kern_time.c revision 1.204 1 /* $NetBSD: kern_time.c,v 1.204 2020/05/14 18:18:24 maxv Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1986, 1989, 1993
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
61 */
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.204 2020/05/14 18:18:24 maxv Exp $");
65
66 #include <sys/param.h>
67 #include <sys/resourcevar.h>
68 #include <sys/kernel.h>
69 #include <sys/systm.h>
70 #include <sys/proc.h>
71 #include <sys/vnode.h>
72 #include <sys/signalvar.h>
73 #include <sys/syslog.h>
74 #include <sys/timetc.h>
75 #include <sys/timex.h>
76 #include <sys/kauth.h>
77 #include <sys/mount.h>
78 #include <sys/syscallargs.h>
79 #include <sys/cpu.h>
80
81 static void timer_intr(void *);
82 static void itimerfire(struct ptimer *);
83 static void itimerfree(struct ptimers *, int);
84
85 kmutex_t timer_lock;
86
87 static void *timer_sih;
88 static TAILQ_HEAD(, ptimer) timer_queue;
89
90 struct pool ptimer_pool, ptimers_pool;
91
92 #define CLOCK_VIRTUAL_P(clockid) \
93 ((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)
94
95 CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
96 CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
97 CTASSERT(ITIMER_PROF == CLOCK_PROF);
98 CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC);
99
100 #define DELAYTIMER_MAX 32
101
102 /*
103 * Initialize timekeeping.
104 */
105 void
106 time_init(void)
107 {
108
109 pool_init(&ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
110 &pool_allocator_nointr, IPL_NONE);
111 pool_init(&ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
112 &pool_allocator_nointr, IPL_NONE);
113 }
114
115 void
116 time_init2(void)
117 {
118
119 TAILQ_INIT(&timer_queue);
120 mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
121 timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
122 timer_intr, NULL);
123 }
124
125 /* Time of day and interval timer support.
126 *
127 * These routines provide the kernel entry points to get and set
128 * the time-of-day and per-process interval timers. Subroutines
129 * here provide support for adding and subtracting timeval structures
130 * and decrementing interval timers, optionally reloading the interval
131 * timers when they expire.
132 */
133
134 /* This function is used by clock_settime and settimeofday */
135 static int
136 settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
137 {
138 struct timespec delta, now;
139
140 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
141 nanotime(&now);
142 timespecsub(ts, &now, &delta);
143
144 if (check_kauth && kauth_authorize_system(kauth_cred_get(),
145 KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
146 &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
147 return (EPERM);
148 }
149
150 #ifdef notyet
151 if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
152 return (EPERM);
153 }
154 #endif
155
156 tc_setclock(ts);
157
158 resettodr();
159
160 return (0);
161 }
162
163 int
164 settime(struct proc *p, struct timespec *ts)
165 {
166 return (settime1(p, ts, true));
167 }
168
169 /* ARGSUSED */
170 int
171 sys___clock_gettime50(struct lwp *l,
172 const struct sys___clock_gettime50_args *uap, register_t *retval)
173 {
174 /* {
175 syscallarg(clockid_t) clock_id;
176 syscallarg(struct timespec *) tp;
177 } */
178 int error;
179 struct timespec ats;
180
181 error = clock_gettime1(SCARG(uap, clock_id), &ats);
182 if (error != 0)
183 return error;
184
185 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
186 }
187
188 /* ARGSUSED */
189 int
190 sys___clock_settime50(struct lwp *l,
191 const struct sys___clock_settime50_args *uap, register_t *retval)
192 {
193 /* {
194 syscallarg(clockid_t) clock_id;
195 syscallarg(const struct timespec *) tp;
196 } */
197 int error;
198 struct timespec ats;
199
200 if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
201 return error;
202
203 return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
204 }
205
206
207 int
208 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
209 bool check_kauth)
210 {
211 int error;
212
213 if (tp->tv_nsec < 0 || tp->tv_nsec >= 1000000000L)
214 return EINVAL;
215
216 switch (clock_id) {
217 case CLOCK_REALTIME:
218 if ((error = settime1(p, tp, check_kauth)) != 0)
219 return (error);
220 break;
221 case CLOCK_MONOTONIC:
222 return (EINVAL); /* read-only clock */
223 default:
224 return (EINVAL);
225 }
226
227 return 0;
228 }
229
230 int
231 sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
232 register_t *retval)
233 {
234 /* {
235 syscallarg(clockid_t) clock_id;
236 syscallarg(struct timespec *) tp;
237 } */
238 struct timespec ts;
239 int error;
240
241 if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
242 return error;
243
244 if (SCARG(uap, tp))
245 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
246
247 return error;
248 }
249
250 int
251 clock_getres1(clockid_t clock_id, struct timespec *ts)
252 {
253
254 switch (clock_id) {
255 case CLOCK_REALTIME:
256 case CLOCK_MONOTONIC:
257 ts->tv_sec = 0;
258 if (tc_getfrequency() > 1000000000)
