Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.204
      1 /*	$NetBSD: kern_time.c,v 1.204 2020/05/14 18:18:24 maxv Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Christopher G. Demetriou, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1982, 1986, 1989, 1993
     34  *	The Regents of the University of California.  All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. Neither the name of the University nor the names of its contributors
     45  *    may be used to endorse or promote products derived from this software
     46  *    without specific prior written permission.
     47  *
     48  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58  * SUCH DAMAGE.
     59  *
     60  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     61  */
     62 
     63 #include <sys/cdefs.h>
     64 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.204 2020/05/14 18:18:24 maxv Exp $");
     65 
     66 #include <sys/param.h>
     67 #include <sys/resourcevar.h>
     68 #include <sys/kernel.h>
     69 #include <sys/systm.h>
     70 #include <sys/proc.h>
     71 #include <sys/vnode.h>
     72 #include <sys/signalvar.h>
     73 #include <sys/syslog.h>
     74 #include <sys/timetc.h>
     75 #include <sys/timex.h>
     76 #include <sys/kauth.h>
     77 #include <sys/mount.h>
     78 #include <sys/syscallargs.h>
     79 #include <sys/cpu.h>
     80 
     81 static void	timer_intr(void *);
     82 static void	itimerfire(struct ptimer *);
     83 static void	itimerfree(struct ptimers *, int);
     84 
     85 kmutex_t	timer_lock;
     86 
     87 static void	*timer_sih;
     88 static TAILQ_HEAD(, ptimer) timer_queue;
     89 
     90 struct pool ptimer_pool, ptimers_pool;
     91 
     92 #define	CLOCK_VIRTUAL_P(clockid)	\
     93 	((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)
     94 
     95 CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
     96 CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
     97 CTASSERT(ITIMER_PROF == CLOCK_PROF);
     98 CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC);
     99 
    100 #define	DELAYTIMER_MAX	32
    101 
    102 /*
    103  * Initialize timekeeping.
    104  */
    105 void
    106 time_init(void)
    107 {
    108 
    109 	pool_init(&ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
    110 	    &pool_allocator_nointr, IPL_NONE);
    111 	pool_init(&ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
    112 	    &pool_allocator_nointr, IPL_NONE);
    113 }
    114 
    115 void
    116 time_init2(void)
    117 {
    118 
    119 	TAILQ_INIT(&timer_queue);
    120 	mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
    121 	timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
    122 	    timer_intr, NULL);
    123 }
    124 
    125 /* Time of day and interval timer support.
    126  *
    127  * These routines provide the kernel entry points to get and set
    128  * the time-of-day and per-process interval timers.  Subroutines
    129  * here provide support for adding and subtracting timeval structures
    130  * and decrementing interval timers, optionally reloading the interval
    131  * timers when they expire.
    132  */
    133 
    134 /* This function is used by clock_settime and settimeofday */
    135 static int
    136 settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
    137 {
    138 	struct timespec delta, now;
    139 
    140 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    141 	nanotime(&now);
    142 	timespecsub(ts, &now, &delta);
    143 
    144 	if (check_kauth && kauth_authorize_system(kauth_cred_get(),
    145 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
    146 	    &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
    147 		return (EPERM);
    148 	}
    149 
    150 #ifdef notyet
    151 	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
    152 		return (EPERM);
    153 	}
    154 #endif
    155 
    156 	tc_setclock(ts);
    157 
    158 	resettodr();
    159 
    160 	return (0);
    161 }
    162 
    163 int
    164 settime(struct proc *p, struct timespec *ts)
    165 {
    166 	return (settime1(p, ts, true));
    167 }
    168 
    169 /* ARGSUSED */
    170 int
    171 sys___clock_gettime50(struct lwp *l,
    172     const struct sys___clock_gettime50_args *uap, register_t *retval)
    173 {
    174 	/* {
    175 		syscallarg(clockid_t) clock_id;
    176 		syscallarg(struct timespec *) tp;
    177 	} */
    178 	int error;
    179 	struct timespec ats;
    180 
    181 	error = clock_gettime1(SCARG(uap, clock_id), &ats);
    182 	if (error != 0)
    183 		return error;
    184 
    185 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    186 }
    187 
    188 /* ARGSUSED */
    189 int
    190 sys___clock_settime50(struct lwp *l,
    191     const struct sys___clock_settime50_args *uap, register_t *retval)
    192 {
    193 	/* {
    194 		syscallarg(clockid_t) clock_id;
    195 		syscallarg(const struct timespec *) tp;
    196 	} */
    197 	int error;
    198 	struct timespec ats;
    199 
    200 	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
    201 		return error;
    202 
    203 	return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
    204 }
    205 
    206 
    207 int
    208 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
    209     bool check_kauth)
    210 {
    211 	int error;
    212 
    213 	if (tp->tv_nsec < 0 || tp->tv_nsec >= 1000000000L)
    214 		return EINVAL;
    215 
    216 	switch (clock_id) {
    217 	case CLOCK_REALTIME:
    218 		if ((error = settime1(p, tp, check_kauth)) != 0)
    219 			return (error);
    220 		break;
    221 	case CLOCK_MONOTONIC:
    222 		return (EINVAL);	/* read-only clock */
    223 	default:
    224 		return (EINVAL);
    225 	}
    226 
    227 	return 0;
    228 }
    229 
    230 int
    231 sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
    232     register_t *retval)
    233 {
    234 	/* {
    235 		syscallarg(clockid_t) clock_id;
    236 		syscallarg(struct timespec *) tp;
    237 	} */
    238 	struct timespec ts;
    239 	int error;
    240 
    241 	if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
    242 		return error;
    243 
    244 	if (SCARG(uap, tp))
    245 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    246 
    247 	return error;
    248 }
    249 
    250 int
