kern_time.c revision 1.202 1 /* $NetBSD: kern_time.c,v 1.202 2020/01/01 17:28:17 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1986, 1989, 1993
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
61 */
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.202 2020/01/01 17:28:17 thorpej Exp $");
65
66 #include <sys/param.h>
67 #include <sys/resourcevar.h>
68 #include <sys/kernel.h>
69 #include <sys/systm.h>
70 #include <sys/proc.h>
71 #include <sys/vnode.h>
72 #include <sys/signalvar.h>
73 #include <sys/syslog.h>
74 #include <sys/timetc.h>
75 #include <sys/timex.h>
76 #include <sys/kauth.h>
77 #include <sys/mount.h>
78 #include <sys/syscallargs.h>
79 #include <sys/cpu.h>
80
81 static void timer_intr(void *);
82 static void itimerfire(struct ptimer *);
83 static void itimerfree(struct ptimers *, int);
84
85 kmutex_t timer_lock;
86
87 static void *timer_sih;
88 static TAILQ_HEAD(, ptimer) timer_queue;
89
90 struct pool ptimer_pool, ptimers_pool;
91
92 #define CLOCK_VIRTUAL_P(clockid) \
93 ((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)
94
95 CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
96 CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
97 CTASSERT(ITIMER_PROF == CLOCK_PROF);
98 CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC);
99
100 #define DELAYTIMER_MAX 32
101
102 /*
103 * Initialize timekeeping.
104 */
105 void
106 time_init(void)
107 {
108
109 pool_init(&ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
110 &pool_allocator_nointr, IPL_NONE);
111 pool_init(&ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
112 &pool_allocator_nointr, IPL_NONE);
113 }
114
115 void
116 time_init2(void)
117 {
118
119 TAILQ_INIT(&timer_queue);
120 mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
121 timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
122 timer_intr, NULL);
123 }
124
125 /* Time of day and interval timer support.
126 *
127 * These routines provide the kernel entry points to get and set
128 * the time-of-day and per-process interval timers. Subroutines
129 * here provide support for adding and subtracting timeval structures
130 * and decrementing interval timers, optionally reloading the interval
131 * timers when they expire.
132 */
133
134 /* This function is used by clock_settime and settimeofday */
135 static int
136 settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
137 {
138 struct timespec delta, now;
139
140 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
141 nanotime(&now);
142 timespecsub(ts, &now, &delta);
143
144 if (check_kauth && kauth_authorize_system(kauth_cred_get(),
145 KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
146 &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
147 return (EPERM);
148 }
149
150 #ifdef notyet
151 if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
152 return (EPERM);
153 }
154 #endif
155
156 tc_setclock(ts);
157
158 timespecadd(&boottime, &delta, &boottime);
159
160 resettodr();
161
162 return (0);
163 }
164
165 int
166 settime(struct proc *p, struct timespec *ts)
167 {
168 return (settime1(p, ts, true));
169 }
170
171 /* ARGSUSED */
172 int
173 sys___clock_gettime50(struct lwp *l,
174 const struct sys___clock_gettime50_args *uap, register_t *retval)
175 {
176 /* {
177 syscallarg(clockid_t) clock_id;
178 syscallarg(struct timespec *) tp;
179 } */
180 int error;
181 struct timespec ats;
182
183 error = clock_gettime1(SCARG(uap, clock_id), &ats);
184 if (error != 0)
185 return error;
186
187 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
188 }
189
190 /* ARGSUSED */
191 int
192 sys___clock_settime50(struct lwp *l,
193 const struct sys___clock_settime50_args *uap, register_t *retval)
194 {
195 /* {
196 syscallarg(clockid_t) clock_id;
197 syscallarg(const struct timespec *) tp;
198 } */
199 int error;
200 struct timespec ats;
201
202 if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
203 return error;
204
205 return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
206 }
207
208
209 int
210 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
211 bool check_kauth)
212 {
213 int error;
214
215 if (tp->tv_nsec < 0 || tp->tv_nsec >= 1000000000L)
216 return EINVAL;
217
218 switch (clock_id) {
219 case CLOCK_REALTIME:
220 if ((error = settime1(p, tp, check_kauth)) != 0)
221 return (error);
222 break;
223 case CLOCK_MONOTONIC:
224 return (EINVAL); /* read-only clock */
225 default:
226 return (EINVAL);
227 }
228
229 return 0;
230 }
231
232 int
233 sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
234 register_t *retval)
235 {
236 /* {
237 syscallarg(clockid_t) clock_id;
238 syscallarg(struct timespec *) tp;
239 } */
240 struct timespec ts;
241 int error;
242
243 if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
244 return error;
245
246 if (SCARG(uap, tp))
247 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
248
249 return error;
250 }
251
252 int
253 clock_getres1(clockid_t clock_id, struct timespec *ts)
254 {
255
256 switch (clock_id) {
257 case CLOCK_REALTIME:
258 case CLOCK_MONOTONIC:
259 ts->tv_sec = 0;
