_value);
    921 			}
    922 		} else {
    923 			if ((flags & TIMER_ABSTIME) != 0) {
    924 				getnanotime(&now);
    925 				timespecsub(&pt->pt_time.it_value, &now,
    926 				    &pt->pt_time.it_value);
    927 				if (!timespecisset(&pt->pt_time.it_value) ||
    928 				    pt->pt_time.it_value.tv_sec < 0) {
    929 					pt->pt_time.it_value.tv_sec = 0;
    930 					pt->pt_time.it_value.tv_nsec = 1;
    931 				}
    932 			}
    933 		}
    934 	}
    935 
    936 	error = timer_settime(pt);
    937 	if (error == ERESTART) {
    938 		KASSERT(!CLOCK_VIRTUAL_P(pt->pt_type));
    939 		goto restart;
    940 	}
    941 	KASSERT(error == 0);
    942 	mutex_spin_exit(&timer_lock);
    943 
    944 	if (ovalue)
    945 		*ovalue = oval;
    946 
    947 	return (0);
    948 }
    949 
    950 /* Return the time remaining until a POSIX timer fires. */
    951 int
    952 sys___timer_gettime50(struct lwp *l,
    953     const struct sys___timer_gettime50_args *uap, register_t *retval)
    954 {
    955 	/* {
    956 		syscallarg(timer_t) timerid;
    957 		syscallarg(struct itimerspec *) value;
    958 	} */
    959 	struct itimerspec its;
    960 	int error;
    961 
    962 	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
    963 	    &its)) != 0)
    964 		return error;
    965 
    966 	return copyout(&its, SCARG(uap, value), sizeof(its));
    967 }
    968 
    969 int
    970 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
    971 {
    972 	struct ptimer *pt;
    973 	struct ptimers *pts;
    974 
    975 	pts = p->p_timers;
    976 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    977 		return (EINVAL);
    978 	mutex_spin_enter(&timer_lock);
    979 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    980 		mutex_spin_exit(&timer_lock);
    981 		return (EINVAL);
    982 	}
    983 	timer_gettime(pt, its);
    984 	mutex_spin_exit(&timer_lock);
    985 
    986 	return 0;
    987 }
    988 
    989 /*
    990  * Return the count of the number of times a periodic timer expired
    991  * while a notification was already pending. The counter is reset when
    992  * a timer expires and a notification can be posted.
    993  */
    994 int
    995 sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
    996     register_t *retval)
    997 {
    998 	/* {
    999 		syscallarg(timer_t) timerid;
   1000 	} */
   1001 	struct proc *p = l->l_proc;
   1002 	struct ptimers *pts;
   1003 	int timerid;
   1004 	struct ptimer *pt;
   1005 
   1006 	timerid = SCARG(uap, timerid);
   1007 
   1008 	pts = p->p_timers;
   1009 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
   1010 		return (EINVAL);
   1011 	mutex_spin_enter(&timer_lock);
   1012 	if ((pt = pts->pts_timers[timerid]) == NULL) {
   1013 		mutex_spin_exit(&timer_lock);
   1014 		return (EINVAL);
   1015 	}
   1016 	*retval = pt->pt_poverruns;
   1017 	if (*retval >= DELAYTIMER_MAX)
   1018 		*retval = DELAYTIMER_MAX;
   1019 	mutex_spin_exit(&timer_lock);
   1020 
   1021 	return (0);
   1022 }
   1023 
   1024 /*
   1025  * Real interval timer expired:
   1026  * send process whose timer expired an alarm signal.
   1027  * If time is not set up to reload, then just return.
   1028  * Else compute next time timer should go off which is > current time.
   1029  * This is where delay in processing this timeout causes multiple
   1030  * SIGALRM calls to be compressed into one.