    251 clock_getres1(clockid_t clock_id, struct timespec *ts)
    252 {
    253 
    254 	switch (clock_id) {
    255 	case CLOCK_REALTIME:
    256 	case CLOCK_MONOTONIC:
    257 		ts->tv_sec = 0;
    258 		if (tc_getfrequency() > 1000000000)
    259 			ts->tv_nsec = 1;
    260 		else
    261 			ts->tv_nsec = 1000000000 / tc_getfrequency();
    262 		break;
    263 	default:
    264 		return EINVAL;
    265 	}
    266 
    267 	return 0;
    268 }
    269 
    270 /* ARGSUSED */
    271 int
    272 sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
    273     register_t *retval)
    274 {
    275 	/* {
    276 		syscallarg(struct timespec *) rqtp;
    277 		syscallarg(struct timespec *) rmtp;
    278 	} */
    279 	struct timespec rmt, rqt;
    280 	int error, error1;
    281 
    282 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    283 	if (error)
    284 		return (error);
    285 
    286 	error = nanosleep1(l, CLOCK_MONOTONIC, 0, &rqt,
    287 	    SCARG(uap, rmtp) ? &rmt : NULL);
    288 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
    289 		return error;
    290 
    291 	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
    292 	return error1 ? error1 : error;
    293 }
    294 
    295 /* ARGSUSED */
    296 int
    297 sys_clock_nanosleep(struct lwp *l, const struct sys_clock_nanosleep_args *uap,
    298     register_t *retval)
    299 {
    300 	/* {
    301 		syscallarg(clockid_t) clock_id;
    302 		syscallarg(int) flags;
    303 		syscallarg(struct timespec *) rqtp;
    304 		syscallarg(struct timespec *) rmtp;
    305 	} */
    306 	struct timespec rmt, rqt;
    307 	int error, error1;
    308 
    309 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    310 	if (error)
    311 		goto out;
    312 
    313 	error = nanosleep1(l, SCARG(uap, clock_id), SCARG(uap, flags), &rqt,
    314 	    SCARG(uap, rmtp) ? &rmt : NULL);
    315 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
    316 		goto out;
    317 
    318 	if ((SCARG(uap, flags) & TIMER_ABSTIME) == 0 &&
    319 	    (error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt))) != 0)
    320 		error = error1;
    321 out:
    322 	*retval = error;
    323 	return 0;
    324 }
    325 
    326 int
    327 nanosleep1(struct lwp *l, clockid_t clock_id, int flags, struct timespec *rqt,
    328     struct timespec *rmt)
    329 {
    330 	struct timespec rmtstart;
    331 	int error, timo;
    332 
    333 	if ((error = ts2timo(clock_id, flags, rqt, &timo, &rmtstart)) != 0) {
    334 		if (error == ETIMEDOUT) {
    335 			error = 0;
    336 			if (rmt != NULL)
    337 				rmt->tv_sec = rmt->tv_nsec = 0;
    338 		}
    339 		return error;
    340 	}
    341 
    342 	/*
    343 	 * Avoid inadvertently sleeping forever
    344 	 */
    345 	if (timo == 0)
    346 		timo = 1;
    347 again:
    348 	error = kpause("nanoslp", true, timo, NULL);
    349 	if (error == EWOULDBLOCK)
    350 		error = 0;
    351 	if (rmt != NULL || error == 0) {
    352 		struct timespec rmtend;
    353 		struct timespec t0;
    354 		struct timespec *t;
    355 		int err;
    356 
    357 		err = clock_gettime1(clock_id, &rmtend);
    358 		if (err != 0)
    359 			return err;
    360 
    361 		t = (rmt != NULL) ? rmt : &t0;
    362 		if (flags & TIMER_ABSTIME) {
    363 			timespecsub(rqt, &rmtend, t);
    364 		} else {
    365 			timespecsub(&rmtend, &rmtstart, t);
    366 			timespecsub(rqt, t, t);
    367 		}
    368 		if (t->tv_sec < 0)
    369 			timespecclear(t);
    370 		if (error == 0) {
    371 			timo = tstohz(t);
    372 			if (timo > 0)
    373 				goto again;
    374 		}
    375 	}
    376 
    377 	if (error == ERESTART)
    378 		error = EINTR;
    379 
    380 	return error;
    381 }
    382 
    383 int
    384 sys_clock_getcpuclockid2(struct lwp *l,
    385     const struct sys_clock_getcpuclockid2_args *uap,
    386     register_t *retval)
    387 {
    388 	/* {
    389 		syscallarg(idtype_t idtype;
    390 		syscallarg(id_t id);
    391 		syscallarg(clockid_t *)clock_id;
    392 	} */
    393 	pid_t pid;
    394 	lwpid_t lid;
    395 	clockid_t clock_id;
    396 	id_t id = SCARG(uap, id);
    397 
    398 	switch (SCARG(uap, idtype)) {
    399 	case P_PID:
    400 		pid = id == 0 ? l->l_proc->p_pid : id;
    401 		clock_id = CLOCK_PROCESS_CPUTIME_ID | pid;
    402 		break;
    403 	case P_LWPID:
    404 		lid = id == 0 ? l->l_lid : id;
    405 		clock_id = CLOCK_THREAD_CPUTIME_ID | lid;
    406 		break;
    407 	default:
    408 		return EINVAL;
    409 	}
    410 	return copyout(&clock_id, SCARG(uap, clock_id), sizeof(clock_id));
    411 }
    412 
    413 /* ARGSUSED */
    414 int
    415 sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
    416     register_t *retval)
    417 {
    418 	/* {
    419 		syscallarg(struct timeval *) tp;
    420 		syscallarg(void *) tzp;		really "struct timezone *";
    421 	} */
    422 	struct timeval atv;
    423 	int error = 0;
    424 	struct timezone tzfake;
    425 
    426 	if (SCARG(uap, tp)) {
    427 		memset(&atv, 0, sizeof(atv));
    428 		microtime(&atv);
    429 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    430 		if (error)
    431 			return (error);
    432 	}
    433 	if (SCARG(uap, tzp)) {
    434 		/*
    435 		 * NetBSD has no kernel notion of time zone, so we just
    436 		 * fake up a timezone struct and return it if demanded.
    437 		 */
    438 		tzfake.tz_minuteswest = 0;
    439 		tzfake.tz_dsttime = 0;
    440 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    441 	}
    442 	return (error);
    443 }
    444 
    445 /* ARGSUSED */
    446 int
    447 sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
    448     register_t *retval)
    449 {
    450 	/* {
    451 		syscallarg(const struct timeval *) tv;
    452 		syscallarg(const void *) tzp; really "const struct timezone *";
    453 	} */
    454 
    455 	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
    456 }
    457 
    458 int
    459 settimeofday1(const struct timeval *utv, bool userspace,
    460     const void *utzp, struct lwp *l, bool check_kauth)
    461 {
    462 	struct timeval atv;
    463 	struct timespec ts;
    464 	int error;
    465 
    466 	/* Verify all parameters before changing time. */
    467 
    468 	/*
    469 	 * NetBSD has no kernel notion of time zone, and only an
    470 	 * obsolete program would try to set it, so we log a warning.