259 ts->tv_nsec = 1;
260 else
261 ts->tv_nsec = 1000000000 / tc_getfrequency();
262 break;
263 default:
264 return EINVAL;
265 }
266
267 return 0;
268 }
269
270 /* ARGSUSED */
271 int
272 sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
273 register_t *retval)
274 {
275 /* {
276 syscallarg(struct timespec *) rqtp;
277 syscallarg(struct timespec *) rmtp;
278 } */
279 struct timespec rmt, rqt;
280 int error, error1;
281
282 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
283 if (error)
284 return (error);
285
286 error = nanosleep1(l, CLOCK_MONOTONIC, 0, &rqt,
287 SCARG(uap, rmtp) ? &rmt : NULL);
288 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
289 return error;
290
291 error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
292 return error1 ? error1 : error;
293 }
294
295 /* ARGSUSED */
296 int
297 sys_clock_nanosleep(struct lwp *l, const struct sys_clock_nanosleep_args *uap,
298 register_t *retval)
299 {
300 /* {
301 syscallarg(clockid_t) clock_id;
302 syscallarg(int) flags;
303 syscallarg(struct timespec *) rqtp;
304 syscallarg(struct timespec *) rmtp;
305 } */
306 struct timespec rmt, rqt;
307 int error, error1;
308
309 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
310 if (error)
311 goto out;
312
313 error = nanosleep1(l, SCARG(uap, clock_id), SCARG(uap, flags), &rqt,
314 SCARG(uap, rmtp) ? &rmt : NULL);
315 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
316 goto out;
317
318 if ((SCARG(uap, flags) & TIMER_ABSTIME) == 0 &&
319 (error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt))) != 0)
320 error = error1;
321 out:
322 *retval = error;
323 return 0;
324 }
325
326 int
327 nanosleep1(struct lwp *l, clockid_t clock_id, int flags, struct timespec *rqt,
328 struct timespec *rmt)
329 {
330 struct timespec rmtstart;
331 int error, timo;
332
333 if ((error = ts2timo(clock_id, flags, rqt, &timo, &rmtstart)) != 0) {
334 if (error == ETIMEDOUT) {
335 error = 0;
336 if (rmt != NULL)
337 rmt->tv_sec = rmt->tv_nsec = 0;
338 }
339 return error;
340 }
341
342 /*
343 * Avoid inadvertently sleeping forever
344 */
345 if (timo == 0)
346 timo = 1;
347 again:
348 error = kpause("nanoslp", true, timo, NULL);
349 if (error == EWOULDBLOCK)
350 error = 0;
351 if (rmt != NULL || error == 0) {
352 struct timespec rmtend;
353 struct timespec t0;
354 struct timespec *t;
355 int err;
356
357 err = clock_gettime1(clock_id, &rmtend);
358 if (err != 0)
359 return err;
360
361 t = (rmt != NULL) ? rmt : &t0;
362 if (flags & TIMER_ABSTIME) {
363 timespecsub(rqt, &rmtend, t);
364 } else {
365 timespecsub(&rmtend, &rmtstart, t);
366 timespecsub(rqt, t, t);
367 }
368 if (t->tv_sec < 0)
369 timespecclear(t);
370 if (error == 0) {
371 timo = tstohz(t);
372 if (timo > 0)
373 goto again;
374 }
375 }
376
377 if (error == ERESTART)
378 error = EINTR;
379
380 return error;
381 }
382
383 int
384 sys_clock_getcpuclockid2(struct lwp *l,
385 const struct sys_clock_getcpuclockid2_args *uap,
386 register_t *retval)
387 {
388 /* {
389 syscallarg(idtype_t idtype;
390 syscallarg(id_t id);
391 syscallarg(clockid_t *)clock_id;
392 } */
393 pid_t pid;
394 lwpid_t lid;
395 clockid_t clock_id;
396 id_t id = SCARG(uap, id);
397
398 switch (SCARG(uap, idtype)) {
399 case P_PID:
400 pid = id == 0 ? l->l_proc->p_pid : id;
401 clock_id = CLOCK_PROCESS_CPUTIME_ID | pid;
402 break;
403 case P_LWPID:
404 lid = id == 0 ? l->l_lid : id;
405 clock_id = CLOCK_THREAD_CPUTIME_ID | lid;
406 break;
407 default:
408 return EINVAL;
409 }
410 return copyout(&clock_id, SCARG(uap, clock_id), sizeof(clock_id));
411 }
412
413 /* ARGSUSED */
414 int
415 sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
416 register_t *retval)
417 {
418 /* {
419 syscallarg(struct timeval *) tp;
420 syscallarg(void *) tzp; really "struct timezone *";
421 } */
422 struct timeval atv;
423 int error = 0;
424 struct timezone tzfake;
425
426 if (SCARG(uap, tp)) {
427 memset(&atv, 0, sizeof(atv));
428 microtime(&atv);
429 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
430 if (error)
431 return (error);
432 }
433 if (SCARG(uap, tzp)) {
434 /*
435 * NetBSD has no kernel notion of time zone, so we just
436 * fake up a timezone struct and return it if demanded.
437 */
438 tzfake.tz_minuteswest = 0;
439 tzfake.tz_dsttime = 0;
440 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
441 }
442 return (error);
443 }
444
445 /* ARGSUSED */
446 int
447 sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
448 register_t *retval)
449 {
450 /* {
451 syscallarg(const struct timeval *) tv;
452 syscallarg(const void *) tzp; really "const struct timezone *";
453 } */
454
455 return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
456 }
457
458 int
459 settimeofday1(const struct timeval *utv, bool userspace,
460 const void *utzp, struct lwp *l, bool check_kauth)
461 {
462 struct timeval atv;
463 struct timespec ts;
464 int error;
465
466 /* Verify all parameters before changing time. */
467
468 /*
469 * NetBSD has no kernel notion of time zone, and only an
470 * obsolete program would try to set it, so we log a warning.