   1031  */
   1032 void
   1033 realtimerexpire(void *arg)
   1034 {
   1035 	uint64_t last_val, next_val, interval, now_ns;
   1036 	struct timespec now, next;
   1037 	struct ptimer *pt;
   1038 	int backwards;
   1039 
   1040 	pt = arg;
   1041 
   1042 	mutex_spin_enter(&timer_lock);
   1043 	itimerfire(pt);
   1044 
   1045 	if (!timespecisset(&pt->pt_time.it_interval)) {
   1046 		timespecclear(&pt->pt_time.it_value);
   1047 		mutex_spin_exit(&timer_lock);
   1048 		return;
   1049 	}
   1050 
   1051 	if (pt->pt_type == CLOCK_MONOTONIC) {
   1052 		getnanouptime(&now);
   1053 	} else {
   1054 		getnanotime(&now);
   1055 	}
   1056 	backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
   1057 	timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
   1058 	/* Handle the easy case of non-overflown timers first. */
   1059 	if (!backwards && timespeccmp(&next, &now, >)) {
   1060 		pt->pt_time.it_value = next;
   1061 	} else {
   1062 		now_ns = timespec2ns(&now);
   1063 		last_val = timespec2ns(&pt->pt_time.it_value);
   1064 		interval = timespec2ns(&pt->pt_time.it_interval);
   1065 
   1066 		next_val = now_ns +
   1067 		    (now_ns - last_val + interval - 1) % interval;
   1068 
   1069 		if (backwards)
   1070 			next_val += interval;
   1071 		else
   1072 			pt->pt_overruns += (now_ns - last_val) / interval;
   1073 
   1074 		pt->pt_time.it_value.tv_sec = next_val / 1000000000;
   1075 		pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
   1076 	}
   1077 
   1078 	/*
   1079 	 * Reset the callout, if it's not going away.
   1080 	 *
   1081 	 * Don't need to check tshzto() return value, here.
   1082 	 * callout_reset() does it for us.
   1083 	 */
   1084 	if (!pt->pt_dying)
   1085 		callout_reset(&pt->pt_ch,
   1086 		    (pt->pt_type == CLOCK_MONOTONIC
   1087 			? tshztoup(&pt->pt_time.it_value)
   1088 			: tshzto(&pt->pt_time.it_value)),
   1089 		    realtimerexpire, pt);
   1090 	mutex_spin_exit(&timer_lock);
   1091 }
   1092 
   1093 /* BSD routine to get the value of an interval timer. */
   1094 /* ARGSUSED */
   1095 int
   1096 sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
   1097     register_t *retval)
   1098 {
   1099 	/* {
   1100 		syscallarg(int) which;
   1101 		syscallarg(struct itimerval *) itv;
   1102 	} */
   1103 	struct proc *p = l->l_proc;
   1104 	struct itimerval aitv;
   1105 	int error;
   1106 
   1107 	memset(&aitv, 0, sizeof(aitv));
   1108 	error = dogetitimer(p, SCARG(uap, which), &aitv);
   1109 	if (error)
   1110 		return error;
   1111 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
   1112 }
   1113 
   1114 int
   1115 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
   1116 {
   1117 	struct ptimers *pts;
   1118 	struct ptimer *pt;
   1119 	struct itimerspec its;
   1120 
   1121 	if ((u_int)which > ITIMER_MONOTONIC)
   1122 		return (EINVAL);
   1123 
   1124 	mutex_spin_enter(&timer_lock);
   1125 	pts = p->p_timers;
   1126 	if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
   1127 		timerclear(&itvp->it_value);
   1128 		timerclear(&itvp->it_interval);
   1129 	} else {
   1130 		timer_gettime(pt, &its);
   1131 		TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
   1132 		TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
   1133 	}
   1134 	mutex_spin_exit(&timer_lock);
   1135 
   1136 	return 0;
   1137 }
   1138 
   1139 /* BSD routine to set/arm an interval timer. */
   1140 /* ARGSUSED */
   1141 int
   1142 sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
   1143     register_t *retval)
   1144 {
   1145 	/* {
   1146 		syscallarg(int) which;
   1147 		syscallarg(const struct itimerval *) itv;
   1148 		syscallarg(struct itimerval *) oitv;
   1149 	} */