260 if (tc_getfrequency() > 1000000000)
261 ts->tv_nsec = 1;
262 else
263 ts->tv_nsec = 1000000000 / tc_getfrequency();
264 break;
265 default:
266 return EINVAL;
267 }
268
269 return 0;
270 }
271
272 /* ARGSUSED */
273 int
274 sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
275 register_t *retval)
276 {
277 /* {
278 syscallarg(struct timespec *) rqtp;
279 syscallarg(struct timespec *) rmtp;
280 } */
281 struct timespec rmt, rqt;
282 int error, error1;
283
284 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
285 if (error)
286 return (error);
287
288 error = nanosleep1(l, CLOCK_MONOTONIC, 0, &rqt,
289 SCARG(uap, rmtp) ? &rmt : NULL);
290 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
291 return error;
292
293 error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
294 return error1 ? error1 : error;
295 }
296
297 /* ARGSUSED */
298 int
299 sys_clock_nanosleep(struct lwp *l, const struct sys_clock_nanosleep_args *uap,
300 register_t *retval)
301 {
302 /* {
303 syscallarg(clockid_t) clock_id;
304 syscallarg(int) flags;
305 syscallarg(struct timespec *) rqtp;
306 syscallarg(struct timespec *) rmtp;
307 } */
308 struct timespec rmt, rqt;
309 int error, error1;
310
311 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
312 if (error)
313 goto out;
314
315 error = nanosleep1(l, SCARG(uap, clock_id), SCARG(uap, flags), &rqt,
316 SCARG(uap, rmtp) ? &rmt : NULL);
317 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
318 goto out;
319
320 if ((SCARG(uap, flags) & TIMER_ABSTIME) == 0 &&
321 (error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt))) != 0)
322 error = error1;
323 out:
324 *retval = error;
325 return 0;
326 }
327
328 int
329 nanosleep1(struct lwp *l, clockid_t clock_id, int flags, struct timespec *rqt,
330 struct timespec *rmt)
331 {
332 struct timespec rmtstart;
333 int error, timo;
334
335 if ((error = ts2timo(clock_id, flags, rqt, &timo, &rmtstart)) != 0) {
336 if (error == ETIMEDOUT) {
337 error = 0;
338 if (rmt != NULL)
339 rmt->tv_sec = rmt->tv_nsec = 0;
340 }
341 return error;
342 }
343
344 /*
345 * Avoid inadvertently sleeping forever
346 */
347 if (timo == 0)
348 timo = 1;
349 again:
350 error = kpause("nanoslp", true, timo, NULL);
351 if (error == EWOULDBLOCK)
352 error = 0;
353 if (rmt != NULL || error == 0) {
354 struct timespec rmtend;
355 struct timespec t0;
356 struct timespec *t;
357
358 (void)clock_gettime1(clock_id, &rmtend);
359 t = (rmt != NULL) ? rmt : &t0;
360 if (flags & TIMER_ABSTIME) {
361 timespecsub(rqt, &rmtend, t);
362 } else {
363 timespecsub(&rmtend, &rmtstart, t);
364 timespecsub(rqt, t, t);
365 }
366 if (t->tv_sec < 0)
367 timespecclear(t);
368 if (error == 0) {
369 timo = tstohz(t);
370 if (timo > 0)
371 goto again;
372 }
373 }
374
375 if (error == ERESTART)
376 error = EINTR;
377
378 return error;
379 }
380
381 int
382 sys_clock_getcpuclockid2(struct lwp *l,
383 const struct sys_clock_getcpuclockid2_args *uap,
384 register_t *retval)
385 {
386 /* {
387 syscallarg(idtype_t idtype;
388 syscallarg(id_t id);
389 syscallarg(clockid_t *)clock_id;
390 } */
391 pid_t pid;
392 lwpid_t lid;
393 clockid_t clock_id;
394 id_t id = SCARG(uap, id);
395
396 switch (SCARG(uap, idtype)) {
397 case P_PID:
398 pid = id == 0 ? l->l_proc->p_pid : id;
399 clock_id = CLOCK_PROCESS_CPUTIME_ID | pid;
400 break;
401 case P_LWPID:
402 lid = id == 0 ? l->l_lid : id;
403 clock_id = CLOCK_THREAD_CPUTIME_ID | lid;
404 break;
405 default:
406 return EINVAL;
407 }
408 return copyout(&clock_id, SCARG(uap, clock_id), sizeof(clock_id));
409 }
410
411 /* ARGSUSED */
412 int
413 sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
414 register_t *retval)
415 {
416 /* {
417 syscallarg(struct timeval *) tp;
418 syscallarg(void *) tzp; really "struct timezone *";
419 } */
420 struct timeval atv;
421 int error = 0;
422 struct timezone tzfake;
423
424 if (SCARG(uap, tp)) {
425 memset(&atv, 0, sizeof(atv));
426 microtime(&atv);
427 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
428 if (error)
429 return (error);
430 }
431 if (SCARG(uap, tzp)) {
432 /*
433 * NetBSD has no kernel notion of time zone, so we just
434 * fake up a timezone struct and return it if demanded.
435 */
436 tzfake.tz_minuteswest = 0;
437 tzfake.tz_dsttime = 0;
438 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
439 }
440 return (error);
441 }
442
443 /* ARGSUSED */
444 int
445 sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
446 register_t *retval)
447 {
448 /* {
449 syscallarg(const struct timeval *) tv;
450 syscallarg(const void *) tzp; really "const struct timezone *";
451 } */
452
453 return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
454 }
455
456 int
457 settimeofday1(const struct timeval *utv, bool userspace,
458 const void *utzp, struct lwp *l, bool check_kauth)
459 {
460 struct timeval atv;
461 struct timespec ts;
462 int error;
463
464 /* Verify all parameters before changing time. */
465
466 /*
467 * NetBSD has no kernel notion of time zone, and only an
468 * obsolete program would try to set it, so we log a warning.