    471 	 */
    472 	if (utzp)
    473 		log(LOG_WARNING, "pid %d attempted to set the "
    474 		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
    475 
    476 	if (utv == NULL)
    477 		return 0;
    478 
    479 	if (userspace) {
    480 		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
    481 			return error;
    482 		utv = &atv;
    483 	}
    484 
    485 	if (utv->tv_usec < 0 || utv->tv_usec >= 1000000)
    486 		return EINVAL;
    487 
    488 	TIMEVAL_TO_TIMESPEC(utv, &ts);
    489 	return settime1(l->l_proc, &ts, check_kauth);
    490 }
    491 
    492 int	time_adjusted;			/* set if an adjustment is made */
    493 
    494 /* ARGSUSED */
    495 int
    496 sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
    497     register_t *retval)
    498 {
    499 	/* {
    500 		syscallarg(const struct timeval *) delta;
    501 		syscallarg(struct timeval *) olddelta;
    502 	} */
    503 	int error;
    504 	struct timeval atv, oldatv;
    505 
    506 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
    507 	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
    508 		return error;
    509 
    510 	if (SCARG(uap, delta)) {
    511 		error = copyin(SCARG(uap, delta), &atv,
    512 		    sizeof(*SCARG(uap, delta)));
    513 		if (error)
    514 			return (error);
    515 	}
    516 	adjtime1(SCARG(uap, delta) ? &atv : NULL,
    517 	    SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
    518 	if (SCARG(uap, olddelta))
    519 		error = copyout(&oldatv, SCARG(uap, olddelta),
    520 		    sizeof(*SCARG(uap, olddelta)));
    521 	return error;
    522 }
    523 
    524 void
    525 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
    526 {
    527 	extern int64_t time_adjtime;  /* in kern_ntptime.c */
    528 
    529 	if (olddelta) {
    530 		memset(olddelta, 0, sizeof(*olddelta));
    531 		mutex_spin_enter(&timecounter_lock);
    532 		olddelta->tv_sec = time_adjtime / 1000000;
    533 		olddelta->tv_usec = time_adjtime % 1000000;
    534 		if (olddelta->tv_usec < 0) {
    535 			olddelta->tv_usec += 1000000;
    536 			olddelta->tv_sec--;
    537 		}
    538 		mutex_spin_exit(&timecounter_lock);
    539 	}
    540 
    541 	if (delta) {
    542 		mutex_spin_enter(&timecounter_lock);
    543 		time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
    544 
    545 		if (time_adjtime) {
    546 			/* We need to save the system time during shutdown */
    547 			time_adjusted |= 1;
    548 		}
    549 		mutex_spin_exit(&timecounter_lock);
    550 	}
    551 }
    552 
    553 /*
    554  * Interval timer support. Both the BSD getitimer() family and the POSIX
    555  * timer_*() family of routines are supported.
    556  *
    557  * All timers are kept in an array pointed to by p_timers, which is
    558  * allocated on demand - many processes don't use timers at all. The
    559  * first four elements in this array are reserved for the BSD timers:
    560  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element
    561  * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be
    562  * allocated by the timer_create() syscall.
    563  *
    564  * Realtime timers are kept in the ptimer structure as an absolute
    565  * time; virtual time timers are kept as a linked list of deltas.
    566  * Virtual time timers are processed in the hardclock() routine of
    567  * kern_clock.c.  The real time timer is processed by a callout
    568  * routine, called from the softclock() routine.  Since a callout may
    569  * be delayed in real time due to interrupt processing in the system,
    570  * it is possible for the real time timeout routine (realtimeexpire,
    571  * given below), to be delayed in real time past when it is supposed
    572  * to occur.  It does not suffice, therefore, to reload the real timer
    573  * .it_value from the real time timers .it_interval.  Rather, we
    574  * compute the next time in absolute time the timer should go off.  */
    575 
    576 /* Allocate a POSIX realtime timer. */
    577 int
    578 sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
    579     register_t *retval)
    580 {
    581 	/* {
    582 		syscallarg(clockid_t) clock_id;
    583 		syscallarg(struct sigevent *) evp;
    584 		syscallarg(timer_t *) timerid;
    585 	} */
    586 
    587 	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
    588 	    SCARG(uap, evp), copyin, l);
    589 }
    590 
    591 int
    592 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
    593     copyin_t fetch_event, struct lwp *l)
    594 {
    595 	int error;
    596 	timer_t timerid;
    597 	struct ptimers *pts;
    598 	struct ptimer *pt;
    599 	struct proc *p;
    600 
    601 	p = l->l_proc;
    602 
    603 	if ((u_int)id > CLOCK_MONOTONIC)
    604 		return (EINVAL);
    605 
    606 	if ((pts = p->p_timers) == NULL)
    607 		pts = timers_alloc(p);
    608 
    609 	pt = pool_get(&ptimer_pool, PR_WAITOK | PR_ZERO);
    610 	if (evp != NULL) {
    611 		if (((error =
    612 		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
    613 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
    614 			(pt->pt_ev.sigev_notify > SIGEV_SA)) ||
    615 			(pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
    616 			 (pt->pt_ev.sigev_signo <= 0 ||
    617 			  pt->pt_ev.sigev_signo >= NSIG))) {
    618 			pool_put(&ptimer_pool, pt);
    619 			return (error ? error : EINVAL);
    620 		}
    621 	}
    622 
    623 	/* Find a free timer slot, skipping those reserved for setitimer(). */
    624 	mutex_spin_enter(&timer_lock);
    625 	for (timerid = TIMER_MIN; timerid < TIMER_MAX; timerid++)
    626 		if (pts->pts_timers[timerid] == NULL)
    627 			break;
    628 	if (timerid == TIMER_MAX) {
    629 		mutex_spin_exit(&timer_lock);
    630 		pool_put(&ptimer_pool, pt);
    631 		return EAGAIN;
    632 	}
    633 	if (evp == NULL) {
    634 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    635 		switch (id) {
    636 		case CLOCK_REALTIME:
    637 		case CLOCK_MONOTONIC:
    638 			pt->pt_ev.sigev_signo = SIGALRM;
    639 			break;
    640 		case CLOCK_VIRTUAL:
    641 			pt->pt_ev.sigev_signo = SIGVTALRM;
    642 			break;
    643 		case CLOCK_PROF:
    644 			pt->pt_ev.sigev_signo = SIGPROF;
    645 			break;
    646 		}
    647 		pt->pt_ev.sigev_value.sival_int = timerid;
    648 	}
    649 	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
    650 	pt->pt_info.ksi_errno = 0;
    651 	pt->pt_info.ksi_code = 0;
    652 	pt->pt_info.ksi_pid = p->p_pid;
    653 	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
    654 	pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
    655 	pt->pt_type = id;
    656 	pt->pt_proc = p;
    657 	pt->pt_overruns = 0;
    658 	pt->pt_poverruns = 0;
    659 	pt->pt_entry = timerid;
    660 	pt->pt_queued = false;
    661 	timespecclear(&pt->pt_time.it_value);
    662 	if (!CLOCK_VIRTUAL_P(id))
    663 		callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
    664 	else
    665 		pt->pt_active = 0;
    666 
    667 	pts->pts_timers[timerid] = pt;
    668 	mutex_spin_exit(&timer_lock);
    669 
    670 	return copyout(&timerid, tid, sizeof(timerid));
    671 }
    672 
    673 /* Delete a POSIX realtime timer */
    674 int
    675 sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
    676     register_t *retval)
    677 {
    678 	/* {
    679 		syscallarg(timer_t) timerid;
    680 	} */
    681 	struct proc *p = l->l_proc;
    682 	timer_t timerid;
    683 	struct ptimers *pts;
    684 	struct ptimer *pt, *ptn;
    685 
    686 	timerid = SCARG(uap, timerid);
    687 	pts = p->p_timers;
    688 
    689 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    690 		return (EINVAL);
    691 
    692 	mutex_spin_enter(&timer_lock);
    693 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    694 		mutex_spin_exit(&timer_lock);
    695 		return (EINVAL);
    696 	}
    697 	if (CLOCK_VIRTUAL_P(pt->pt_type)) {
    698 		if (pt->pt_active) {
    699 			ptn = LIST_NEXT(pt, pt_list);
    700 			LIST_REMOVE(pt, pt_list);
    701 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    702 				timespecadd(&pt->pt_time.it_value,
    703 				    &ptn->pt_time.it_value,
    704 				    &ptn->pt_time.it_value);
    705 			pt->pt_active = 0;
    706 		}
    707 	}
    708 
    709 	/* Free the timer and release the lock.  */
    710 	itimerfree(pts, timerid);
    711 
    712 	return (0);
    713 }
    714 
    715 /*
    716  * Set up the given timer. The value in pt->pt_time.it_value is taken
    717  * to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC timers and
    718  * a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
    719  *
    720  * If the callout had already fired but not yet run, fails with
    721  * ERESTART -- caller must restart from the top to look up a timer.