   1150 	struct proc *p = l->l_proc;
   1151 	int which = SCARG(uap, which);
   1152 	struct sys___getitimer50_args getargs;
   1153 	const struct itimerval *itvp;
   1154 	struct itimerval aitv;
   1155 	int error;
   1156 
   1157 	if ((u_int)which > ITIMER_MONOTONIC)
   1158 		return (EINVAL);
   1159 	itvp = SCARG(uap, itv);
   1160 	if (itvp &&
   1161 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval))) != 0)
   1162 		return (error);
   1163 	if (SCARG(uap, oitv) != NULL) {
   1164 		SCARG(&getargs, which) = which;
   1165 		SCARG(&getargs, itv) = SCARG(uap, oitv);
   1166 		if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
   1167 			return (error);
   1168 	}
   1169 	if (itvp == 0)
   1170 		return (0);
   1171 
   1172 	return dosetitimer(p, which, &aitv);
   1173 }
   1174 
   1175 int
   1176 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
   1177 {
   1178 	struct timespec now;
   1179 	struct ptimers *pts;
   1180 	struct ptimer *pt, *spare;
   1181 	int error;
   1182 
   1183 	KASSERT((u_int)which <= CLOCK_MONOTONIC);
   1184 	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
   1185 		return (EINVAL);
   1186 
   1187 	/*
   1188 	 * Don't bother allocating data structures if the process just
   1189 	 * wants to clear the timer.
   1190 	 */
   1191 	spare = NULL;
   1192 	pts = p->p_timers;
   1193  retry:
   1194 	if (!timerisset(&itvp->it_value) && (pts == NULL ||
   1195 	    pts->pts_timers[which] == NULL))
   1196 		return (0);
   1197 	if (pts == NULL)
   1198 		pts = timers_alloc(p);
   1199 	mutex_spin_enter(&timer_lock);
   1200 restart:
   1201 	pt = pts->pts_timers[which];
   1202 	if (pt == NULL) {
   1203 		if (spare == NULL) {
   1204 			mutex_spin_exit(&timer_lock);
   1205 			spare = pool_get(&ptimer_pool, PR_WAITOK | PR_ZERO);
   1206 			goto retry;
   1207 		}
   1208 		pt = spare;
   1209 		spare = NULL;
   1210 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
   1211 		pt->pt_ev.sigev_value.sival_int = which;
   1212 		pt->pt_overruns = 0;
   1213 		pt->pt_proc = p;
   1214 		pt->pt_type = which;
   1215 		pt->pt_entry = which;
   1216 		pt->pt_queued = false;
   1217 		if (!CLOCK_VIRTUAL_P(which))
   1218 			callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
   1219 		else
   1220 			pt->pt_active = 0;
   1221 
   1222 		switch (which) {
   1223 		case ITIMER_REAL:
   1224 		case ITIMER_MONOTONIC:
   1225 			pt->pt_ev.sigev_signo = SIGALRM;
   1226 			break;
   1227 		case ITIMER_VIRTUAL:
   1228 			pt->pt_ev.sigev_signo = SIGVTALRM;
   1229 			break;
   1230 		case ITIMER_PROF:
   1231 			pt->pt_ev.sigev_signo = SIGPROF;
   1232 			break;
   1233 		}
   1234 		pts->pts_timers[which] = pt;
   1235 	}
   1236 
   1237 	TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
   1238 	TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
   1239 
   1240 	if (timespecisset(&pt->pt_time.it_value)) {
   1241 		/* Convert to absolute time */
   1242 		/* XXX need to wrap in splclock for timecounters case? */
   1243 		switch (which) {
   1244 		case ITIMER_REAL:
   1245 			getnanotime(&now);
   1246 			timespecadd(&pt->pt_time.it_value, &now,
   1247 			    &pt->pt_time.it_value);
   1248 			break;
   1249 		case ITIMER_MONOTONIC:
   1250 			getnanouptime(&now);
   1251 			timespecadd(&pt->pt_time.it_value, &now,
   1252 			    &pt->pt_time.it_value);
   1253 			break;
   1254 		default:
   1255 			break;
   1256 		}
   1257 	}
   1258 	error = timer_settime(pt);
   1259 	if (error == ERESTART) {
   1260 		KASSERT(!CLOCK_VIRTUAL_P(pt->pt_type));
   1261 		goto restart;
   1262 	}
   1263 	KASSERT(error == 0);
   1264 	mutex_spin_exit(&timer_lock);
   1265 	if (spare != NULL)
   1266 		pool_put(&ptimer_pool, spare);