469 */
470 if (utzp)
471 log(LOG_WARNING, "pid %d attempted to set the "
472 "(obsolete) kernel time zone\n", l->l_proc->p_pid);
473
474 if (utv == NULL)
475 return 0;
476
477 if (userspace) {
478 if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
479 return error;
480 utv = &atv;
481 }
482
483 if (utv->tv_usec < 0 || utv->tv_usec >= 1000000)
484 return EINVAL;
485
486 TIMEVAL_TO_TIMESPEC(utv, &ts);
487 return settime1(l->l_proc, &ts, check_kauth);
488 }
489
490 int time_adjusted; /* set if an adjustment is made */
491
492 /* ARGSUSED */
493 int
494 sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
495 register_t *retval)
496 {
497 /* {
498 syscallarg(const struct timeval *) delta;
499 syscallarg(struct timeval *) olddelta;
500 } */
501 int error;
502 struct timeval atv, oldatv;
503
504 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
505 KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
506 return error;
507
508 if (SCARG(uap, delta)) {
509 error = copyin(SCARG(uap, delta), &atv,
510 sizeof(*SCARG(uap, delta)));
511 if (error)
512 return (error);
513 }
514 adjtime1(SCARG(uap, delta) ? &atv : NULL,
515 SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
516 if (SCARG(uap, olddelta))
517 error = copyout(&oldatv, SCARG(uap, olddelta),
518 sizeof(*SCARG(uap, olddelta)));
519 return error;
520 }
521
522 void
523 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
524 {
525 extern int64_t time_adjtime; /* in kern_ntptime.c */
526
527 if (olddelta) {
528 memset(olddelta, 0, sizeof(*olddelta));
529 mutex_spin_enter(&timecounter_lock);
530 olddelta->tv_sec = time_adjtime / 1000000;
531 olddelta->tv_usec = time_adjtime % 1000000;
532 if (olddelta->tv_usec < 0) {
533 olddelta->tv_usec += 1000000;
534 olddelta->tv_sec--;
535 }
536 mutex_spin_exit(&timecounter_lock);
537 }
538
539 if (delta) {
540 mutex_spin_enter(&timecounter_lock);
541 time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
542
543 if (time_adjtime) {
544 /* We need to save the system time during shutdown */
545 time_adjusted |= 1;
546 }
547 mutex_spin_exit(&timecounter_lock);
548 }
549 }
550
551 /*
552 * Interval timer support. Both the BSD getitimer() family and the POSIX
553 * timer_*() family of routines are supported.
554 *
555 * All timers are kept in an array pointed to by p_timers, which is
556 * allocated on demand - many processes don't use timers at all. The
557 * first four elements in this array are reserved for the BSD timers:
558 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element
559 * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be
560 * allocated by the timer_create() syscall.
561 *
562 * Realtime timers are kept in the ptimer structure as an absolute
563 * time; virtual time timers are kept as a linked list of deltas.
564 * Virtual time timers are processed in the hardclock() routine of
565 * kern_clock.c. The real time timer is processed by a callout
566 * routine, called from the softclock() routine. Since a callout may
567 * be delayed in real time due to interrupt processing in the system,
568 * it is possible for the real time timeout routine (realtimeexpire,
569 * given below), to be delayed in real time past when it is supposed
570 * to occur. It does not suffice, therefore, to reload the real timer
571 * .it_value from the real time timers .it_interval. Rather, we
572 * compute the next time in absolute time the timer should go off. */
573
574 /* Allocate a POSIX realtime timer. */
575 int
576 sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
577 register_t *retval)
578 {
579 /* {
580 syscallarg(clockid_t) clock_id;
581 syscallarg(struct sigevent *) evp;
582 syscallarg(timer_t *) timerid;
583 } */
584
585 return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
586 SCARG(uap, evp), copyin, l);
587 }
588
589 int
590 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
591 copyin_t fetch_event, struct lwp *l)
592 {
593 int error;
594 timer_t timerid;
595 struct ptimers *pts;
596 struct ptimer *pt;
597 struct proc *p;
598
599 p = l->l_proc;
600
601 if ((u_int)id > CLOCK_MONOTONIC)
602 return (EINVAL);
603
604 if ((pts = p->p_timers) == NULL)
605 pts = timers_alloc(p);
606
607 pt = pool_get(&ptimer_pool, PR_WAITOK | PR_ZERO);
608 if (evp != NULL) {
609 if (((error =
610 (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
611 ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
612 (pt->pt_ev.sigev_notify > SIGEV_SA)) ||
613 (pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
614 (pt->pt_ev.sigev_signo <= 0 ||
615 pt->pt_ev.sigev_signo >= NSIG))) {
616 pool_put(&ptimer_pool, pt);
617 return (error ? error : EINVAL);
618 }
619 }
620
621 /* Find a free timer slot, skipping those reserved for setitimer(). */
622 mutex_spin_enter(&timer_lock);
623 for (timerid = TIMER_MIN; timerid < TIMER_MAX; timerid++)
624 if (pts->pts_timers[timerid] == NULL)
625 break;
626 if (timerid == TIMER_MAX) {
627 mutex_spin_exit(&timer_lock);
628 pool_put(&ptimer_pool, pt);
629 return EAGAIN;
630 }
631 if (evp == NULL) {
632 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
633 switch (id) {
634 case CLOCK_REALTIME:
635 case CLOCK_MONOTONIC:
636 pt->pt_ev.sigev_signo = SIGALRM;
637 break;
638 case CLOCK_VIRTUAL:
639 pt->pt_ev.sigev_signo = SIGVTALRM;
640 break;
641 case CLOCK_PROF:
642 pt->pt_ev.sigev_signo = SIGPROF;
643 break;
644 }
645 pt->pt_ev.sigev_value.sival_int = timerid;
646 }
647 pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
648 pt->pt_info.ksi_errno = 0;
649 pt->pt_info.ksi_code = 0;
650 pt->pt_info.ksi_pid = p->p_pid;
651 pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
652 pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
653 pt->pt_type = id;
654 pt->pt_proc = p;
655 pt->pt_overruns = 0;
656 pt->pt_poverruns = 0;
657 pt->pt_entry = timerid;
658 pt->pt_queued = false;
659 timespecclear(&pt->pt_time.it_value);
660 if (!CLOCK_VIRTUAL_P(id))
661 callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
662 else
663 pt->pt_active = 0;
664
665 pts->pts_timers[timerid] = pt;
666 mutex_spin_exit(&timer_lock);
667
668 return copyout(&timerid, tid, sizeof(timerid));
669 }
670
671 /* Delete a POSIX realtime timer */
672 int
673 sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
674 register_t *retval)
675 {
676 /* {
677 syscallarg(timer_t) timerid;
678 } */
679 struct proc *p = l->l_proc;
680 timer_t timerid;
681 struct ptimers *pts;
682 struct ptimer *pt, *ptn;
683
684 timerid = SCARG(uap, timerid);
685 pts = p->p_timers;
686
687 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
688 return (EINVAL);
689
690 mutex_spin_enter(&timer_lock);
691 if ((pt = pts->pts_timers[timerid]) == NULL) {
692 mutex_spin_exit(&timer_lock);
693 return (EINVAL);
694 }
695 if (CLOCK_VIRTUAL_P(pt->pt_type)) {
696 if (pt->pt_active) {
697 ptn = LIST_NEXT(pt, pt_list);
698 LIST_REMOVE(pt, pt_list);
699 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
700 timespecadd(&pt->pt_time.it_value,
701 &ptn->pt_time.it_value,
702 &ptn->pt_time.it_value);
703 pt->pt_active = 0;
704 }
705 }
706
707 /* Free the timer and release the lock. */
708 itimerfree(pts, timerid);
709
710 return (0);
711 }
712
713 /*
714 * Set up the given timer. The value in pt->pt_time.it_value is taken
715 * to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC timers and
716 * a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
717 *
718 * If the callout had already fired but not yet run, fails with
719 * ERESTART -- caller must restart from the top to look up a timer.
