Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.206
      1 /*	$NetBSD: kern_time.c,v 1.206 2020/10/27 00:07:18 nia Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Christopher G. Demetriou, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1982, 1986, 1989, 1993
     34  *	The Regents of the University of California.  All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. Neither the name of the University nor the names of its contributors
     45  *    may be used to endorse or promote products derived from this software
     46  *    without specific prior written permission.
     47  *
     48  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58  * SUCH DAMAGE.
     59  *
     60  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     61  */
     62 
     63 #include <sys/cdefs.h>
     64 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.206 2020/10/27 00:07:18 nia Exp $");
     65 
     66 #include <sys/param.h>
     67 #include <sys/resourcevar.h>
     68 #include <sys/kernel.h>
     69 #include <sys/systm.h>
     70 #include <sys/proc.h>
     71 #include <sys/vnode.h>
     72 #include <sys/signalvar.h>
     73 #include <sys/syslog.h>
     74 #include <sys/timetc.h>
     75 #include <sys/timex.h>
     76 #include <sys/kauth.h>
     77 #include <sys/mount.h>
     78 #include <sys/syscallargs.h>
     79 #include <sys/cpu.h>
     80 
     81 static void	timer_intr(void *);
     82 static void	itimerfire(struct ptimer *);
     83 static void	itimerfree(struct ptimers *, int);
     84 
     85 kmutex_t	timer_lock;
     86 
     87 static void	*timer_sih;
     88 static TAILQ_HEAD(, ptimer) timer_queue;
     89 
     90 struct pool ptimer_pool, ptimers_pool;
     91 
     92 #define	CLOCK_VIRTUAL_P(clockid)	\
     93 	((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)
     94 
     95 CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
     96 CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
     97 CTASSERT(ITIMER_PROF == CLOCK_PROF);
     98 CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC);
     99 
    100 #define	DELAYTIMER_MAX	32
    101 
    102 /*
    103  * Initialize timekeeping.
    104  */
    105 void
    106 time_init(void)
    107 {
    108 
    109 	pool_init(&ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
    110 	    &pool_allocator_nointr, IPL_NONE);
    111 	pool_init(&ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
    112 	    &pool_allocator_nointr, IPL_NONE);
    113 }
    114 
    115 void
    116 time_init2(void)
    117 {
    118 
    119 	TAILQ_INIT(&timer_queue);
    120 	mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
    121 	timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
    122 	    timer_intr, NULL);
    123 }
    124 
    125 /* Time of day and interval timer support.
    126  *
    127  * These routines provide the kernel entry points to get and set
    128  * the time-of-day and per-process interval timers.  Subroutines
    129  * here provide support for adding and subtracting timeval structures
    130  * and decrementing interval timers, optionally reloading the interval
    131  * timers when they expire.
    132  */
    133 
    134 /* This function is used by clock_settime and settimeofday */
    135 static int
    136 settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
    137 {
    138 	struct timespec delta, now;
    139 
    140 	/*
    141 	 * The time being set to an unreasonable value will cause
    142 	 * unreasonable system behaviour.
    143 	 */
    144 	if (ts->tv_sec < 0 || ts->tv_sec > (1LL << 36))
    145 		return (EINVAL);
    146 
    147 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    148 	nanotime(&now);
    149 	timespecsub(ts, &now, &delta);
    150 
    151 	if (check_kauth && kauth_authorize_system(kauth_cred_get(),
    152 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
    153 	    &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
    154 		return (EPERM);
    155 	}
    156 
    157 #ifdef notyet
    158 	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
    159 		return (EPERM);
    160 	}
    161 #endif
    162 
    163 	tc_setclock(ts);
    164 
    165 	resettodr();
    166 
    167 	return (0);
    168 }
    169 
    170 int
    171 settime(struct proc *p, struct timespec *ts)
    172 {