    722  */
    723 int
    724 timer_settime(struct ptimer *pt)
    725 {
    726 	struct ptimer *ptn, *pptn;
    727 	struct ptlist *ptl;
    728 
    729 	KASSERT(mutex_owned(&timer_lock));
    730 
    731 	if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
    732 		/*
    733 		 * Try to stop the callout.  However, if it had already
    734 		 * fired, we have to drop the lock to wait for it, so
    735 		 * the world may have changed and pt may not be there
    736 		 * any more.  In that case, tell the caller to start
    737 		 * over from the top.
    738 		 */
    739 		if (callout_halt(&pt->pt_ch, &timer_lock))
    740 			return ERESTART;
    741 
    742 		/* Now we can touch pt and start it up again.  */
    743 		if (timespecisset(&pt->pt_time.it_value)) {
    744 			/*
    745 			 * Don't need to check tshzto() return value, here.
    746 			 * callout_reset() does it for us.
    747 			 */
    748 			callout_reset(&pt->pt_ch,
    749 			    pt->pt_type == CLOCK_MONOTONIC ?
    750 			    tshztoup(&pt->pt_time.it_value) :
    751 			    tshzto(&pt->pt_time.it_value),
    752 			    realtimerexpire, pt);
    753 		}
    754 	} else {
    755 		if (pt->pt_active) {
    756 			ptn = LIST_NEXT(pt, pt_list);
    757 			LIST_REMOVE(pt, pt_list);
    758 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    759 				timespecadd(&pt->pt_time.it_value,
    760 				    &ptn->pt_time.it_value,
    761 				    &ptn->pt_time.it_value);
    762 		}
    763 		if (timespecisset(&pt->pt_time.it_value)) {
    764 			if (pt->pt_type == CLOCK_VIRTUAL)
    765 				ptl = &pt->pt_proc->p_timers->pts_virtual;
    766 			else
    767 				ptl = &pt->pt_proc->p_timers->pts_prof;
    768 
    769 			for (ptn = LIST_FIRST(ptl), pptn = NULL;
    770 			     ptn && timespeccmp(&pt->pt_time.it_value,
    771 				 &ptn->pt_time.it_value, >);
    772 			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
    773 				timespecsub(&pt->pt_time.it_value,
    774 				    &ptn->pt_time.it_value,
    775 				    &pt->pt_time.it_value);
    776 
    777 			if (pptn)
    778 				LIST_INSERT_AFTER(pptn, pt, pt_list);
    779 			else
    780 				LIST_INSERT_HEAD(ptl, pt, pt_list);
    781 
    782 			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
    783 				timespecsub(&ptn->pt_time.it_value,
    784 				    &pt->pt_time.it_value,
    785 				    &ptn->pt_time.it_value);
    786 
    787 			pt->pt_active = 1;
    788 		} else
    789 			pt->pt_active = 0;
    790 	}
    791 
    792 	/* Success!  */
    793 	return 0;
    794 }
    795 
    796 void
    797 timer_gettime(struct ptimer *pt, struct itimerspec *aits)
    798 {
    799 	struct timespec now;
    800 	struct ptimer *ptn;
    801 
    802 	KASSERT(mutex_owned(&timer_lock));
    803 
    804 	*aits = pt->pt_time;
    805 	if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
    806 		/*
    807 		 * Convert from absolute to relative time in .it_value
    808 		 * part of real time timer.  If time for real time
    809 		 * timer has passed return 0, else return difference
    810 		 * between current time and time for the timer to go
    811 		 * off.