   1267 
   1268 	return (0);
   1269 }
   1270 
   1271 /* Utility routines to manage the array of pointers to timers. */
   1272 struct ptimers *
   1273 timers_alloc(struct proc *p)
   1274 {
   1275 	struct ptimers *pts;
   1276 	int i;
   1277 
   1278 	pts = pool_get(&ptimers_pool, PR_WAITOK);
   1279 	LIST_INIT(&pts->pts_virtual);
   1280 	LIST_INIT(&pts->pts_prof);
   1281 	for (i = 0; i < TIMER_MAX; i++)
   1282 		pts->pts_timers[i] = NULL;
   1283 	mutex_spin_enter(&timer_lock);
   1284 	if (p->p_timers == NULL) {
   1285 		p->p_timers = pts;
   1286 		mutex_spin_exit(&timer_lock);
   1287 		return pts;
   1288 	}
   1289 	mutex_spin_exit(&timer_lock);
   1290 	pool_put(&ptimers_pool, pts);
   1291 	return p->p_timers;
   1292 }
   1293 
   1294 /*
   1295  * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
   1296  * then clean up all timers and free all the data structures. If
   1297  * "which" is set to TIMERS_POSIX, only clean up the timers allocated
   1298  * by timer_create(), not the BSD setitimer() timers, and only free the
   1299  * structure if none of those remain.
   1300  */
   1301 void
   1302 timers_free(struct proc *p, int which)
   1303 {
   1304 	struct ptimers *pts;
   1305 	struct ptimer *ptn;
   1306 	struct timespec ts;
   1307 	int i;
   1308 
   1309 	if (p->p_timers == NULL)
   1310 		return;
   1311 
   1312 	pts = p->p_timers;
   1313 	mutex_spin_enter(&timer_lock);
   1314 	if (which == TIMERS_ALL) {
   1315 		p->p_timers = NULL;
   1316 		i = 0;
   1317 	} else {
   1318 		timespecclear(&ts);
   1319 		for (ptn = LIST_FIRST(&pts->pts_virtual);
   1320 		     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
   1321 		     ptn = LIST_NEXT(ptn, pt_list)) {
   1322 			KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
   1323 			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
   1324 		}
   1325 		LIST_FIRST(&pts->pts_virtual) = NULL;
   1326 		if (ptn) {
   1327 			KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
   1328 			timespecadd(&ts, &ptn->pt_time.it_value,
   1329 			    &ptn->pt_time.it_value);
   1330 			LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
   1331 		}
   1332 		timespecclear(&ts);
   1333 		for (ptn = LIST_FIRST(&pts->pts_prof);
   1334 		     ptn && ptn != pts->pts_timers[ITIMER_PROF];
   1335 		     ptn = LIST_NEXT(ptn, pt_list)) {
   1336 			KASSERT(ptn->pt_type == CLOCK_PROF);
   1337 			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
   1338 		}
   1339 		LIST_FIRST(&pts->pts_prof) = NULL;
   1340 		if (ptn) {
   1341 			KASSERT(ptn->pt_type == CLOCK_PROF);
   1342 			timespecadd(&ts, &ptn->pt_time.it_value,
   1343 			    &ptn->pt_time.it_value);
   1344 			LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
   1345 		}
   1346 		i = TIMER_MIN;
   1347 	}
   1348 	for ( ; i < TIMER_MAX; i++) {
   1349 		if (pts->pts_timers[i] != NULL) {
   1350 			/* Free the timer and release the lock.  */
   1351 			itimerfree(pts, i);
   1352 			/* Reacquire the lock for the next one.  */
   1353 			mutex_spin_enter(&timer_lock);
   1354 		}
   1355 	}
   1356 	if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
   1357 	    pts->pts_timers[2] == NULL && pts->pts_timers[3] == NULL) {
   1358 		p->p_timers = NULL;
   1359 		mutex_spin_exit(&timer_lock);
   1360 		pool_put(&ptimers_pool, pts);
   1361 	} else
   1362 		mutex_spin_exit(&timer_lock);
   1363 }
   1364 
   1365 static void
   1366 itimerfree(struct ptimers *pts, int index)
   1367 {
   1368 	struct ptimer *pt;
   1369 
   1370 	KASSERT(mutex_owned(&timer_lock));
   1371 
   1372 	pt = pts->pts_timers[index];
   1373 
   1374 	/*
   1375 	 * Prevent new references, and notify the callout not to
   1376 	 * restart itself.