471 */
472 if (utzp)
473 log(LOG_WARNING, "pid %d attempted to set the "
474 "(obsolete) kernel time zone\n", l->l_proc->p_pid);
475
476 if (utv == NULL)
477 return 0;
478
479 if (userspace) {
480 if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
481 return error;
482 utv = &atv;
483 }
484
485 if (utv->tv_usec < 0 || utv->tv_usec >= 1000000)
486 return EINVAL;
487
488 TIMEVAL_TO_TIMESPEC(utv, &ts);
489 return settime1(l->l_proc, &ts, check_kauth);
490 }
491
492 int time_adjusted; /* set if an adjustment is made */
493
494 /* ARGSUSED */
495 int
496 sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
497 register_t *retval)
498 {
499 /* {
500 syscallarg(const struct timeval *) delta;
501 syscallarg(struct timeval *) olddelta;
502 } */
503 int error;
504 struct timeval atv, oldatv;
505
506 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
507 KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
508 return error;
509
510 if (SCARG(uap, delta)) {
511 error = copyin(SCARG(uap, delta), &atv,
512 sizeof(*SCARG(uap, delta)));
513 if (error)
514 return (error);
515 }
516 adjtime1(SCARG(uap, delta) ? &atv : NULL,
517 SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
518 if (SCARG(uap, olddelta))
519 error = copyout(&oldatv, SCARG(uap, olddelta),
520 sizeof(*SCARG(uap, olddelta)));
521 return error;
522 }
523
524 void
525 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
526 {
527 extern int64_t time_adjtime; /* in kern_ntptime.c */
528
529 if (olddelta) {
530 memset(olddelta, 0, sizeof(*olddelta));
531 mutex_spin_enter(&timecounter_lock);
532 olddelta->tv_sec = time_adjtime / 1000000;
533 olddelta->tv_usec = time_adjtime % 1000000;
534 if (olddelta->tv_usec < 0) {
535 olddelta->tv_usec += 1000000;
536 olddelta->tv_sec--;
537 }
538 mutex_spin_exit(&timecounter_lock);
539 }
540
541 if (delta) {
542 mutex_spin_enter(&timecounter_lock);
543 time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
544
545 if (time_adjtime) {
546 /* We need to save the system time during shutdown */
547 time_adjusted |= 1;
548 }
549 mutex_spin_exit(&timecounter_lock);
550 }
551 }
552
553 /*
554 * Interval timer support. Both the BSD getitimer() family and the POSIX
555 * timer_*() family of routines are supported.
556 *
557 * All timers are kept in an array pointed to by p_timers, which is
558 * allocated on demand - many processes don't use timers at all. The
559 * first four elements in this array are reserved for the BSD timers:
560 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element
561 * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be
562 * allocated by the timer_create() syscall.
563 *
564 * Realtime timers are kept in the ptimer structure as an absolute
565 * time; virtual time timers are kept as a linked list of deltas.
566 * Virtual time timers are processed in the hardclock() routine of
567 * kern_clock.c. The real time timer is processed by a callout
568 * routine, called from the softclock() routine. Since a callout may
569 * be delayed in real time due to interrupt processing in the system,
570 * it is possible for the real time timeout routine (realtimeexpire,
571 * given below), to be delayed in real time past when it is supposed
572 * to occur. It does not suffice, therefore, to reload the real timer
573 * .it_value from the real time timers .it_interval. Rather, we
574 * compute the next time in absolute time the timer should go off. */
575
576 /* Allocate a POSIX realtime timer. */
577 int
578 sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
579 register_t *retval)
580 {
581 /* {
582 syscallarg(clockid_t) clock_id;
583 syscallarg(struct sigevent *) evp;
584 syscallarg(timer_t *) timerid;
585 } */
586
587 return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
588 SCARG(uap, evp), copyin, l);
589 }
590
591 int
592 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
593 copyin_t fetch_event, struct lwp *l)
594 {
595 int error;
596 timer_t timerid;
597 struct ptimers *pts;
598 struct ptimer *pt;
599 struct proc *p;
600
601 p = l->l_proc;
602
603 if ((u_int)id > CLOCK_MONOTONIC)
604 return (EINVAL);
605
606 if ((pts = p->p_timers) == NULL)
607 pts = timers_alloc(p);
608
609 pt = pool_get(&ptimer_pool, PR_WAITOK | PR_ZERO);
610 if (evp != NULL) {
611 if (((error =
612 (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
613 ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
614 (pt->pt_ev.sigev_notify > SIGEV_SA)) ||
615 (pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
616 (pt->pt_ev.sigev_signo <= 0 ||
617 pt->pt_ev.sigev_signo >= NSIG))) {
618 pool_put(&ptimer_pool, pt);
619 return (error ? error : EINVAL);
620 }
621 }
622
623 /* Find a free timer slot, skipping those reserved for setitimer(). */
624 mutex_spin_enter(&timer_lock);
625 for (timerid = TIMER_MIN; timerid < TIMER_MAX; timerid++)
626 if (pts->pts_timers[timerid] == NULL)
627 break;
628 if (timerid == TIMER_MAX) {
629 mutex_spin_exit(&timer_lock);
630 pool_put(&ptimer_pool, pt);
631 return EAGAIN;
632 }
633 if (evp == NULL) {
634 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
635 switch (id) {
636 case CLOCK_REALTIME:
637 case CLOCK_MONOTONIC:
638 pt->pt_ev.sigev_signo = SIGALRM;
639 break;
640 case CLOCK_VIRTUAL:
641 pt->pt_ev.sigev_signo = SIGVTALRM;
642 break;
643 case CLOCK_PROF:
644 pt->pt_ev.sigev_signo = SIGPROF;
645 break;
646 }
647 pt->pt_ev.sigev_value.sival_int = timerid;
648 }
649 pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
650 pt->pt_info.ksi_errno = 0;
651 pt->pt_info.ksi_code = 0;
652 pt->pt_info.ksi_pid = p->p_pid;
653 pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
654 pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
655 pt->pt_type = id;
656 pt->pt_proc = p;
657 pt->pt_overruns = 0;
658 pt->pt_poverruns = 0;
659 pt->pt_entry = timerid;
660 pt->pt_queued = false;
661 timespecclear(&pt->pt_time.it_value);
662 if (!CLOCK_VIRTUAL_P(id))
663 callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
664 else
665 pt->pt_active = 0;
666
667 pts->pts_timers[timerid] = pt;
668 mutex_spin_exit(&timer_lock);
669
670 return copyout(&timerid, tid, sizeof(timerid));
671 }
672
673 /* Delete a POSIX realtime timer */
674 int
675 sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
676 register_t *retval)
677 {
678 /* {
679 syscallarg(timer_t) timerid;
680 } */
681 struct proc *p = l->l_proc;
682 timer_t timerid;
683 struct ptimers *pts;
684 struct ptimer *pt, *ptn;
685
686 timerid = SCARG(uap, timerid);
687 pts = p->p_timers;
688
689 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
690 return (EINVAL);
691
692 mutex_spin_enter(&timer_lock);
693 if ((pt = pts->pts_timers[timerid]) == NULL) {
694 mutex_spin_exit(&timer_lock);
695 return (EINVAL);
696 }
697 if (CLOCK_VIRTUAL_P(pt->pt_type)) {
698 if (pt->pt_active) {
699 ptn = LIST_NEXT(pt, pt_list);
700 LIST_REMOVE(pt, pt_list);
701 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
702 timespecadd(&pt->pt_time.it_value,
703 &ptn->pt_time.it_value,
704 &ptn->pt_time.it_value);
705 pt->pt_active = 0;
706 }
707 }
708
709 /* Free the timer and release the lock. */
710 itimerfree(pts, timerid);
711
712 return (0);
713 }
714
715 /*
716 * Set up the given timer. The value in pt->pt_time.it_value is taken
717 * to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC timers and
718 * a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
719 *
720 * If the callout had already fired but not yet run, fails with
721 * ERESTART -- caller must restart from the top to look up a timer.