    173 	return (settime1(p, ts, true));
    174 }
    175 
    176 /* ARGSUSED */
    177 int
    178 sys___clock_gettime50(struct lwp *l,
    179     const struct sys___clock_gettime50_args *uap, register_t *retval)
    180 {
    181 	/* {
    182 		syscallarg(clockid_t) clock_id;
    183 		syscallarg(struct timespec *) tp;
    184 	} */
    185 	int error;
    186 	struct timespec ats;
    187 
    188 	error = clock_gettime1(SCARG(uap, clock_id), &ats);
    189 	if (error != 0)
    190 		return error;
    191 
    192 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    193 }
    194 
    195 /* ARGSUSED */
    196 int
    197 sys___clock_settime50(struct lwp *l,
    198     const struct sys___clock_settime50_args *uap, register_t *retval)
    199 {
    200 	/* {
    201 		syscallarg(clockid_t) clock_id;
    202 		syscallarg(const struct timespec *) tp;
    203 	} */
    204 	int error;
    205 	struct timespec ats;
    206 
    207 	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
    208 		return error;
    209 
    210 	return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
    211 }
    212 
    213 
    214 int
    215 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
    216     bool check_kauth)
    217 {
    218 	int error;
    219 
    220 	if (tp->tv_nsec < 0 || tp->tv_nsec >= 1000000000L)
    221 		return EINVAL;
    222 
    223 	switch (clock_id) {
    224 	case CLOCK_REALTIME:
    225 		if ((error = settime1(p, tp, check_kauth)) != 0)
    226 			return (error);
    227 		break;
    228 	case CLOCK_MONOTONIC:
    229 		return (EINVAL);	/* read-only clock */
    230 	default:
    231 		return (EINVAL);
    232 	}
    233 
    234 	return 0;
    235 }
    236 
    237 int
    238 sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
    239     register_t *retval)
    240 {
    241 	/* {
    242 		syscallarg(clockid_t) clock_id;
    243 		syscallarg(struct timespec *) tp;
    244 	} */
    245 	struct timespec ts;
    246 	int error;
    247 
    248 	if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
    249 		return error;
    250 
    251 	if (SCARG(uap, tp))
    252 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    253 
    254 	return error;
    255 }
    256 
    257 int
    258 clock_getres1(clockid_t clock_id, struct timespec *ts)
    259 {
    260 
    261 	switch (clock_id) {
    262 	case CLOCK_REALTIME:
    263 	case CLOCK_MONOTONIC:
    264 		ts->tv_sec = 0;
    265 		if (tc_getfrequency() > 1000000000)
    266 			ts->tv_nsec = 1;
    267 		else
    268 			ts->tv_nsec = 1000000000 / tc_getfrequency();
    269 		break;
    270 	default:
    271 		return EINVAL;
    272 	}
    273 
    274 	return 0;
    275 }
    276 
    277 /* ARGSUSED */
    278 int
    279 sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
    280     register_t *retval)
    281 {
    282 	/* {
    283 		syscallarg(struct timespec *) rqtp;
    284 		syscallarg(struct timespec *) rmtp;
    285 	} */
    286 	struct timespec rmt, rqt;
    287 	int error, error1;
    288 
    289 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    290 	if (error)
    291 		return (error);
    292 
    293 	error = nanosleep1(l, CLOCK_MONOTONIC, 0, &rqt,
    294 	    SCARG(uap, rmtp) ? &rmt : NULL);
    295 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
    296 		return error;
    297 
    298 	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
    299 	return error1 ? error1 : error;
    300 }
    301 
    302 /* ARGSUSED */
    303 int
    304 sys_clock_nanosleep(struct lwp *l, const struct sys_clock_nanosleep_args *uap,
    305     register_t *retval)
    306 {
    307 	/* {
    308 		syscallarg(clockid_t) clock_id;
    309 		syscallarg(int) flags;
    310 		syscallarg(struct timespec *) rqtp;
    311 		syscallarg(struct timespec *) rmtp;
    312 	} */
    313 	struct timespec rmt, rqt;
    314 	int error, error1;
    315 
    316 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    317 	if (error)
    318 		goto out;
    319 
    320 	error = nanosleep1(l, SCARG(uap, clock_id), SCARG(uap, flags), &rqt,
    321 	    SCARG(uap, rmtp) ? &rmt : NULL);
    322 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
    323 		goto out;
    324 
    325 	if ((SCARG(uap, flags) & TIMER_ABSTIME) == 0 &&
    326 	    (error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt))) != 0)