    812 		 */
    813 		if (timespecisset(&aits->it_value)) {
    814 			if (pt->pt_type == CLOCK_REALTIME) {
    815 				getnanotime(&now);
    816 			} else { /* CLOCK_MONOTONIC */
    817 				getnanouptime(&now);
    818 			}
    819 			if (timespeccmp(&aits->it_value, &now, <))
    820 				timespecclear(&aits->it_value);
    821 			else
    822 				timespecsub(&aits->it_value, &now,
    823 				    &aits->it_value);
    824 		}
    825 	} else if (pt->pt_active) {
    826 		if (pt->pt_type == CLOCK_VIRTUAL)
    827 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
    828 		else
    829 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
    830 		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
    831 			timespecadd(&aits->it_value,
    832 			    &ptn->pt_time.it_value, &aits->it_value);
    833 		KASSERT(ptn != NULL); /* pt should be findable on the list */
    834 	} else
    835 		timespecclear(&aits->it_value);
    836 }
    837 
    838 
    839 
    840 /* Set and arm a POSIX realtime timer */
    841 int
    842 sys___timer_settime50(struct lwp *l,
    843     const struct sys___timer_settime50_args *uap,
    844     register_t *retval)
    845 {
    846 	/* {
    847 		syscallarg(timer_t) timerid;
    848 		syscallarg(int) flags;
    849 		syscallarg(const struct itimerspec *) value;
    850 		syscallarg(struct itimerspec *) ovalue;
    851 	} */
    852 	int error;
    853 	struct itimerspec value, ovalue, *ovp = NULL;
    854 
    855 	if ((error = copyin(SCARG(uap, value), &value,
    856 	    sizeof(struct itimerspec))) != 0)
    857 		return (error);
    858 
    859 	if (SCARG(uap, ovalue))
    860 		ovp = &ovalue;
    861 
    862 	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
    863 	    SCARG(uap, flags), l->l_proc)) != 0)
    864 		return error;
    865 
    866 	if (ovp)
    867 		return copyout(&ovalue, SCARG(uap, ovalue),
    868 		    sizeof(struct itimerspec));
    869 	return 0;
    870 }
    871 
    872 int
    873 dotimer_settime(int timerid, struct itimerspec *value,
    874     struct itimerspec *ovalue, int flags, struct proc *p)
    875 {
    876 	struct timespec now;
    877 	struct itimerspec val, oval;
    878 	struct ptimers *pts;
    879 	struct ptimer *pt;
    880 	int error;
    881 
    882 	pts = p->p_timers;
    883 
    884 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    885 		return EINVAL;
    886 	val = *value;
    887 	if ((error = itimespecfix(&val.it_value)) != 0 ||
    888 	    (error = itimespecfix(&val.it_interval)) != 0)
    889 		return error;
    890 
    891 	mutex_spin_enter(&timer_lock);
    892 restart:
    893 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    894 		mutex_spin_exit(&timer_lock);
    895 		return EINVAL;
    896 	}
    897 
    898 	oval = pt->pt_time;
    899 	pt->pt_time = val;
    900 
    901 	/*
    902 	 * If we've been passed a relative time for a realtime timer,
    903 	 * convert it to absolute; if an absolute time for a virtual
    904 	 * timer, convert it to relative and make sure we don't set it
    905 	 * to zero, which would cancel the timer, or let it go
    906 	 * negative, which would confuse the comparison tests.
    907 	 */
    908 	if (timespecisset(&pt->pt_time.it_value)) {
    909 		if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
    910 			if ((flags & TIMER_ABSTIME) == 0) {
    911 				if (pt->pt_type == CLOCK_REALTIME) {
    912 					getnanotime(&now);
    913 				} else { /* CLOCK_MONOTONIC */
    914 					getnanouptime(&now);
    915 				}
    916 				timespecadd(&pt->pt_time.it_value, &now,
    917 				    &pt->pt_time.it_value);
    918 			}
    919 		} else {
    920 			if ((flags & TIMER_ABSTIME) != 0) {
    921 				getnanotime(&now);
    922 				timespecsub(&pt->pt_time.it_value, &now,
    923 				    &pt->pt_time.it_value);
    924 				if (!timespecisset(&pt->pt_time.it_value) ||
    925 				    pt->pt_time.it_value.tv_sec < 0) {
    926 					pt->pt_time.it_value.tv_sec = 0;
    927 					pt->pt_time.it_value.tv_nsec = 1;
    928 				}
    929 			}
    930 		}
    931 	}
    932 
    933 	error = timer_settime(pt);
    934 	if (error == ERESTART) {
    935 		KASSERT(!CLOCK_VIRTUAL_P(pt->pt_type));
    936 		goto restart;
    937 	}
    938 	KASSERT(error == 0);
    939 	mutex_spin_exit(&timer_lock);
    940 
    941 	if (ovalue)
    942 		*ovalue = oval;
    943 
    944 	return (0);
    945 }
    946 
    947 /* Return the time remaining until a POSIX timer fires. */
    948 int
    949 sys___timer_gettime50(struct lwp *l,
    950     const struct sys___timer_gettime50_args *uap, register_t *retval)
    951 {
    952 	/* {
    953 		syscallarg(timer_t) timerid;
    954 		syscallarg(struct itimerspec *) value;
    955 	} */
    956 	struct itimerspec its;
    957 	int error;
    958 
    959 	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
    960 	    &its)) != 0)
    961 		return error;
    962 
    963 	return copyout(&its, SCARG(uap, value), sizeof(its));
    964 }
    965 
    966 int
    967 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
    968 {
    969 	struct ptimer *pt;
    970 	struct ptimers *pts;
    971 
    972 	pts = p->p_timers;
    973 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    974 		return (EINVAL);
    975 	mutex_spin_enter(&timer_lock);
    976 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    977 		mutex_spin_exit(&timer_lock);
    978 		return (EINVAL);
    979 	}
    980 	timer_gettime(pt, its);
    981 	mutex_spin_exit(&timer_lock);
    982 
    983 	return 0;
    984 }
    985 
    986 /*
    987  * Return the count of the number of times a periodic timer expired
    988  * while a notification was already pending. The counter is reset when
    989  * a timer expires and a notification can be posted.
    990  */
    991 int
    992 sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
    993     register_t *retval)
    994 {
    995 	/* {
    996 		syscallarg(timer_t) timerid;
    997 	} */
    998 	struct proc *p = l->l_proc;
    999 	struct ptimers *pts;
   1000 	int timerid;
   1001 	struct ptimer *pt;
   1002 
   1003 	timerid = SCARG(uap, timerid);
   1004 
   1005 	pts = p->p_timers;
   1006 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
   1007 		return (EINVAL);
   1008 	mutex_spin_enter(&timer_lock);
   1009 	if ((pt = pts->pts_timers[timerid]) == NULL) {
   1010 		mutex_spin_exit(&timer_lock);
   1011 		return (EINVAL);
   1012 	}
   1013 	*retval = pt->pt_poverruns;
   1014 	if (*retval >= DELAYTIMER_MAX)
   1015 		*retval = DELAYTIMER_MAX;
   1016 	mutex_spin_exit(&timer_lock);
   1017 
   1018 	return (0);
   1019 }
   1020 
   1021 /*
   1022  * Real interval timer expired:
   1023  * send process whose timer expired an alarm signal.
   1024  * If time is not set up to reload, then just return.
   1025  * Else compute next time timer should go off which is > current time.
   1026  * This is where delay in processing this timeout causes multiple
   1027  * SIGALRM calls to be compressed into one.