722 */
723 int
724 timer_settime(struct ptimer *pt)
725 {
726 struct ptimer *ptn, *pptn;
727 struct ptlist *ptl;
728
729 KASSERT(mutex_owned(&timer_lock));
730
731 if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
732 /*
733 * Try to stop the callout. However, if it had already
734 * fired, we have to drop the lock to wait for it, so
735 * the world may have changed and pt may not be there
736 * any more. In that case, tell the caller to start
737 * over from the top.
738 */
739 if (callout_halt(&pt->pt_ch, &timer_lock))
740 return ERESTART;
741
742 /* Now we can touch pt and start it up again. */
743 if (timespecisset(&pt->pt_time.it_value)) {
744 /*
745 * Don't need to check tshzto() return value, here.
746 * callout_reset() does it for us.
747 */
748 callout_reset(&pt->pt_ch,
749 pt->pt_type == CLOCK_MONOTONIC ?
750 tshztoup(&pt->pt_time.it_value) :
751 tshzto(&pt->pt_time.it_value),
752 realtimerexpire, pt);
753 }
754 } else {
755 if (pt->pt_active) {
756 ptn = LIST_NEXT(pt, pt_list);
757 LIST_REMOVE(pt, pt_list);
758 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
759 timespecadd(&pt->pt_time.it_value,
760 &ptn->pt_time.it_value,
761 &ptn->pt_time.it_value);
762 }
763 if (timespecisset(&pt->pt_time.it_value)) {
764 if (pt->pt_type == CLOCK_VIRTUAL)
765 ptl = &pt->pt_proc->p_timers->pts_virtual;
766 else
767 ptl = &pt->pt_proc->p_timers->pts_prof;
768
769 for (ptn = LIST_FIRST(ptl), pptn = NULL;
770 ptn && timespeccmp(&pt->pt_time.it_value,
771 &ptn->pt_time.it_value, >);
772 pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
773 timespecsub(&pt->pt_time.it_value,
774 &ptn->pt_time.it_value,
775 &pt->pt_time.it_value);
776
777 if (pptn)
778 LIST_INSERT_AFTER(pptn, pt, pt_list);
779 else
780 LIST_INSERT_HEAD(ptl, pt, pt_list);
781
782 for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
783 timespecsub(&ptn->pt_time.it_value,
784 &pt->pt_time.it_value,
785 &ptn->pt_time.it_value);
786
787 pt->pt_active = 1;
788 } else
789 pt->pt_active = 0;
790 }
791
792 /* Success! */
793 return 0;
794 }
795
796 void
797 timer_gettime(struct ptimer *pt, struct itimerspec *aits)
798 {
799 struct timespec now;
800 struct ptimer *ptn;
801
802 KASSERT(mutex_owned(&timer_lock));
803
804 *aits = pt->pt_time;
805 if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
806 /*
807 * Convert from absolute to relative time in .it_value
808 * part of real time timer. If time for real time
809 * timer has passed return 0, else return difference
810 * between current time and time for the timer to go
811 * off.