    327 		error = error1;
    328 out:
    329 	*retval = error;
    330 	return 0;
    331 }
    332 
    333 int
    334 nanosleep1(struct lwp *l, clockid_t clock_id, int flags, struct timespec *rqt,
    335     struct timespec *rmt)
    336 {
    337 	struct timespec rmtstart;
    338 	int error, timo;
    339 
    340 	if ((error = ts2timo(clock_id, flags, rqt, &timo, &rmtstart)) != 0) {
    341 		if (error == ETIMEDOUT) {
    342 			error = 0;
    343 			if (rmt != NULL)
    344 				rmt->tv_sec = rmt->tv_nsec = 0;
    345 		}
    346 		return error;
    347 	}
    348 
    349 	/*
    350 	 * Avoid inadvertently sleeping forever
    351 	 */
    352 	if (timo == 0)
    353 		timo = 1;
    354 again:
    355 	error = kpause("nanoslp", true, timo, NULL);
    356 	if (error == EWOULDBLOCK)
    357 		error = 0;
    358 	if (rmt != NULL || error == 0) {
    359 		struct timespec rmtend;
    360 		struct timespec t0;
    361 		struct timespec *t;
    362 		int err;
    363 
    364 		err = clock_gettime1(clock_id, &rmtend);
    365 		if (err != 0)
    366 			return err;
    367 
    368 		t = (rmt != NULL) ? rmt : &t0;
    369 		if (flags & TIMER_ABSTIME) {
    370 			timespecsub(rqt, &rmtend, t);
    371 		} else {
    372 			timespecsub(&rmtend, &rmtstart, t);
    373 			timespecsub(rqt, t, t);
    374 		}
    375 		if (t->tv_sec < 0)
    376 			timespecclear(t);
    377 		if (error == 0) {
    378 			timo = tstohz(t);
    379 			if (timo > 0)
    380 				goto again;
    381 		}
    382 	}
    383 
    384 	if (error == ERESTART)
    385 		error = EINTR;
    386 
    387 	return error;
    388 }
    389 
    390 int
    391 sys_clock_getcpuclockid2(struct lwp *l,
    392     const struct sys_clock_getcpuclockid2_args *uap,
    393     register_t *retval)
    394 {
    395 	/* {
    396 		syscallarg(idtype_t idtype;
    397 		syscallarg(id_t id);
    398 		syscallarg(clockid_t *)clock_id;
    399 	} */
    400 	pid_t pid;
    401 	lwpid_t lid;
    402 	clockid_t clock_id;
    403 	id_t id = SCARG(uap, id);
    404 
    405 	switch (SCARG(uap, idtype)) {
    406 	case P_PID:
    407 		pid = id == 0 ? l->l_proc->p_pid : id;
    408 		clock_id = CLOCK_PROCESS_CPUTIME_ID | pid;
    409 		break;
    410 	case P_LWPID:
    411 		lid = id == 0 ? l->l_lid : id;
    412 		clock_id = CLOCK_THREAD_CPUTIME_ID | lid;
    413 		break;
    414 	default:
    415 		return EINVAL;
    416 	}
    417 	return copyout(&clock_id, SCARG(uap, clock_id), sizeof(clock_id));
    418 }
    419 
    420 /* ARGSUSED */
    421 int
    422 sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
    423     register_t *retval)
    424 {
    425 	/* {
    426 		syscallarg(struct timeval *) tp;
    427 		syscallarg(void *) tzp;		really "struct timezone *";
    428 	} */
    429 	struct timeval atv;
    430 	int error = 0;
    431 	struct timezone tzfake;
    432 
    433 	if (SCARG(uap, tp)) {
    434 		memset(&atv, 0, sizeof(atv));
    435 		microtime(&atv);
    436 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    437 		if (error)
    438 			return (error);
    439 	}
    440 	if (SCARG(uap, tzp)) {
    441 		/*
    442 		 * NetBSD has no kernel notion of time zone, so we just
    443 		 * fake up a timezone struct and return it if demanded.
    444 		 */
    445 		tzfake.tz_minuteswest = 0;
    446 		tzfake.tz_dsttime = 0;
    447 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    448 	}
    449 	return (error);
    450 }
    451 
    452 /* ARGSUSED */
    453 int
    454 sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
    455     register_t *retval)
    456 {
    457 	/* {
    458 		syscallarg(const struct timeval *) tv;
    459 		syscallarg(const void *) tzp; really "const struct timezone *";
    460 	} */
    461 
    462 	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
    463 }
    464 
    465 int
    466 settimeofday1(const struct timeval *utv, bool userspace,
    467     const void *utzp, struct lwp *l, bool check_kauth)
    468 {
    469 	struct timeval atv;
    470 	struct timespec ts;
    471 	int error;
    472 
    473 	/* Verify all parameters before changing time. */
    474 
    475 	/*
    476 	 * NetBSD has no kernel notion of time zone, and only an
    477 	 * obsolete program would try to set it, so we log a warning.