720 */
721 int
722 timer_settime(struct ptimer *pt)
723 {
724 struct ptimer *ptn, *pptn;
725 struct ptlist *ptl;
726
727 KASSERT(mutex_owned(&timer_lock));
728
729 if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
730 /*
731 * Try to stop the callout. However, if it had already
732 * fired, we have to drop the lock to wait for it, so
733 * the world may have changed and pt may not be there
734 * any more. In that case, tell the caller to start
735 * over from the top.
736 */
737 if (callout_halt(&pt->pt_ch, &timer_lock))
738 return ERESTART;
739
740 /* Now we can touch pt and start it up again. */
741 if (timespecisset(&pt->pt_time.it_value)) {
742 /*
743 * Don't need to check tshzto() return value, here.
744 * callout_reset() does it for us.
745 */
746 callout_reset(&pt->pt_ch,
747 pt->pt_type == CLOCK_MONOTONIC ?
748 tshztoup(&pt->pt_time.it_value) :
749 tshzto(&pt->pt_time.it_value),
750 realtimerexpire, pt);
751 }
752 } else {
753 if (pt->pt_active) {
754 ptn = LIST_NEXT(pt, pt_list);
755 LIST_REMOVE(pt, pt_list);
756 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
757 timespecadd(&pt->pt_time.it_value,
758 &ptn->pt_time.it_value,
759 &ptn->pt_time.it_value);
760 }
761 if (timespecisset(&pt->pt_time.it_value)) {
762 if (pt->pt_type == CLOCK_VIRTUAL)
763 ptl = &pt->pt_proc->p_timers->pts_virtual;
764 else
765 ptl = &pt->pt_proc->p_timers->pts_prof;
766
767 for (ptn = LIST_FIRST(ptl), pptn = NULL;
768 ptn && timespeccmp(&pt->pt_time.it_value,
769 &ptn->pt_time.it_value, >);
770 pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
771 timespecsub(&pt->pt_time.it_value,
772 &ptn->pt_time.it_value,
773 &pt->pt_time.it_value);
774
775 if (pptn)
776 LIST_INSERT_AFTER(pptn, pt, pt_list);
777 else
778 LIST_INSERT_HEAD(ptl, pt, pt_list);
779
780 for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
781 timespecsub(&ptn->pt_time.it_value,
782 &pt->pt_time.it_value,
783 &ptn->pt_time.it_value);
784
785 pt->pt_active = 1;
786 } else
787 pt->pt_active = 0;
788 }
789
790 /* Success! */
791 return 0;
792 }
793
794 void
795 timer_gettime(struct ptimer *pt, struct itimerspec *aits)
796 {
797 struct timespec now;
798 struct ptimer *ptn;
799
800 KASSERT(mutex_owned(&timer_lock));
801
802 *aits = pt->pt_time;
803 if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
804 /*
805 * Convert from absolute to relative time in .it_value
806 * part of real time timer. If time for real time
807 * timer has passed return 0, else return difference
808 * between current time and time for the timer to go
809 * off.