   1028  */
   1029 void
   1030 realtimerexpire(void *arg)
   1031 {
   1032 	uint64_t last_val, next_val, interval, now_ns;
   1033 	struct timespec now, next;
   1034 	struct ptimer *pt;
   1035 	int backwards;
   1036 
   1037 	pt = arg;
   1038 
   1039 	mutex_spin_enter(&timer_lock);
   1040 	itimerfire(pt);
   1041 
   1042 	if (!timespecisset(&pt->pt_time.it_interval)) {
   1043 		timespecclear(&pt->pt_time.it_value);
   1044 		mutex_spin_exit(&timer_lock);
   1045 		return;
   1046 	}
   1047 
   1048 	if (pt->pt_type == CLOCK_MONOTONIC) {
   1049 		getnanouptime(&now);
   1050 	} else {
   1051 		getnanotime(&now);
   1052 	}
   1053 	backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
   1054 	timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
   1055 	/* Handle the easy case of non-overflown timers first. */
   1056 	if (!backwards && timespeccmp(&next, &now, >)) {
   1057 		pt->pt_time.it_value = next;
   1058 	} else {
   1059 		now_ns = timespec2ns(&now);
   1060 		last_val = timespec2ns(&pt->pt_time.it_value);
   1061 		interval = timespec2ns(&pt->pt_time.it_interval);
   1062 
   1063 		next_val = now_ns +
   1064 		    (now_ns - last_val + interval - 1) % interval;
   1065 
   1066 		if (backwards)
   1067 			next_val += interval;
   1068 		else
   1069 			pt->pt_overruns += (now_ns - last_val) / interval;
   1070 
   1071 		pt->pt_time.it_value.tv_sec = next_val / 1000000000;
   1072 		pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
   1073 	}
   1074 
   1075 	/*
   1076 	 * Reset the callout, if it's not going away.
   1077 	 *
   1078 	 * Don't need to check tshzto() return value, here.
   1079 	 * callout_reset() does it for us.
   1080 	 */
   1081 	if (!pt->pt_dying)
   1082 		callout_reset(&pt->pt_ch,
   1083 		    (pt->pt_type == CLOCK_MONOTONIC
   1084 			? tshztoup(&pt->pt_time.it_value)
   1085 			: tshzto(&pt->pt_time.it_value)),
   1086 		    realtimerexpire, pt);
   1087 	mutex_spin_exit(&timer_lock);
   1088 }
   1089 
   1090 /* BSD routine to get the value of an interval timer. */
   1091 /* ARGSUSED */
   1092 int
   1093 sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
   1094     register_t *retval)
   1095 {
   1096 	/* {
   1097 		syscallarg(int) which;
   1098 		syscallarg(struct itimerval *) itv;
   1099 	} */
   1100 	struct proc *p = l->l_proc;
   1101 	struct itimerval aitv;
   1102 	int error;
   1103 
   1104 	memset(&aitv, 0, sizeof(aitv));
   1105 	error = dogetitimer(p, SCARG(uap, which), &aitv);
   1106 	if (error)
   1107 		return error;
   1108 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
   1109 }
   1110 
   1111 int
   1112 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
   1113 {
   1114 	struct ptimers *pts;
   1115 	struct ptimer *pt;
   1116 	struct itimerspec its;
   1117 
   1118 	if ((u_int)which > ITIMER_MONOTONIC)
   1119 		return (EINVAL);
   1120 
   1121 	mutex_spin_enter(&timer_lock);
   1122 	pts = p->p_timers;
   1123 	if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
   1124 		timerclear(&itvp->it_value);
   1125 		timerclear(&itvp->it_interval);
   1126 	} else {
   1127 		timer_gettime(pt, &its);
   1128 		TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
   1129 		TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
   1130 	}
   1131 	mutex_spin_exit(&timer_lock);
   1132 
   1133 	return 0;
   1134 }
   1135 
   1136 /* BSD routine to set/arm an interval timer. */
   1137 /* ARGSUSED */
   1138 int
   1139 sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
   1140     register_t *retval)
   1141 {
   1142 	/* {
   1143 		syscallarg(int) which;
   1144 		syscallarg(const struct itimerval *) itv;
   1145 		syscallarg(struct itimerval *) oitv;
   1146 	} */
   1147 	struct proc *p = l->l_proc;
   1148 	int which = SCARG(uap, which);
   1149 	struct sys___getitimer50_args getargs;
   1150 	const struct itimerval *itvp;
   1151 	struct itimerval aitv;
   1152 	int error;
   1153 
   1154 	if ((u_int)which > ITIMER_MONOTONIC)
   1155 		return (EINVAL);
   1156 	itvp = SCARG(uap, itv);
   1157 	if (itvp &&
   1158 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval))) != 0)
   1159 		return (error);
   1160 	if (SCARG(uap, oitv) != NULL) {
   1161 		SCARG(&getargs, which) = which;
   1162 		SCARG(&getargs, itv) = SCARG(uap, oitv);
   1163 		if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
   1164 			return (error);
   1165 	}
   1166 	if (itvp == 0)
   1167 		return (0);
   1168 
   1169 	return dosetitimer(p, which, &aitv);
   1170 }
   1171 
   1172 int
   1173 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
   1174 {
   1175 	struct timespec now;
   1176 	struct ptimers *pts;
   1177 	struct ptimer *pt, *spare;
   1178 	int error;
   1179 
   1180 	KASSERT((u_int)which <= CLOCK_MONOTONIC);
   1181 	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
   1182 		return (EINVAL);
   1183 
   1184 	/*
   1185 	 * Don't bother allocating data structures if the process just
   1186 	 * wants to clear the timer.