812 */
813 if (timespecisset(&aits->it_value)) {
814 if (pt->pt_type == CLOCK_REALTIME) {
815 getnanotime(&now);
816 } else { /* CLOCK_MONOTONIC */
817 getnanouptime(&now);
818 }
819 if (timespeccmp(&aits->it_value, &now, <))
820 timespecclear(&aits->it_value);
821 else
822 timespecsub(&aits->it_value, &now,
823 &aits->it_value);
824 }
825 } else if (pt->pt_active) {
826 if (pt->pt_type == CLOCK_VIRTUAL)
827 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
828 else
829 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
830 for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
831 timespecadd(&aits->it_value,
832 &ptn->pt_time.it_value, &aits->it_value);
833 KASSERT(ptn != NULL); /* pt should be findable on the list */
834 } else
835 timespecclear(&aits->it_value);
836 }
837
838
839
840 /* Set and arm a POSIX realtime timer */
841 int
842 sys___timer_settime50(struct lwp *l,
843 const struct sys___timer_settime50_args *uap,
844 register_t *retval)
845 {
846 /* {
847 syscallarg(timer_t) timerid;
848 syscallarg(int) flags;
849 syscallarg(const struct itimerspec *) value;
850 syscallarg(struct itimerspec *) ovalue;
851 } */
852 int error;
853 struct itimerspec value, ovalue, *ovp = NULL;
854
855 if ((error = copyin(SCARG(uap, value), &value,
856 sizeof(struct itimerspec))) != 0)
857 return (error);
858
859 if (SCARG(uap, ovalue))
860 ovp = &ovalue;
861
862 if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
863 SCARG(uap, flags), l->l_proc)) != 0)
864 return error;
865
866 if (ovp)
867 return copyout(&ovalue, SCARG(uap, ovalue),
868 sizeof(struct itimerspec));
869 return 0;
870 }
871
872 int
873 dotimer_settime(int timerid, struct itimerspec *value,
874 struct itimerspec *ovalue, int flags, struct proc *p)
875 {
876 struct timespec now;
877 struct itimerspec val, oval;
878 struct ptimers *pts;
879 struct ptimer *pt;
880 int error;
881
882 pts = p->p_timers;
883
884 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
885 return EINVAL;
886 val = *value;
887 if ((error = itimespecfix(&val.it_value)) != 0 ||
888 (error = itimespecfix(&val.it_interval)) != 0)
889 return error;
890
891 mutex_spin_enter(&timer_lock);
892 restart:
893 if ((pt = pts->pts_timers[timerid]) == NULL) {
894 mutex_spin_exit(&timer_lock);
895 return EINVAL;
896 }
897
898 oval = pt->pt_time;
899 pt->pt_time = val;
900
901 /*
902 * If we've been passed a relative time for a realtime timer,
903 * convert it to absolute; if an absolute time for a virtual
904 * timer, convert it to relative and make sure we don't set it
905 * to zero, which would cancel the timer, or let it go
906 * negative, which would confuse the comparison tests.
907 */
908 if (timespecisset(&pt->pt_time.it_value)) {
909 if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
910 if ((flags & TIMER_ABSTIME) == 0) {
911 if (pt->pt_type == CLOCK_REALTIME) {
912 getnanotime(&now);
913 } else { /* CLOCK_MONOTONIC */
914 getnanouptime(&now);
915 }
916 timespecadd(&pt->pt_time.it_value, &now,
917 &pt->pt_time.it_value);
918 }
919 } else {
920 if ((flags & TIMER_ABSTIME) != 0) {
921 getnanotime(&now);
922 timespecsub(&pt->pt_time.it_value, &now,
923 &pt->pt_time.it_value);
924 if (!timespecisset(&pt->pt_time.it_value) ||
925 pt->pt_time.it_value.tv_sec < 0) {
926 pt->pt_time.it_value.tv_sec = 0;
927 pt->pt_time.it_value.tv_nsec = 1;
928 }
929 }
930 }
931 }
932
933 error = timer_settime(pt);
934 if (error == ERESTART) {
935 KASSERT(!CLOCK_VIRTUAL_P(pt->pt_type));
936 goto restart;
937 }
938 KASSERT(error == 0);
939 mutex_spin_exit(&timer_lock);
940
941 if (ovalue)
942 *ovalue = oval;
943
944 return (0);
945 }
946
947 /* Return the time remaining until a POSIX timer fires. */
948 int
949 sys___timer_gettime50(struct lwp *l,
950 const struct sys___timer_gettime50_args *uap, register_t *retval)
951 {
952 /* {
953 syscallarg(timer_t) timerid;
954 syscallarg(struct itimerspec *) value;
955 } */
956 struct itimerspec its;
957 int error;
958
959 if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
960 &its)) != 0)
961 return error;
962
963 return copyout(&its, SCARG(uap, value), sizeof(its));
964 }
965
966 int
967 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
968 {
969 struct ptimer *pt;
970 struct ptimers *pts;
971
972 pts = p->p_timers;
973 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
974 return (EINVAL);
975 mutex_spin_enter(&timer_lock);
976 if ((pt = pts->pts_timers[timerid]) == NULL) {
977 mutex_spin_exit(&timer_lock);
978 return (EINVAL);
979 }
980 timer_gettime(pt, its);
981 mutex_spin_exit(&timer_lock);
982
983 return 0;
984 }
985
986 /*
987 * Return the count of the number of times a periodic timer expired
988 * while a notification was already pending. The counter is reset when
989 * a timer expires and a notification can be posted.
990 */
991 int
992 sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
993 register_t *retval)
994 {
995 /* {
996 syscallarg(timer_t) timerid;
997 } */
998 struct proc *p = l->l_proc;
999 struct ptimers *pts;
1000 int timerid;
1001 struct ptimer *pt;
1002
1003 timerid = SCARG(uap, timerid);
1004
1005 pts = p->p_timers;
1006 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
1007 return (EINVAL);
1008 mutex_spin_enter(&timer_lock);
1009 if ((pt = pts->pts_timers[timerid]) == NULL) {
1010 mutex_spin_exit(&timer_lock);
1011 return (EINVAL);
1012 }
1013 *retval = pt->pt_poverruns;
1014 if (*retval >= DELAYTIMER_MAX)
1015 *retval = DELAYTIMER_MAX;
1016 mutex_spin_exit(&timer_lock);
1017
1018 return (0);
1019 }
1020
1021 /*
1022 * Real interval timer expired:
1023 * send process whose timer expired an alarm signal.
1024 * If time is not set up to reload, then just return.
1025 * Else compute next time timer should go off which is > current time.
1026 * This is where delay in processing this timeout causes multiple
1027 * SIGALRM calls to be compressed into one.