810 */
811 if (timespecisset(&aits->it_value)) {
812 if (pt->pt_type == CLOCK_REALTIME) {
813 getnanotime(&now);
814 } else { /* CLOCK_MONOTONIC */
815 getnanouptime(&now);
816 }
817 if (timespeccmp(&aits->it_value, &now, <))
818 timespecclear(&aits->it_value);
819 else
820 timespecsub(&aits->it_value, &now,
821 &aits->it_value);
822 }
823 } else if (pt->pt_active) {
824 if (pt->pt_type == CLOCK_VIRTUAL)
825 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
826 else
827 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
828 for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
829 timespecadd(&aits->it_value,
830 &ptn->pt_time.it_value, &aits->it_value);
831 KASSERT(ptn != NULL); /* pt should be findable on the list */
832 } else
833 timespecclear(&aits->it_value);
834 }
835
836
837
838 /* Set and arm a POSIX realtime timer */
839 int
840 sys___timer_settime50(struct lwp *l,
841 const struct sys___timer_settime50_args *uap,
842 register_t *retval)
843 {
844 /* {
845 syscallarg(timer_t) timerid;
846 syscallarg(int) flags;
847 syscallarg(const struct itimerspec *) value;
848 syscallarg(struct itimerspec *) ovalue;
849 } */
850 int error;
851 struct itimerspec value, ovalue, *ovp = NULL;
852
853 if ((error = copyin(SCARG(uap, value), &value,
854 sizeof(struct itimerspec))) != 0)
855 return (error);
856
857 if (SCARG(uap, ovalue))
858 ovp = &ovalue;
859
860 if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
861 SCARG(uap, flags), l->l_proc)) != 0)
862 return error;
863
864 if (ovp)
865 return copyout(&ovalue, SCARG(uap, ovalue),
866 sizeof(struct itimerspec));
867 return 0;
868 }
869
870 int
871 dotimer_settime(int timerid, struct itimerspec *value,
872 struct itimerspec *ovalue, int flags, struct proc *p)
873 {
874 struct timespec now;
875 struct itimerspec val, oval;
876 struct ptimers *pts;
877 struct ptimer *pt;
878 int error;
879
880 pts = p->p_timers;
881
882 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
883 return EINVAL;
884 val = *value;
885 if ((error = itimespecfix(&val.it_value)) != 0 ||
886 (error = itimespecfix(&val.it_interval)) != 0)
887 return error;
888
889 mutex_spin_enter(&timer_lock);
890 restart:
891 if ((pt = pts->pts_timers[timerid]) == NULL) {
892 mutex_spin_exit(&timer_lock);
893 return EINVAL;
894 }
895
896 oval = pt->pt_time;
897 pt->pt_time = val;
898
899 /*
900 * If we've been passed a relative time for a realtime timer,
901 * convert it to absolute; if an absolute time for a virtual
902 * timer, convert it to relative and make sure we don't set it
903 * to zero, which would cancel the timer, or let it go
904 * negative, which would confuse the comparison tests.
905 */
906 if (timespecisset(&pt->pt_time.it_value)) {
907 if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
908 if ((flags & TIMER_ABSTIME) == 0) {
909 if (pt->pt_type == CLOCK_REALTIME) {
910 getnanotime(&now);
911 } else { /* CLOCK_MONOTONIC */
912 getnanouptime(&now);
913 }
914 timespecadd(&pt->pt_time.it_value, &now,
915 &pt->pt_time.it_value);
916 }
917 } else {
918 if ((flags & TIMER_ABSTIME) != 0) {
919 getnanotime(&now);
920 timespecsub(&pt->pt_time.it_value, &now,
921 &pt->pt_time.it_value);
922 if (!timespecisset(&pt->pt_time.it_value) ||
923 pt->pt_time.it_value.tv_sec < 0) {
924 pt->pt_time.it_value.tv_sec = 0;
925 pt->pt_time.it_value.tv_nsec = 1;
926 }
927 }
928 }
929 }
930
931 error = timer_settime(pt);
932 if (error == ERESTART) {
933 KASSERT(!CLOCK_VIRTUAL_P(pt->pt_type));
934 goto restart;
935 }
936 KASSERT(error == 0);
937 mutex_spin_exit(&timer_lock);
938
939 if (ovalue)
940 *ovalue = oval;
941
942 return (0);
943 }
944
945 /* Return the time remaining until a POSIX timer fires. */
946 int
947 sys___timer_gettime50(struct lwp *l,
948 const struct sys___timer_gettime50_args *uap, register_t *retval)
949 {
950 /* {
951 syscallarg(timer_t) timerid;
952 syscallarg(struct itimerspec *) value;
953 } */
954 struct itimerspec its;
955 int error;
956
957 if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
958 &its)) != 0)
959 return error;
960
961 return copyout(&its, SCARG(uap, value), sizeof(its));
962 }
963
964 int
965 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
966 {
967 struct ptimer *pt;
968 struct ptimers *pts;
969
970 pts = p->p_timers;
971 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
972 return (EINVAL);
973 mutex_spin_enter(&timer_lock);
974 if ((pt = pts->pts_timers[timerid]) == NULL) {
975 mutex_spin_exit(&timer_lock);
976 return (EINVAL);
977 }
978 timer_gettime(pt, its);
979 mutex_spin_exit(&timer_lock);
980
981 return 0;
982 }
983
984 /*
985 * Return the count of the number of times a periodic timer expired
986 * while a notification was already pending. The counter is reset when
987 * a timer expires and a notification can be posted.
988 */
989 int
990 sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
991 register_t *retval)
992 {
993 /* {
994 syscallarg(timer_t) timerid;
995 } */
996 struct proc *p = l->l_proc;
997 struct ptimers *pts;
998 int timerid;
999 struct ptimer *pt;
1000
1001 timerid = SCARG(uap, timerid);
1002
1003 pts = p->p_timers;
1004 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
1005 return (EINVAL);
1006 mutex_spin_enter(&timer_lock);
1007 if ((pt = pts->pts_timers[timerid]) == NULL) {
1008 mutex_spin_exit(&timer_lock);
1009 return (EINVAL);
1010 }
1011 *retval = pt->pt_poverruns;
1012 if (*retval >= DELAYTIMER_MAX)
1013 *retval = DELAYTIMER_MAX;
1014 mutex_spin_exit(&timer_lock);
1015
1016 return (0);
1017 }
1018
1019 /*
1020 * Real interval timer expired:
1021 * send process whose timer expired an alarm signal.
1022 * If time is not set up to reload, then just return.
1023 * Else compute next time timer should go off which is > current time.
1024 * This is where delay in processing this timeout causes multiple
1025 * SIGALRM calls to be compressed into one.