    478 	 */
    479 	if (utzp)
    480 		log(LOG_WARNING, "pid %d attempted to set the "
    481 		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
    482 
    483 	if (utv == NULL)
    484 		return 0;
    485 
    486 	if (userspace) {
    487 		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
    488 			return error;
    489 		utv = &atv;
    490 	}
    491 
    492 	if (utv->tv_usec < 0 || utv->tv_usec >= 1000000)
    493 		return EINVAL;
    494 
    495 	TIMEVAL_TO_TIMESPEC(utv, &ts);
    496 	return settime1(l->l_proc, &ts, check_kauth);
    497 }
    498 
    499 int	time_adjusted;			/* set if an adjustment is made */
    500 
    501 /* ARGSUSED */
    502 int
    503 sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
    504     register_t *retval)
    505 {
    506 	/* {
    507 		syscallarg(const struct timeval *) delta;
    508 		syscallarg(struct timeval *) olddelta;
    509 	} */
    510 	int error;
    511 	struct timeval atv, oldatv;
    512 
    513 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
    514 	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
    515 		return error;
    516 
    517 	if (SCARG(uap, delta)) {
    518 		error = copyin(SCARG(uap, delta), &atv,
    519 		    sizeof(*SCARG(uap, delta)));
    520 		if (error)
    521 			return (error);
    522 	}
    523 	adjtime1(SCARG(uap, delta) ? &atv : NULL,
    524 	    SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
    525 	if (SCARG(uap, olddelta))
    526 		error = copyout(&oldatv, SCARG(uap, olddelta),
    527 		    sizeof(*SCARG(uap, olddelta)));
    528 	return error;
    529 }
    530 
    531 void
    532 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
    533 {
    534 	extern int64_t time_adjtime;  /* in kern_ntptime.c */
    535 
    536 	if (olddelta) {
    537 		memset(olddelta, 0, sizeof(*olddelta));
    538 		mutex_spin_enter(&timecounter_lock);
    539 		olddelta->tv_sec = time_adjtime / 1000000;
    540 		olddelta->tv_usec = time_adjtime % 1000000;
    541 		if (olddelta->tv_usec < 0) {
    542 			olddelta->tv_usec += 1000000;
    543 			olddelta->tv_sec--;
    544 		}
    545 		mutex_spin_exit(&timecounter_lock);
    546 	}
    547 
    548 	if (delta) {
    549 		mutex_spin_enter(&timecounter_lock);
    550 		time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
    551 
    552 		if (time_adjtime) {
    553 			/* We need to save the system time during shutdown */
    554 			time_adjusted |= 1;
    555 		}
    556 		mutex_spin_exit(&timecounter_lock);
    557 	}
    558 }
    559 
    560 /*
    561  * Interval timer support. Both the BSD getitimer() family and the POSIX
    562  * timer_*() family of routines are supported.
    563  *
    564  * All timers are kept in an array pointed to by p_timers, which is
    565  * allocated on demand - many processes don't use timers at all. The
    566  * first four elements in this array are reserved for the BSD timers:
    567  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element
    568  * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be
    569  * allocated by the timer_create() syscall.
    570  *
    571  * Realtime timers are kept in the ptimer structure as an absolute
    572  * time; virtual time timers are kept as a linked list of deltas.
    573  * Virtual time timers are processed in the hardclock() routine of
    574  * kern_clock.c.  The real time timer is processed by a callout
    575  * routine, called from the softclock() routine.  Since a callout may
    576  * be delayed in real time due to interrupt processing in the system,
    577  * it is possible for the real time timeout routine (realtimeexpire,
    578  * given below), to be delayed in real time past when it is supposed
    579  * to occur.  It does not suffice, therefore, to reload the real timer
    580  * .it_value from the real time timers .it_interval.  Rather, we
    581  * compute the next time in absolute time the timer should go off.  */
    582 
    583 /* Allocate a POSIX realtime timer. */
    584 int
    585 sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
    586     register_t *retval)
    587 {
    588 	/* {
    589 		syscallarg(clockid_t) clock_id;
    590 		syscallarg(struct sigevent *) evp;
    591 		syscallarg(timer_t *) timerid;
    592 	} */
    593 
    594 	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
    595 	    SCARG(uap, evp), copyin, l);
    596 }