1028 */
1029 void
1030 realtimerexpire(void *arg)
1031 {
1032 uint64_t last_val, next_val, interval, now_ns;
1033 struct timespec now, next;
1034 struct ptimer *pt;
1035 int backwards;
1036
1037 pt = arg;
1038
1039 mutex_spin_enter(&timer_lock);
1040 itimerfire(pt);
1041
1042 if (!timespecisset(&pt->pt_time.it_interval)) {
1043 timespecclear(&pt->pt_time.it_value);
1044 mutex_spin_exit(&timer_lock);
1045 return;
1046 }
1047
1048 if (pt->pt_type == CLOCK_MONOTONIC) {
1049 getnanouptime(&now);
1050 } else {
1051 getnanotime(&now);
1052 }
1053 backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
1054 timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
1055 /* Handle the easy case of non-overflown timers first. */
1056 if (!backwards && timespeccmp(&next, &now, >)) {
1057 pt->pt_time.it_value = next;
1058 } else {
1059 now_ns = timespec2ns(&now);
1060 last_val = timespec2ns(&pt->pt_time.it_value);
1061 interval = timespec2ns(&pt->pt_time.it_interval);
1062
1063 next_val = now_ns +
1064 (now_ns - last_val + interval - 1) % interval;
1065
1066 if (backwards)
1067 next_val += interval;
1068 else
1069 pt->pt_overruns += (now_ns - last_val) / interval;
1070
1071 pt->pt_time.it_value.tv_sec = next_val / 1000000000;
1072 pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
1073 }
1074
1075 /*
1076 * Reset the callout, if it's not going away.
1077 *
1078 * Don't need to check tshzto() return value, here.
1079 * callout_reset() does it for us.
1080 */
1081 if (!pt->pt_dying)
1082 callout_reset(&pt->pt_ch,
1083 (pt->pt_type == CLOCK_MONOTONIC
1084 ? tshztoup(&pt->pt_time.it_value)
1085 : tshzto(&pt->pt_time.it_value)),
1086 realtimerexpire, pt);
1087 mutex_spin_exit(&timer_lock);
1088 }
1089
1090 /* BSD routine to get the value of an interval timer. */
1091 /* ARGSUSED */
1092 int
1093 sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
1094 register_t *retval)
1095 {
1096 /* {
1097 syscallarg(int) which;
1098 syscallarg(struct itimerval *) itv;
1099 } */
1100 struct proc *p = l->l_proc;
1101 struct itimerval aitv;
1102 int error;
1103
1104 memset(&aitv, 0, sizeof(aitv));
1105 error = dogetitimer(p, SCARG(uap, which), &aitv);
1106 if (error)
1107 return error;
1108 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1109 }
1110
1111 int
1112 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1113 {
1114 struct ptimers *pts;
1115 struct ptimer *pt;
1116 struct itimerspec its;
1117
1118 if ((u_int)which > ITIMER_MONOTONIC)
1119 return (EINVAL);
1120
1121 mutex_spin_enter(&timer_lock);
1122 pts = p->p_timers;
1123 if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
1124 timerclear(&itvp->it_value);
1125 timerclear(&itvp->it_interval);
1126 } else {
1127 timer_gettime(pt, &its);
1128 TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
1129 TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
1130 }
1131 mutex_spin_exit(&timer_lock);
1132
1133 return 0;
1134 }
1135
1136 /* BSD routine to set/arm an interval timer. */
1137 /* ARGSUSED */
1138 int
1139 sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
1140 register_t *retval)
1141 {
1142 /* {
1143 syscallarg(int) which;
1144 syscallarg(const struct itimerval *) itv;
1145 syscallarg(struct itimerval *) oitv;
1146 } */
1147 struct proc *p = l->l_proc;
1148 int which = SCARG(uap, which);
1149 struct sys___getitimer50_args getargs;
1150 const struct itimerval *itvp;
1151 struct itimerval aitv;
1152 int error;
1153
1154 if ((u_int)which > ITIMER_MONOTONIC)
1155 return (EINVAL);
1156 itvp = SCARG(uap, itv);
1157 if (itvp &&
1158 (error = copyin(itvp, &aitv, sizeof(struct itimerval))) != 0)
1159 return (error);
1160 if (SCARG(uap, oitv) != NULL) {
1161 SCARG(&getargs, which) = which;
1162 SCARG(&getargs, itv) = SCARG(uap, oitv);
1163 if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
1164 return (error);
1165 }
1166 if (itvp == 0)
1167 return (0);
1168
1169 return dosetitimer(p, which, &aitv);
1170 }
1171
1172 int
1173 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1174 {
1175 struct timespec now;
1176 struct ptimers *pts;
1177 struct ptimer *pt, *spare;
1178 int error;
1179
1180 KASSERT((u_int)which <= CLOCK_MONOTONIC);
1181 if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1182 return (EINVAL);
1183
1184 /*
1185 * Don't bother allocating data structures if the process just
1186 * wants to clear the timer.