   1187 	 */
   1188 	spare = NULL;
   1189 	pts = p->p_timers;
   1190  retry:
   1191 	if (!timerisset(&itvp->it_value) && (pts == NULL ||
   1192 	    pts->pts_timers[which] == NULL))
   1193 		return (0);
   1194 	if (pts == NULL)
   1195 		pts = timers_alloc(p);
   1196 	mutex_spin_enter(&timer_lock);
   1197 restart:
   1198 	pt = pts->pts_timers[which];
   1199 	if (pt == NULL) {
   1200 		if (spare == NULL) {
   1201 			mutex_spin_exit(&timer_lock);
   1202 			spare = pool_get(&ptimer_pool, PR_WAITOK | PR_ZERO);
   1203 			goto retry;
   1204 		}
   1205 		pt = spare;
   1206 		spare = NULL;
   1207 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
   1208 		pt->pt_ev.sigev_value.sival_int = which;
   1209 		pt->pt_overruns = 0;
   1210 		pt->pt_proc = p;
   1211 		pt->pt_type = which;
   1212 		pt->pt_entry = which;
   1213 		pt->pt_queued = false;
   1214 		if (!CLOCK_VIRTUAL_P(which))
   1215 			callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
   1216 		else
   1217 			pt->pt_active = 0;
   1218 
   1219 		switch (which) {
   1220 		case ITIMER_REAL:
   1221 		case ITIMER_MONOTONIC:
   1222 			pt->pt_ev.sigev_signo = SIGALRM;
   1223 			break;
   1224 		case ITIMER_VIRTUAL:
   1225 			pt->pt_ev.sigev_signo = SIGVTALRM;
   1226 			break;
   1227 		case ITIMER_PROF:
   1228 			pt->pt_ev.sigev_signo = SIGPROF;
   1229 			break;
   1230 		}
   1231 		pts->pts_timers[which] = pt;
   1232 	}
   1233 
   1234 	TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
   1235 	TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
   1236 
   1237 	if (timespecisset(&pt->pt_time.it_value)) {
   1238 		/* Convert to absolute time */
   1239 		/* XXX need to wrap in splclock for timecounters case? */
   1240 		switch (which) {
   1241 		case ITIMER_REAL:
   1242 			getnanotime(&now);
   1243 			timespecadd(&pt->pt_time.it_value, &now,
   1244 			    &pt->pt_time.it_value);
   1245 			break;
   1246 		case ITIMER_MONOTONIC:
   1247 			getnanouptime(&now);
   1248 			timespecadd(&pt->pt_time.it_value, &now,
   1249 			    &pt->pt_time.it_value);
   1250 			break;
   1251 		default:
   1252 			break;
   1253 		}
   1254 	}
   1255 	error = timer_settime(pt);
   1256 	if (error == ERESTART) {
   1257 		KASSERT(!CLOCK_VIRTUAL_P(pt->pt_type));
   1258 		goto restart;
   1259 	}
   1260 	KASSERT(error == 0);
   1261 	mutex_spin_exit(&timer_lock);
   1262 	if (spare != NULL)
   1263 		pool_put(&ptimer_pool, spare);
   1264 
   1265 	return (0);
   1266 }
   1267 
   1268 /* Utility routines to manage the array of pointers to timers. */
   1269 struct ptimers *
   1270 timers_alloc(struct proc *p)
   1271 {
   1272 	struct ptimers *pts;
   1273 	int i;
   1274 
   1275 	pts = pool_get(&ptimers_pool, PR_WAITOK);
   1276 	LIST_INIT(&pts->pts_virtual);
   1277 	LIST_INIT(&pts->pts_prof);
   1278 	for (i = 0; i < TIMER_MAX; i++)
   1279 		pts->pts_timers[i] = NULL;
   1280 	mutex_spin_enter(&timer_lock);
   1281 	if (p->p_timers == NULL) {
   1282 		p->p_timers = pts;
   1283 		mutex_spin_exit(&timer_lock);
   1284 		return pts;
   1285 	}
   1286 	mutex_spin_exit(&timer_lock);
   1287 	pool_put(&ptimers_pool, pts);
   1288 	return p->p_timers;
   1289 }
   1290 
   1291 /*
   1292  * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
   1293  * then clean up all timers and free all the data structures. If
   1294  * "which" is set to TIMERS_POSIX, only clean up the timers allocated
   1295  * by timer_create(), not the BSD setitimer() timers, and only free the
   1296  * structure if none of those remain.
   1297  */
   1298 void
   1299 timers_free(struct proc *p, int which)
   1300 {
   1301 	struct ptimers *pts;
   1302 	struct ptimer *ptn;
   1303 	struct timespec ts;
   1304 	int i;
   1305 
   1306 	if (p->p_timers == NULL)
   1307 		return;
   1308 
   1309 	pts = p->p_timers;
   1310 	mutex_spin_enter(&timer_lock);
   1311 	if (which == TIMERS_ALL) {
   1312 		p->p_timers = NULL;
   1313 		i = 0;
   1314 	} else {
   1315 		timespecclear(&ts);
   1316 		for (ptn = LIST_FIRST(&pts->pts_virtual);
   1317 		     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
   1318 		     ptn = LIST_NEXT(ptn, pt_list)) {
   1319 			KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
   1320 			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
   1321 		}
   1322 		LIST_FIRST(&pts->pts_virtual) = NULL;
   1323 		if (ptn) {
   1324 			KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
   1325 			timespecadd(&ts, &ptn->pt_time.it_value,
   1326 			    &ptn->pt_time.it_value);
   1327 			LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
   1328 		}
   1329 		timespecclear(&ts);
   1330 		for (ptn = LIST_FIRST(&pts->pts_prof);
   1331 		     ptn && ptn != pts->pts_timers[ITIMER_PROF];
   1332 		     ptn = LIST_NEXT(ptn, pt_list)) {
   1333 			KASSERT(ptn->pt_type == CLOCK_PROF);
   1334 			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
   1335 		}
   1336 		LIST_FIRST(&pts->pts_prof) = NULL;
   1337 		if (ptn) {
   1338 			KASSERT(ptn->pt_type == CLOCK_PROF);
   1339 			timespecadd(&ts, &ptn->pt_time.it_value,
   1340 			    &ptn->pt_time.it_value);
   1341 			LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
   1342 		}
   1343 		i = TIMER_MIN;
   1344 	}
   1345 	for ( ; i < TIMER_MAX; i++) {
   1346 		if (pts->pts_timers[i] != NULL) {
   1347 			/* Free the timer and release the lock.  */
   1348 			itimerfree(pts, i);
   1349 			/* Reacquire the lock for the next one.  */
   1350 			mutex_spin_enter(&timer_lock);
   1351 		}
   1352 	}
   1353 	if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
   1354 	    pts->pts_timers[2] == NULL && pts->pts_timers[3] == NULL) {
   1355 		p->p_timers = NULL;
   1356 		mutex_spin_exit(&timer_lock);
   1357 		pool_put(&ptimers_pool, pts);
   1358 	} else
   1359 		mutex_spin_exit(&timer_lock);
   1360 }
   1361 
   1362 static void
   1363 itimerfree(struct ptimers *pts, int index)
   1364 {
   1365 	struct ptimer *pt;
   1366 
   1367 	KASSERT(mutex_owned(&timer_lock));
   1368 
   1369 	pt = pts->pts_timers[index];
   1370 
   1371 	/*
   1372 	 * Prevent new references, and notify the callout not to
   1373 	 * restart itself.
   1374 	 */
   1375 	pts->pts_timers[index] = NULL;
   1376 	pt->pt_dying = true;
   1377 
   1378 	/*
   1379 	 * For non-virtual timers, stop the callout, or wait for it to
   1380 	 * run if it has already fired.  It cannot restart again after
   1381 	 * this point: the callout won't restart itself when dying, no
   1382 	 * other users holding the lock can restart it, and any other
   1383 	 * users waiting for callout_halt concurrently (timer_settime)
   1384 	 * will restart from the top.