   1377 	 */
   1378 	pts->pts_timers[index] = NULL;
   1379 	pt->pt_dying = true;
   1380 
   1381 	/*
   1382 	 * For non-virtual timers, stop the callout, or wait for it to
   1383 	 * run if it has already fired.  It cannot restart again after
   1384 	 * this point: the callout won't restart itself when dying, no
   1385 	 * other users holding the lock can restart it, and any other
   1386 	 * users waiting for callout_halt concurrently (timer_settime)
   1387 	 * will restart from the top.
   1388 	 */
   1389 	if (!CLOCK_VIRTUAL_P(pt->pt_type))
   1390 		callout_halt(&pt->pt_ch, &timer_lock);
   1391 
   1392 	/* Remove it from the queue to be signalled.  */
   1393 	if (pt->pt_queued)
   1394 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
   1395 
   1396 	/* All done with the global state.  */
   1397 	mutex_spin_exit(&timer_lock);
   1398 
   1399 	/* Destroy the callout, if needed, and free the ptimer.  */
   1400 	if (!CLOCK_VIRTUAL_P(pt->pt_type))
   1401 		callout_destroy(&pt->pt_ch);
   1402 	pool_put(&ptimer_pool, pt);
   1403 }
   1404 
   1405 /*
   1406  * Decrement an interval timer by a specified number
   1407  * of nanoseconds, which must be less than a second,
   1408  * i.e. < 1000000000.  If the timer expires, then reload
   1409  * it.  In this case, carry over (nsec - old value) to
   1410  * reduce the value reloaded into the timer so that
   1411  * the timer does not drift.  This routine assumes
   1412  * that it is called in a context where the timers
   1413  * on which it is operating cannot change in value.
   1414  */
   1415 static int
   1416 itimerdecr(struct ptimer *pt, int nsec)
   1417 {
   1418 	struct itimerspec *itp;
   1419 	int error __diagused;
   1420 
   1421 	KASSERT(mutex_owned(&timer_lock));
   1422 	KASSERT(CLOCK_VIRTUAL_P(pt->pt_type));
   1423 
   1424 	itp = &pt->pt_time;
   1425 	if (itp->it_value.tv_nsec < nsec) {
   1426 		if (itp->it_value.tv_sec == 0) {
   1427 			/* expired, and already in next interval */
   1428 			nsec -= itp->it_value.tv_nsec;
   1429 			goto expire;
   1430 		}
   1431 		itp->it_value.tv_nsec += 1000000000;
   1432 		itp->it_value.tv_sec--;
   1433 	}
   1434 	itp->it_value.tv_nsec -= nsec;
   1435 	nsec = 0;
   1436 	if (timespecisset(&itp->it_value))
   1437 		return (1);
   1438 	/* expired, exactly at end of interval */
   1439 expire:
   1440 	if (timespecisset(&itp->it_interval)) {
   1441 		itp->it_value = itp->it_interval;
   1442 		itp->it_value.tv_nsec -= nsec;
   1443 		if (itp->it_value.tv_nsec < 0) {
   1444 			itp->it_value.tv_nsec += 1000000000;
   1445 			itp->it_value.tv_sec--;
   1446 		}
   1447 		error = timer_settime(pt);
   1448 		KASSERT(error == 0); /* virtual, never fails */
   1449 	} else
   1450 		itp->it_value.tv_nsec = 0;		/* sec is already 0 */
   1451 	return (0);
   1452 }
   1453 
   1454 static void
   1455 itimerfire(struct ptimer *pt)
   1456 {
   1457 
   1458 	KASSERT(mutex_owned(&timer_lock));
   1459 
   1460 	/*
   1461 	 * XXX Can overrun, but we don't do signal queueing yet, anyway.