1187 */
1188 spare = NULL;
1189 pts = p->p_timers;
1190 retry:
1191 if (!timerisset(&itvp->it_value) && (pts == NULL ||
1192 pts->pts_timers[which] == NULL))
1193 return (0);
1194 if (pts == NULL)
1195 pts = timers_alloc(p);
1196 mutex_spin_enter(&timer_lock);
1197 restart:
1198 pt = pts->pts_timers[which];
1199 if (pt == NULL) {
1200 if (spare == NULL) {
1201 mutex_spin_exit(&timer_lock);
1202 spare = pool_get(&ptimer_pool, PR_WAITOK | PR_ZERO);
1203 goto retry;
1204 }
1205 pt = spare;
1206 spare = NULL;
1207 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1208 pt->pt_ev.sigev_value.sival_int = which;
1209 pt->pt_overruns = 0;
1210 pt->pt_proc = p;
1211 pt->pt_type = which;
1212 pt->pt_entry = which;
1213 pt->pt_queued = false;
1214 if (!CLOCK_VIRTUAL_P(which))
1215 callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
1216 else
1217 pt->pt_active = 0;
1218
1219 switch (which) {
1220 case ITIMER_REAL:
1221 case ITIMER_MONOTONIC:
1222 pt->pt_ev.sigev_signo = SIGALRM;
1223 break;
1224 case ITIMER_VIRTUAL:
1225 pt->pt_ev.sigev_signo = SIGVTALRM;
1226 break;
1227 case ITIMER_PROF:
1228 pt->pt_ev.sigev_signo = SIGPROF;
1229 break;
1230 }
1231 pts->pts_timers[which] = pt;
1232 }
1233
1234 TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
1235 TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
1236
1237 if (timespecisset(&pt->pt_time.it_value)) {
1238 /* Convert to absolute time */
1239 /* XXX need to wrap in splclock for timecounters case? */
1240 switch (which) {
1241 case ITIMER_REAL:
1242 getnanotime(&now);
1243 timespecadd(&pt->pt_time.it_value, &now,
1244 &pt->pt_time.it_value);
1245 break;
1246 case ITIMER_MONOTONIC:
1247 getnanouptime(&now);
1248 timespecadd(&pt->pt_time.it_value, &now,
1249 &pt->pt_time.it_value);
1250 break;
1251 default:
1252 break;
1253 }
1254 }
1255 error = timer_settime(pt);
1256 if (error == ERESTART) {
1257 KASSERT(!CLOCK_VIRTUAL_P(pt->pt_type));
1258 goto restart;
1259 }
1260 KASSERT(error == 0);
1261 mutex_spin_exit(&timer_lock);
1262 if (spare != NULL)
1263 pool_put(&ptimer_pool, spare);
1264
1265 return (0);
1266 }
1267
1268 /* Utility routines to manage the array of pointers to timers. */
1269 struct ptimers *
1270 timers_alloc(struct proc *p)
1271 {
1272 struct ptimers *pts;
1273 int i;
1274
1275 pts = pool_get(&ptimers_pool, PR_WAITOK);
1276 LIST_INIT(&pts->pts_virtual);
1277 LIST_INIT(&pts->pts_prof);
1278 for (i = 0; i < TIMER_MAX; i++)
1279 pts->pts_timers[i] = NULL;
1280 mutex_spin_enter(&timer_lock);
1281 if (p->p_timers == NULL) {
1282 p->p_timers = pts;
1283 mutex_spin_exit(&timer_lock);
1284 return pts;
1285 }
1286 mutex_spin_exit(&timer_lock);
1287 pool_put(&ptimers_pool, pts);
1288 return p->p_timers;
1289 }
1290
1291 /*
1292 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1293 * then clean up all timers and free all the data structures. If
1294 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1295 * by timer_create(), not the BSD setitimer() timers, and only free the
1296 * structure if none of those remain.
1297 */
1298 void
1299 timers_free(struct proc *p, int which)
1300 {
1301 struct ptimers *pts;
1302 struct ptimer *ptn;
1303 struct timespec ts;
1304 int i;
1305
1306 if (p->p_timers == NULL)
1307 return;
1308
1309 pts = p->p_timers;
1310 mutex_spin_enter(&timer_lock);
1311 if (which == TIMERS_ALL) {
1312 p->p_timers = NULL;
1313 i = 0;
1314 } else {
1315 timespecclear(&ts);
1316 for (ptn = LIST_FIRST(&pts->pts_virtual);
1317 ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1318 ptn = LIST_NEXT(ptn, pt_list)) {
1319 KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1320 timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1321 }
1322 LIST_FIRST(&pts->pts_virtual) = NULL;
1323 if (ptn) {
1324 KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1325 timespecadd(&ts, &ptn->pt_time.it_value,
1326 &ptn->pt_time.it_value);
1327 LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
1328 }
1329 timespecclear(&ts);
1330 for (ptn = LIST_FIRST(&pts->pts_prof);
1331 ptn && ptn != pts->pts_timers[ITIMER_PROF];
1332 ptn = LIST_NEXT(ptn, pt_list)) {
1333 KASSERT(ptn->pt_type == CLOCK_PROF);
1334 timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1335 }
1336 LIST_FIRST(&pts->pts_prof) = NULL;
1337 if (ptn) {
1338 KASSERT(ptn->pt_type == CLOCK_PROF);
1339 timespecadd(&ts, &ptn->pt_time.it_value,
1340 &ptn->pt_time.it_value);
1341 LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
1342 }
1343 i = TIMER_MIN;
1344 }
1345 for ( ; i < TIMER_MAX; i++) {
1346 if (pts->pts_timers[i] != NULL) {
1347 /* Free the timer and release the lock. */
1348 itimerfree(pts, i);
1349 /* Reacquire the lock for the next one. */
1350 mutex_spin_enter(&timer_lock);
1351 }
1352 }
1353 if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
1354 pts->pts_timers[2] == NULL && pts->pts_timers[3] == NULL) {
1355 p->p_timers = NULL;
1356 mutex_spin_exit(&timer_lock);
1357 pool_put(&ptimers_pool, pts);
1358 } else
1359 mutex_spin_exit(&timer_lock);
1360 }
1361
1362 static void
1363 itimerfree(struct ptimers *pts, int index)
1364 {
1365 struct ptimer *pt;
1366
1367 KASSERT(mutex_owned(&timer_lock));
1368
1369 pt = pts->pts_timers[index];
1370
1371 /*
1372 * Prevent new references, and notify the callout not to
1373 * restart itself.
1374 */
1375 pts->pts_timers[index] = NULL;
1376 pt->pt_dying = true;
1377
1378 /*
1379 * For non-virtual timers, stop the callout, or wait for it to
1380 * run if it has already fired. It cannot restart again after
1381 * this point: the callout won't restart itself when dying, no
1382 * other users holding the lock can restart it, and any other
1383 * users waiting for callout_halt concurrently (timer_settime)
1384 * will restart from the top.