1026 */
1027 void
1028 realtimerexpire(void *arg)
1029 {
1030 uint64_t last_val, next_val, interval, now_ns;
1031 struct timespec now, next;
1032 struct ptimer *pt;
1033 int backwards;
1034
1035 pt = arg;
1036
1037 mutex_spin_enter(&timer_lock);
1038 itimerfire(pt);
1039
1040 if (!timespecisset(&pt->pt_time.it_interval)) {
1041 timespecclear(&pt->pt_time.it_value);
1042 mutex_spin_exit(&timer_lock);
1043 return;
1044 }
1045
1046 if (pt->pt_type == CLOCK_MONOTONIC) {
1047 getnanouptime(&now);
1048 } else {
1049 getnanotime(&now);
1050 }
1051 backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
1052 timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
1053 /* Handle the easy case of non-overflown timers first. */
1054 if (!backwards && timespeccmp(&next, &now, >)) {
1055 pt->pt_time.it_value = next;
1056 } else {
1057 now_ns = timespec2ns(&now);
1058 last_val = timespec2ns(&pt->pt_time.it_value);
1059 interval = timespec2ns(&pt->pt_time.it_interval);
1060
1061 next_val = now_ns +
1062 (now_ns - last_val + interval - 1) % interval;
1063
1064 if (backwards)
1065 next_val += interval;
1066 else
1067 pt->pt_overruns += (now_ns - last_val) / interval;
1068
1069 pt->pt_time.it_value.tv_sec = next_val / 1000000000;
1070 pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
1071 }
1072
1073 /*
1074 * Reset the callout, if it's not going away.
1075 *
1076 * Don't need to check tshzto() return value, here.
1077 * callout_reset() does it for us.
1078 */
1079 if (!pt->pt_dying)
1080 callout_reset(&pt->pt_ch,
1081 (pt->pt_type == CLOCK_MONOTONIC
1082 ? tshztoup(&pt->pt_time.it_value)
1083 : tshzto(&pt->pt_time.it_value)),
1084 realtimerexpire, pt);
1085 mutex_spin_exit(&timer_lock);
1086 }
1087
1088 /* BSD routine to get the value of an interval timer. */
1089 /* ARGSUSED */
1090 int
1091 sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
1092 register_t *retval)
1093 {
1094 /* {
1095 syscallarg(int) which;
1096 syscallarg(struct itimerval *) itv;
1097 } */
1098 struct proc *p = l->l_proc;
1099 struct itimerval aitv;
1100 int error;
1101
1102 memset(&aitv, 0, sizeof(aitv));
1103 error = dogetitimer(p, SCARG(uap, which), &aitv);
1104 if (error)
1105 return error;
1106 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1107 }
1108
1109 int
1110 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1111 {
1112 struct ptimers *pts;
1113 struct ptimer *pt;
1114 struct itimerspec its;
1115
1116 if ((u_int)which > ITIMER_MONOTONIC)
1117 return (EINVAL);
1118
1119 mutex_spin_enter(&timer_lock);
1120 pts = p->p_timers;
1121 if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
1122 timerclear(&itvp->it_value);
1123 timerclear(&itvp->it_interval);
1124 } else {
1125 timer_gettime(pt, &its);
1126 TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
1127 TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
1128 }
1129 mutex_spin_exit(&timer_lock);
1130
1131 return 0;
1132 }
1133
1134 /* BSD routine to set/arm an interval timer. */
1135 /* ARGSUSED */
1136 int
1137 sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
1138 register_t *retval)
1139 {
1140 /* {
1141 syscallarg(int) which;
1142 syscallarg(const struct itimerval *) itv;
1143 syscallarg(struct itimerval *) oitv;
1144 } */
1145 struct proc *p = l->l_proc;
1146 int which = SCARG(uap, which);
1147 struct sys___getitimer50_args getargs;
1148 const struct itimerval *itvp;
1149 struct itimerval aitv;
1150 int error;
1151
1152 if ((u_int)which > ITIMER_MONOTONIC)
1153 return (EINVAL);
1154 itvp = SCARG(uap, itv);
1155 if (itvp &&
1156 (error = copyin(itvp, &aitv, sizeof(struct itimerval))) != 0)
1157 return (error);
1158 if (SCARG(uap, oitv) != NULL) {
1159 SCARG(&getargs, which) = which;
1160 SCARG(&getargs, itv) = SCARG(uap, oitv);
1161 if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
1162 return (error);
1163 }
1164 if (itvp == 0)
1165 return (0);
1166
1167 return dosetitimer(p, which, &aitv);
1168 }
1169
1170 int
1171 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1172 {
1173 struct timespec now;
1174 struct ptimers *pts;
1175 struct ptimer *pt, *spare;
1176 int error;
1177
1178 KASSERT((u_int)which <= CLOCK_MONOTONIC);
1179 if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1180 return (EINVAL);
1181
1182 /*
1183 * Don't bother allocating data structures if the process just
1184 * wants to clear the timer.