   1462 	 * XXX Relying on the clock interrupt is stupid.
   1463 	 */
   1464 	if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL || pt->pt_queued) {
   1465 		return;
   1466 	}
   1467 	TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
   1468 	pt->pt_queued = true;
   1469 	softint_schedule(timer_sih);
   1470 }
   1471 
   1472 void
   1473 timer_tick(lwp_t *l, bool user)
   1474 {
   1475 	struct ptimers *pts;
   1476 	struct ptimer *pt;
   1477 	proc_t *p;
   1478 
   1479 	p = l->l_proc;
   1480 	if (p->p_timers == NULL)
   1481 		return;
   1482 
   1483 	mutex_spin_enter(&timer_lock);
   1484 	if ((pts = l->l_proc->p_timers) != NULL) {
   1485 		/*
   1486 		 * Run current process's virtual and profile time, as needed.
   1487 		 */
   1488 		if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
   1489 			if (itimerdecr(pt, tick * 1000) == 0)
   1490 				itimerfire(pt);
   1491 		if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
   1492 			if (itimerdecr(pt, tick * 1000) == 0)
   1493 				itimerfire(pt);
   1494 	}
   1495 	mutex_spin_exit(&timer_lock);
   1496 }
   1497 
   1498 static void
   1499 timer_intr(void *cookie)
   1500 {
   1501 	ksiginfo_t ksi;
   1502 	struct ptimer *pt;
   1503 	proc_t *p;
   1504 
   1505 	mutex_enter(proc_lock);
   1506 	mutex_spin_enter(&timer_lock);
   1507 	while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
   1508 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
   1509 		KASSERT(pt->pt_queued);
   1510 		pt->pt_queued = false;
   1511 
   1512 		if (pt->pt_proc->p_timers == NULL) {
   1513 			/* Process is dying. */
   1514 			continue;
   1515 		}
   1516 		p = pt->pt_proc;
   1517 		if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
   1518 			continue;
   1519 		}
   1520 		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
   1521 			pt->pt_overruns++;
   1522 			continue;
   1523 		}
   1524 
   1525 		KSI_INIT(&ksi);
   1526 		ksi.ksi_signo = pt->pt_ev.sigev_signo;
   1527 		ksi.ksi_code = SI_TIMER;
   1528 		ksi.ksi_value = pt->pt_ev.sigev_value;
   1529 		pt->pt_poverruns = pt->pt_overruns;
   1530 		pt->pt_overruns = 0;
   1531 		mutex_spin_exit(&timer_lock);
   1532 		kpsignal(p, &ksi, NULL);
   1533 		mutex_spin_enter(&timer_lock);
   1534 	}
   1535 	mutex_spin_exit(&timer_lock);
   1536 	mutex_exit(proc_lock);
   1537 }
   1538 
   1539 /*
   1540  * Check if the time will wrap if set to ts.
   1541  *
   1542  * ts - timespec describing the new time
   1543  * delta - the delta between the current time and ts
   1544  */
   1545 bool
   1546 time_wraps(struct timespec *ts, struct timespec *delta)
   1547 {
   1548 
   1549 	/*
   1550 	 * Don't allow the time to be set forward so far it
   1551 	 * will wrap and become negative, thus allowing an
   1552 	 * attacker to bypass the next check below.  The
   1553 	 * cutoff is 1 year before rollover occurs, so even
   1554 	 * if the attacker uses adjtime(2) to move the time
   1555 	 * past the cutoff, it will take a very long time
   1556 	 * to get to the wrap point.
   1557 	 */
   1558 	if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
   1559 	    (delta->tv_sec < 0 || delta->tv_nsec < 0))
   1560 		return true;
   1561 
   1562 	return false;
   1563 }
   1564