1385 */
1386 if (!CLOCK_VIRTUAL_P(pt->pt_type))
1387 callout_halt(&pt->pt_ch, &timer_lock);
1388
1389 /* Remove it from the queue to be signalled. */
1390 if (pt->pt_queued)
1391 TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1392
1393 /* All done with the global state. */
1394 mutex_spin_exit(&timer_lock);
1395
1396 /* Destroy the callout, if needed, and free the ptimer. */
1397 if (!CLOCK_VIRTUAL_P(pt->pt_type))
1398 callout_destroy(&pt->pt_ch);
1399 pool_put(&ptimer_pool, pt);
1400 }
1401
1402 /*
1403 * Decrement an interval timer by a specified number
1404 * of nanoseconds, which must be less than a second,
1405 * i.e. < 1000000000. If the timer expires, then reload
1406 * it. In this case, carry over (nsec - old value) to
1407 * reduce the value reloaded into the timer so that
1408 * the timer does not drift. This routine assumes
1409 * that it is called in a context where the timers
1410 * on which it is operating cannot change in value.
1411 */
1412 static int
1413 itimerdecr(struct ptimer *pt, int nsec)
1414 {
1415 struct itimerspec *itp;
1416 int error __diagused;
1417
1418 KASSERT(mutex_owned(&timer_lock));
1419 KASSERT(CLOCK_VIRTUAL_P(pt->pt_type));
1420
1421 itp = &pt->pt_time;
1422 if (itp->it_value.tv_nsec < nsec) {
1423 if (itp->it_value.tv_sec == 0) {
1424 /* expired, and already in next interval */
1425 nsec -= itp->it_value.tv_nsec;
1426 goto expire;
1427 }
1428 itp->it_value.tv_nsec += 1000000000;
1429 itp->it_value.tv_sec--;
1430 }
1431 itp->it_value.tv_nsec -= nsec;
1432 nsec = 0;
1433 if (timespecisset(&itp->it_value))
1434 return (1);
1435 /* expired, exactly at end of interval */
1436 expire:
1437 if (timespecisset(&itp->it_interval)) {
1438 itp->it_value = itp->it_interval;
1439 itp->it_value.tv_nsec -= nsec;
1440 if (itp->it_value.tv_nsec < 0) {
1441 itp->it_value.tv_nsec += 1000000000;
1442 itp->it_value.tv_sec--;
1443 }
1444 error = timer_settime(pt);
1445 KASSERT(error == 0); /* virtual, never fails */
1446 } else
1447 itp->it_value.tv_nsec = 0; /* sec is already 0 */
1448 return (0);
1449 }
1450
1451 static void
1452 itimerfire(struct ptimer *pt)
1453 {
1454
1455 KASSERT(mutex_owned(&timer_lock));
1456
1457 /*
1458 * XXX Can overrun, but we don't do signal queueing yet, anyway.
1459 * XXX Relying on the clock interrupt is stupid.
1460 */
1461 if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL || pt->pt_queued) {
1462 return;
1463 }
1464 TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
1465 pt->pt_queued = true;
1466 softint_schedule(timer_sih);
1467 }
1468
1469 void
1470 timer_tick(lwp_t *l, bool user)
1471 {
1472 struct ptimers *pts;
1473 struct ptimer *pt;
1474 proc_t *p;
1475
1476 p = l->l_proc;
1477 if (p->p_timers == NULL)
1478 return;
1479
1480 mutex_spin_enter(&timer_lock);
1481 if ((pts = l->l_proc->p_timers) != NULL) {
1482 /*
1483 * Run current process's virtual and profile time, as needed.
1484 */
1485 if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
1486 if (itimerdecr(pt, tick * 1000) == 0)
1487 itimerfire(pt);
1488 if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
1489 if (itimerdecr(pt, tick * 1000) == 0)
1490 itimerfire(pt);
1491 }
1492 mutex_spin_exit(&timer_lock);
1493 }
1494
1495 static void
1496 timer_intr(void *cookie)
1497 {
1498 ksiginfo_t ksi;
1499 struct ptimer *pt;
1500 proc_t *p;
1501
1502 mutex_enter(proc_lock);
1503 mutex_spin_enter(&timer_lock);
1504 while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
1505 TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1506 KASSERT(pt->pt_queued);
1507 pt->pt_queued = false;
1508
1509 if (pt->pt_proc->p_timers == NULL) {
1510 /* Process is dying. */
1511 continue;
1512 }
1513 p = pt->pt_proc;
1514 if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
1515 continue;
1516 }
1517 if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
1518 pt->pt_overruns++;
1519 continue;
1520 }
1521
1522 KSI_INIT(&ksi);
1523 ksi.ksi_signo = pt->pt_ev.sigev_signo;
1524 ksi.ksi_code = SI_TIMER;
1525 ksi.ksi_value = pt->pt_ev.sigev_value;
1526 pt->pt_poverruns = pt->pt_overruns;
1527 pt->pt_overruns = 0;
1528 mutex_spin_exit(&timer_lock);
1529 kpsignal(p, &ksi, NULL);
1530 mutex_spin_enter(&timer_lock);
1531 }
1532 mutex_spin_exit(&timer_lock);
1533 mutex_exit(proc_lock);
1534 }
1535
1536 /*
1537 * Check if the time will wrap if set to ts.
1538 *
1539 * ts - timespec describing the new time
1540 * delta - the delta between the current time and ts
1541 */
1542 bool
1543 time_wraps(struct timespec *ts, struct timespec *delta)
1544 {
1545
1546 /*
1547 * Don't allow the time to be set forward so far it
1548 * will wrap and become negative, thus allowing an
1549 * attacker to bypass the next check below. The
1550 * cutoff is 1 year before rollover occurs, so even
1551 * if the attacker uses adjtime(2) to move the time
1552 * past the cutoff, it will take a very long time
1553 * to get to the wrap point.
1554 */
1555 if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
1556 (delta->tv_sec < 0 || delta->tv_nsec < 0))
1557 return true;
1558
1559 return false;
1560 }
1561