   1385 	 */
   1386 	if (!CLOCK_VIRTUAL_P(pt->pt_type))
   1387 		callout_halt(&pt->pt_ch, &timer_lock);
   1388 
   1389 	/* Remove it from the queue to be signalled.  */
   1390 	if (pt->pt_queued)
   1391 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
   1392 
   1393 	/* All done with the global state.  */
   1394 	mutex_spin_exit(&timer_lock);
   1395 
   1396 	/* Destroy the callout, if needed, and free the ptimer.  */
   1397 	if (!CLOCK_VIRTUAL_P(pt->pt_type))
   1398 		callout_destroy(&pt->pt_ch);
   1399 	pool_put(&ptimer_pool, pt);
   1400 }
   1401 
   1402 /*
   1403  * Decrement an interval timer by a specified number
   1404  * of nanoseconds, which must be less than a second,
   1405  * i.e. < 1000000000.  If the timer expires, then reload
   1406  * it.  In this case, carry over (nsec - old value) to
   1407  * reduce the value reloaded into the timer so that
   1408  * the timer does not drift.  This routine assumes
   1409  * that it is called in a context where the timers
   1410  * on which it is operating cannot change in value.
   1411  */
   1412 static int
   1413 itimerdecr(struct ptimer *pt, int nsec)
   1414 {
   1415 	struct itimerspec *itp;
   1416 	int error __diagused;
   1417 
   1418 	KASSERT(mutex_owned(&timer_lock));
   1419 	KASSERT(CLOCK_VIRTUAL_P(pt->pt_type));
   1420 
   1421 	itp = &pt->pt_time;
   1422 	if (itp->it_value.tv_nsec < nsec) {
   1423 		if (itp->it_value.tv_sec == 0) {
   1424 			/* expired, and already in next interval */
   1425 			nsec -= itp->it_value.tv_nsec;
   1426 			goto expire;
   1427 		}
   1428 		itp->it_value.tv_nsec += 1000000000;
   1429 		itp->it_value.tv_sec--;
   1430 	}
   1431 	itp->it_value.tv_nsec -= nsec;
   1432 	nsec = 0;
   1433 	if (timespecisset(&itp->it_value))
   1434 		return (1);
   1435 	/* expired, exactly at end of interval */
   1436 expire:
   1437 	if (timespecisset(&itp->it_interval)) {
   1438 		itp->it_value = itp->it_interval;
   1439 		itp->it_value.tv_nsec -= nsec;
   1440 		if (itp->it_value.tv_nsec < 0) {
   1441 			itp->it_value.tv_nsec += 1000000000;
   1442 			itp->it_value.tv_sec--;
   1443 		}
   1444 		error = timer_settime(pt);
   1445 		KASSERT(error == 0); /* virtual, never fails */
   1446 	} else
   1447 		itp->it_value.tv_nsec = 0;		/* sec is already 0 */
   1448 	return (0);
   1449 }
   1450 
   1451 static void
   1452 itimerfire(struct ptimer *pt)
   1453 {
   1454 
   1455 	KASSERT(mutex_owned(&timer_lock));
   1456 
   1457 	/*
   1458 	 * XXX Can overrun, but we don't do signal queueing yet, anyway.
   1459 	 * XXX Relying on the clock interrupt is stupid.
   1460 	 */
   1461 	if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL || pt->pt_queued) {
   1462 		return;
   1463 	}
   1464 	TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
   1465 	pt->pt_queued = true;
   1466 	softint_schedule(timer_sih);
   1467 }
   1468 
   1469 void
   1470 timer_tick(lwp_t *l, bool user)
   1471 {
   1472 	struct ptimers *pts;
   1473 	struct ptimer *pt;
   1474 	proc_t *p;
   1475 
   1476 	p = l->l_proc;
   1477 	if (p->p_timers == NULL)
   1478 		return;
   1479 
   1480 	mutex_spin_enter(&timer_lock);
   1481 	if ((pts = l->l_proc->p_timers) != NULL) {
   1482 		/*
   1483 		 * Run current process's virtual and profile time, as needed.
   1484 		 */
   1485 		if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
   1486 			if (itimerdecr(pt, tick * 1000) == 0)
   1487 				itimerfire(pt);
   1488 		if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
   1489 			if (itimerdecr(pt, tick * 1000) == 0)
   1490 				itimerfire(pt);
   1491 	}
   1492 	mutex_spin_exit(&timer_lock);
   1493 }
   1494 
   1495 static void
   1496 timer_intr(void *cookie)
   1497 {
   1498 	ksiginfo_t ksi;
   1499 	struct ptimer *pt;
   1500 	proc_t *p;
   1501 
   1502 	mutex_enter(proc_lock);
   1503 	mutex_spin_enter(&timer_lock);
   1504 	while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
   1505 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
   1506 		KASSERT(pt->pt_queued);
   1507 		pt->pt_queued = false;
   1508 
   1509 		if (pt->pt_proc->p_timers == NULL) {
   1510 			/* Process is dying. */
   1511 			continue;
   1512 		}
   1513 		p = pt->pt_proc;
   1514 		if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
   1515 			continue;
   1516 		}
   1517 		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
   1518 			pt->pt_overruns++;
   1519 			continue;
   1520 		}
   1521 
   1522 		KSI_INIT(&ksi);
   1523 		ksi.ksi_signo = pt->pt_ev.sigev_signo;
   1524 		ksi.ksi_code = SI_TIMER;
   1525 		ksi.ksi_value = pt->pt_ev.sigev_value;
   1526 		pt->pt_poverruns = pt->pt_overruns;
   1527 		pt->pt_overruns = 0;
   1528 		mutex_spin_exit(&timer_lock);
   1529 		kpsignal(p, &ksi, NULL);
   1530 		mutex_spin_enter(&timer_lock);
   1531 	}
   1532 	mutex_spin_exit(&timer_lock);
   1533 	mutex_exit(proc_lock);
   1534 }
   1535 
   1536 /*
   1537  * Check if the time will wrap if set to ts.
   1538  *
   1539  * ts - timespec describing the new time
   1540  * delta - the delta between the current time and ts
   1541  */
   1542 bool
   1543 time_wraps(struct timespec *ts, struct timespec *delta)
   1544 {
   1545 
   1546 	/*
   1547 	 * Don't allow the time to be set forward so far it
   1548 	 * will wrap and become negative, thus allowing an
   1549 	 * attacker to bypass the next check below.  The
   1550 	 * cutoff is 1 year before rollover occurs, so even
   1551 	 * if the attacker uses adjtime(2) to move the time
   1552 	 * past the cutoff, it will take a very long time
   1553 	 * to get to the wrap point.
   1554 	 */
   1555 	if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
   1556 	    (delta->tv_sec < 0 || delta->tv_nsec < 0))
   1557 		return true;
   1558 
   1559 	return false;
   1560 }
   1561