    597 
    598 int
    599 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
    600     copyin_t fetch_event, struct lwp *l)
    601 {
    602 	int error;
    603 	timer_t timerid;
    604 	struct ptimers *pts;
    605 	struct ptimer *pt;
    606 	struct proc *p;
    607 
    608 	p = l->l_proc;
    609 
    610 	if ((u_int)id > CLOCK_MONOTONIC)
    611 		return (EINVAL);
    612 
    613 	if ((pts = p->p_timers) == NULL)
    614 		pts = timers_alloc(p);
    615 
    616 	pt = pool_get(&ptimer_pool, PR_WAITOK | PR_ZERO);
    617 	if (evp != NULL) {
    618 		if (((error =
    619 		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
    620 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
    621 			(pt->pt_ev.sigev_notify > SIGEV_SA)) ||
    622 			(pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
    623 			 (pt->pt_ev.sigev_signo <= 0 ||
    624 			  pt->pt_ev.sigev_signo >= NSIG))) {
    625 			pool_put(&ptimer_pool, pt);
    626 			return (error ? error : EINVAL);
    627 		}
    628 	}
    629 
    630 	/* Find a free timer slot, skipping those reserved for setitimer(). */
    631 	mutex_spin_enter(&timer_lock);
    632 	for (timerid = TIMER_MIN; timerid < TIMER_MAX; timerid++)
    633 		if (pts->pts_timers[timerid] == NULL)
    634 			break;
    635 	if (timerid == TIMER_MAX) {
    636 		mutex_spin_exit(&timer_lock);
    637 		pool_put(&ptimer_pool, pt);
    638 		return EAGAIN;
    639 	}
    640 	if (evp == NULL) {
    641 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    642 		switch (id) {
    643 		case CLOCK_REALTIME:
    644 		case CLOCK_MONOTONIC:
    645 			pt->pt_ev.sigev_signo = SIGALRM;
    646 			break;
    647 		case CLOCK_VIRTUAL:
    648 			pt->pt_ev.sigev_signo = SIGVTALRM;
    649 			break;
    650 		case CLOCK_PROF:
    651 			pt->pt_ev.sigev_signo = SIGPROF;
    652 			break;
    653 		}
    654 		pt->pt_ev.sigev_value.sival_int = timerid;
    655 	}
    656 	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
    657 	pt->pt_info.ksi_errno = 0;
    658 	pt->pt_info.ksi_code = 0;
    659 	pt->pt_info.ksi_pid = p->p_pid;
    660 	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
    661 	pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
    662 	pt->pt_type = id;
    663 	pt->pt_proc = p;
    664 	pt->pt_overruns = 0;
    665 	pt->pt_poverruns = 0;
    666 	pt->pt_entry = timerid;
    667 	pt->pt_queued = false;
    668 	timespecclear(&pt->pt_time.it_value);
    669 	if (!CLOCK_VIRTUAL_P(id))
    670 		callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
    671 	else
    672 		pt->pt_active = 0;
    673 
    674 	pts->pts_timers[timerid] = pt;
    675 	mutex_spin_exit(&timer_lock);
    676 
    677 	return copyout(&timerid, tid, sizeof(timerid));
    678 }
    679 
    680 /* Delete a POSIX realtime timer */
    681 int
    682 sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
    683     register_t *retval)
    684 {
    685 	/* {
    686 		syscallarg(timer_t) timerid;
    687 	} */
    688 	struct proc *p = l->l_proc;
    689 	timer_t timerid;
    690 	struct ptimers *pts;
    691 	struct ptimer *pt, *ptn;
    692 
    693 	timerid = SCARG(uap, timerid);
    694 	pts = p->p_timers;
    695 
    696 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    697 		return (EINVAL);
    698 
    699 	mutex_spin_enter(&timer_lock);
    700 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    701 		mutex_spin_exit(&timer_lock);
    702 		return (EINVAL);
    703 	}
    704 	if (CLOCK_VIRTUAL_P(pt->pt_type)) {
    705 		if (pt->pt_active) {
    706 			ptn = LIST_NEXT(pt, pt_list);
    707 			LIST_REMOVE(pt, pt_list);
    708 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    709 				timespecadd(&pt->pt_time.it_value,
    710 				    &ptn->pt_time.it_value,
    711 				    &ptn->pt_time.it_value);
    712 			pt->pt_active = 0;
    713 		}
    714 	}
    715 
    716 	/* Free the timer and release the lock.  */
    717 	itimerfree(pts, timerid);
    718 
    719 	return (0);
    720 }
    721 
    722 /*
    723  * Set up the given timer. The value in pt->pt_time.it_value is taken
    724  * to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC timers and
    725  * a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
    726  *
    727  * If the callout had already fired but not yet run, fails with
    728  * ERESTART -- caller must restart from the top to look up a timer.