1185 */
1186 spare = NULL;
1187 pts = p->p_timers;
1188 retry:
1189 if (!timerisset(&itvp->it_value) && (pts == NULL ||
1190 pts->pts_timers[which] == NULL))
1191 return (0);
1192 if (pts == NULL)
1193 pts = timers_alloc(p);
1194 mutex_spin_enter(&timer_lock);
1195 restart:
1196 pt = pts->pts_timers[which];
1197 if (pt == NULL) {
1198 if (spare == NULL) {
1199 mutex_spin_exit(&timer_lock);
1200 spare = pool_get(&ptimer_pool, PR_WAITOK | PR_ZERO);
1201 goto retry;
1202 }
1203 pt = spare;
1204 spare = NULL;
1205 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1206 pt->pt_ev.sigev_value.sival_int = which;
1207 pt->pt_overruns = 0;
1208 pt->pt_proc = p;
1209 pt->pt_type = which;
1210 pt->pt_entry = which;
1211 pt->pt_queued = false;
1212 if (!CLOCK_VIRTUAL_P(which))
1213 callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
1214 else
1215 pt->pt_active = 0;
1216
1217 switch (which) {
1218 case ITIMER_REAL:
1219 case ITIMER_MONOTONIC:
1220 pt->pt_ev.sigev_signo = SIGALRM;
1221 break;
1222 case ITIMER_VIRTUAL:
1223 pt->pt_ev.sigev_signo = SIGVTALRM;
1224 break;
1225 case ITIMER_PROF:
1226 pt->pt_ev.sigev_signo = SIGPROF;
1227 break;
1228 }
1229 pts->pts_timers[which] = pt;
1230 }
1231
1232 TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
1233 TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
1234
1235 if (timespecisset(&pt->pt_time.it_value)) {
1236 /* Convert to absolute time */
1237 /* XXX need to wrap in splclock for timecounters case? */
1238 switch (which) {
1239 case ITIMER_REAL:
1240 getnanotime(&now);
1241 timespecadd(&pt->pt_time.it_value, &now,
1242 &pt->pt_time.it_value);
1243 break;
1244 case ITIMER_MONOTONIC:
1245 getnanouptime(&now);
1246 timespecadd(&pt->pt_time.it_value, &now,
1247 &pt->pt_time.it_value);
1248 break;
1249 default:
1250 break;
1251 }
1252 }
1253 error = timer_settime(pt);
1254 if (error == ERESTART) {
1255 KASSERT(!CLOCK_VIRTUAL_P(pt->pt_type));
1256 goto restart;
1257 }
1258 KASSERT(error == 0);
1259 mutex_spin_exit(&timer_lock);
1260 if (spare != NULL)
1261 pool_put(&ptimer_pool, spare);
1262
1263 return (0);
1264 }
1265
1266 /* Utility routines to manage the array of pointers to timers. */
1267 struct ptimers *
1268 timers_alloc(struct proc *p)
1269 {
1270 struct ptimers *pts;
1271 int i;
1272
1273 pts = pool_get(&ptimers_pool, PR_WAITOK);
1274 LIST_INIT(&pts->pts_virtual);
1275 LIST_INIT(&pts->pts_prof);
1276 for (i = 0; i < TIMER_MAX; i++)
1277 pts->pts_timers[i] = NULL;
1278 mutex_spin_enter(&timer_lock);
1279 if (p->p_timers == NULL) {
1280 p->p_timers = pts;
1281 mutex_spin_exit(&timer_lock);
1282 return pts;
1283 }
1284 mutex_spin_exit(&timer_lock);
1285 pool_put(&ptimers_pool, pts);
1286 return p->p_timers;
1287 }
1288
1289 /*
1290 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1291 * then clean up all timers and free all the data structures. If
1292 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1293 * by timer_create(), not the BSD setitimer() timers, and only free the
1294 * structure if none of those remain.
1295 */
1296 void
1297 timers_free(struct proc *p, int which)
1298 {
1299 struct ptimers *pts;
1300 struct ptimer *ptn;
1301 struct timespec ts;
1302 int i;
1303
1304 if (p->p_timers == NULL)
1305 return;
1306
1307 pts = p->p_timers;
1308 mutex_spin_enter(&timer_lock);
1309 if (which == TIMERS_ALL) {
1310 p->p_timers = NULL;
1311 i = 0;
1312 } else {
1313 timespecclear(&ts);
1314 for (ptn = LIST_FIRST(&pts->pts_virtual);
1315 ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1316 ptn = LIST_NEXT(ptn, pt_list)) {
1317 KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1318 timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1319 }
1320 LIST_FIRST(&pts->pts_virtual) = NULL;
1321 if (ptn) {
1322 KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1323 timespecadd(&ts, &ptn->pt_time.it_value,
1324 &ptn->pt_time.it_value);
1325 LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
1326 }
1327 timespecclear(&ts);
1328 for (ptn = LIST_FIRST(&pts->pts_prof);
1329 ptn && ptn != pts->pts_timers[ITIMER_PROF];
1330 ptn = LIST_NEXT(ptn, pt_list)) {
1331 KASSERT(ptn->pt_type == CLOCK_PROF);
1332 timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1333 }
1334 LIST_FIRST(&pts->pts_prof) = NULL;
1335 if (ptn) {
1336 KASSERT(ptn->pt_type == CLOCK_PROF);
1337 timespecadd(&ts, &ptn->pt_time.it_value,
1338 &ptn->pt_time.it_value);
1339 LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
1340 }
1341 i = TIMER_MIN;
1342 }
1343 for ( ; i < TIMER_MAX; i++) {
1344 if (pts->pts_timers[i] != NULL) {
1345 /* Free the timer and release the lock. */
1346 itimerfree(pts, i);
1347 /* Reacquire the lock for the next one. */
1348 mutex_spin_enter(&timer_lock);
1349 }
1350 }
1351 if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
1352 pts->pts_timers[2] == NULL && pts->pts_timers[3] == NULL) {
1353 p->p_timers = NULL;
1354 mutex_spin_exit(&timer_lock);
1355 pool_put(&ptimers_pool, pts);
1356 } else
1357 mutex_spin_exit(&timer_lock);
1358 }
1359
1360 static void
1361 itimerfree(struct ptimers *pts, int index)
1362 {
1363 struct ptimer *pt;
1364
1365 KASSERT(mutex_owned(&timer_lock));
1366
1367 pt = pts->pts_timers[index];
1368
1369 /*
1370 * Prevent new references, and notify the callout not to
1371 * restart itself.
1372 */
1373 pts->pts_timers[index] = NULL;
1374 pt->pt_dying = true;
1375
1376 /*
1377 * For non-virtual timers, stop the callout, or wait for it to
1378 * run if it has already fired. It cannot restart again after
1379 * this point: the callout won't restart itself when dying, no
1380 * other users holding the lock can restart it, and any other
1381 * users waiting for callout_halt concurrently (timer_settime)
1382 * will restart from the top.
1383 */
1384 if (!CLOCK_VIRTUAL_P(pt->pt_type))
1385 callout_halt(&pt->pt_ch, &timer_lock);
1386
1387 /* Remove it from the queue to be signalled. */
1388 if (pt->pt_queued)
1389 TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1390
1391 /* All done with the global state. */
1392 mutex_spin_exit(&timer_lock);
1393
1394 /* Destroy the callout, if needed, and free the ptimer. */
1395 if (!CLOCK_VIRTUAL_P(pt->pt_type))
1396 callout_destroy(&pt->pt_ch);
1397 pool_put(&ptimer_pool, pt);
1398 }
1399
1400 /*
1401 * Decrement an interval timer by a specified number
1402 * of nanoseconds, which must be less than a second,
1403 * i.e. < 1000000000. If the timer expires, then reload
1404 * it. In this case, carry over (nsec - old value) to
1405 * reduce the value reloaded into the timer so that
1406 * the timer does not drift. This routine assumes
1407 * that it is called in a context where the timers
1408 * on which it is operating cannot change in value.
1409 */
1410 static int
1411 itimerdecr(struct ptimer *pt, int nsec)
1412 {
1413 struct itimerspec *itp;
1414 int error __diagused;
1415
1416 KASSERT(mutex_owned(&timer_lock));
1417 KASSERT(CLOCK_VIRTUAL_P(pt->pt_type));
1418
1419 itp = &pt->pt_time;
1420 if (itp->it_value.tv_nsec < nsec) {
1421 if (itp->it_value.tv_sec == 0) {
1422 /* expired, and already in next interval */
1423 nsec -= itp->it_value.tv_nsec;
1424 goto expire;
1425 }
1426 itp->it_value.tv_nsec += 1000000000;
1427 itp->it_value.tv_sec--;
1428 }
1429 itp->it_value.tv_nsec -= nsec;
1430 nsec = 0;
1431 if (timespecisset(&itp->it_value))
1432 return (1);
1433 /* expired, exactly at end of interval */
1434 expire:
1435 if (timespecisset(&itp->it_interval)) {
1436 itp->it_value = itp->it_interval;
1437 itp->it_value.tv_nsec -= nsec;
1438 if (itp->it_value.tv_nsec < 0) {
1439 itp->it_value.tv_nsec += 1000000000;
1440 itp->it_value.tv_sec--;
1441 }
1442 error = timer_settime(pt);
1443 KASSERT(error == 0); /* virtual, never fails */
1444 } else
1445 itp->it_value.tv_nsec = 0; /* sec is already 0 */
1446 return (0);
1447 }
1448
1449 static void
1450 itimerfire(struct ptimer *pt)
1451 {
1452
1453 KASSERT(mutex_owned(&timer_lock));
1454
1455 /*
1456 * XXX Can overrun, but we don't do signal queueing yet, anyway.
1457 * XXX Relying on the clock interrupt is stupid.
1458 */
1459 if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL || pt->pt_queued) {
1460 return;
1461 }
1462 TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
1463 pt->pt_queued = true;
1464 softint_schedule(timer_sih);
1465 }
1466
1467 void
1468 timer_tick(lwp_t *l, bool user)
1469 {
1470 struct ptimers *pts;
1471 struct ptimer *pt;
1472 proc_t *p;
1473
1474 p = l->l_proc;
1475 if (p->p_timers == NULL)
1476 return;
1477
1478 mutex_spin_enter(&timer_lock);
1479 if ((pts = l->l_proc->p_timers) != NULL) {
1480 /*
1481 * Run current process's virtual and profile time, as needed.
1482 */
1483 if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
1484 if (itimerdecr(pt, tick * 1000) == 0)
1485 itimerfire(pt);
1486 if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
1487 if (itimerdecr(pt, tick * 1000) == 0)
1488 itimerfire(pt);
1489 }
1490 mutex_spin_exit(&timer_lock);
1491 }
1492
1493 static void
1494 timer_intr(void *cookie)
1495 {
1496 ksiginfo_t ksi;
1497 struct ptimer *pt;
1498 proc_t *p;
1499
1500 mutex_enter(proc_lock);
1501 mutex_spin_enter(&timer_lock);
1502 while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
1503 TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1504 KASSERT(pt->pt_queued);
1505 pt->pt_queued = false;
1506
1507 if (pt->pt_proc->p_timers == NULL) {
1508 /* Process is dying. */
1509 continue;
1510 }
1511 p = pt->pt_proc;
1512 if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
1513 continue;
1514 }
1515 if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
1516 pt->pt_overruns++;
1517 continue;
1518 }
1519
1520 KSI_INIT(&ksi);
1521 ksi.ksi_signo = pt->pt_ev.sigev_signo;
1522 ksi.ksi_code = SI_TIMER;
1523 ksi.ksi_value = pt->pt_ev.sigev_value;
1524 pt->pt_poverruns = pt->pt_overruns;
1525 pt->pt_overruns = 0;
1526 mutex_spin_exit(&timer_lock);
1527 kpsignal(p, &ksi, NULL);
1528 mutex_spin_enter(&timer_lock);
1529 }
1530 mutex_spin_exit(&timer_lock);
1531 mutex_exit(proc_lock);
1532 }
1533
1534 /*
1535 * Check if the time will wrap if set to ts.
1536 *
1537 * ts - timespec describing the new time
1538 * delta - the delta between the current time and ts
1539 */
1540 bool
1541 time_wraps(struct timespec *ts, struct timespec *delta)
1542 {
1543
1544 /*
1545 * Don't allow the time to be set forward so far it
1546 * will wrap and become negative, thus allowing an
1547 * attacker to bypass the next check below. The
1548 * cutoff is 1 year before rollover occurs, so even
1549 * if the attacker uses adjtime(2) to move the time
1550 * past the cutoff, it will take a very long time
1551 * to get to the wrap point.
1552 */
1553 if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
1554 (delta->tv_sec < 0 || delta->tv_nsec < 0))
1555 return true;
1556
1557 return false;
1558 }
1559