    729  */
    730 int
    731 timer_settime(struct ptimer *pt)
    732 {
    733 	struct ptimer *ptn, *pptn;
    734 	struct ptlist *ptl;
    735 
    736 	KASSERT(mutex_owned(&timer_lock));
    737 
    738 	if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
    739 		/*
    740 		 * Try to stop the callout.  However, if it had already
    741 		 * fired, we have to drop the lock to wait for it, so
    742 		 * the world may have changed and pt may not be there
    743 		 * any more.  In that case, tell the caller to start
    744 		 * over from the top.
    745 		 */
    746 		if (callout_halt(&pt->pt_ch, &timer_lock))
    747 			return ERESTART;
    748 
    749 		/* Now we can touch pt and start it up again.  */
    750 		if (timespecisset(&pt->pt_time.it_value)) {
    751 			/*
    752 			 * Don't need to check tshzto() return value, here.
    753 			 * callout_reset() does it for us.
    754 			 */
    755 			callout_reset(&pt->pt_ch,
    756 			    pt->pt_type == CLOCK_MONOTONIC ?
    757 			    tshztoup(&pt->pt_time.it_value) :
    758 			    tshzto(&pt->pt_time.it_value),
    759 			    realtimerexpire, pt);
    760 		}
    761 	} else {
    762 		if (pt->pt_active) {
    763 			ptn = LIST_NEXT(pt, pt_list);
    764 			LIST_REMOVE(pt, pt_list);
    765 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    766 				timespecadd(&pt->pt_time.it_value,
    767 				    &ptn->pt_time.it_value,
    768 				    &ptn->pt_time.it_value);
    769 		}
    770 		if (timespecisset(&pt->pt_time.it_value)) {
    771 			if (pt->pt_type == CLOCK_VIRTUAL)
    772 				ptl = &pt->pt_proc->p_timers->pts_virtual;
    773 			else
    774 				ptl = &pt->pt_proc->p_timers->pts_prof;
    775 
    776 			for (ptn = LIST_FIRST(ptl), pptn = NULL;
    777 			     ptn && timespeccmp(&pt->pt_time.it_value,
    778 				 &ptn->pt_time.it_value, >);
    779 			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
    780 				timespecsub(&pt->pt_time.it_value,
    781 				    &ptn->pt_time.it_value,
    782 				    &pt->pt_time.it_value);
    783 
    784 			if (pptn)
    785 				LIST_INSERT_AFTER(pptn, pt, pt_list);
    786 			else
    787 				LIST_INSERT_HEAD(ptl, pt, pt_list);
    788 
    789 			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
    790 				timespecsub(&ptn->pt_time.it_value,
    791 				    &pt->pt_time.it_value,
    792 				    &ptn->pt_time.it_value);
    793 
    794 			pt->pt_active = 1;
    795 		} else
    796 			pt->pt_active = 0;
    797 	}
    798 
    799 	/* Success!  */
    800 	return 0;
    801 }
    802 
    803 void
    804 timer_gettime(struct ptimer *pt, struct itimerspec *aits)
    805 {
    806 	struct timespec now;
    807 	struct ptimer *ptn;
    808 
    809 	KASSERT(mutex_owned(&timer_lock));
    810 
    811 	*aits = pt->pt_time;
    812 	if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
    813 		/*
    814 		 * Convert from absolute to relative time in .it_value
    815 		 * part of real time timer.  If time for real time
    816 		 * timer has passed return 0, else return difference
    817 		 * between current time and time for the timer to go
    818 		 * off.
    819 		 */
    820 		if (timespecisset(&aits->it_value)) {
    821 			if (pt->pt_type == CLOCK_REALTIME) {
    822 				getnanotime(&now);
    823 			} else { /* CLOCK_MONOTONIC */
    824 				getnanouptime(&now);
    825 			}
    826 			if (timespeccmp(&aits->it_value, &now, <))
    827 				timespecclear(&aits->it_value);
    828 			else
    829 				timespecsub(&aits->it_value, &now,
    830 				    &aits->it_value);
    831 		}
    832 	} else if (pt->pt_active) {
    833 		if (pt->pt_type == CLOCK_VIRTUAL)
    834 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
    835 		else
    836 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
    837 		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
    838 			timespecadd(&aits->it_value,
    839 			    &ptn->pt_time.it_value, &aits->it_value);
    840 		KASSERT(ptn != NULL); /* pt should be findable on the list */
    841 	} else
    842 		timespecclear(&aits->it_value);
    843 }
    844 
    845 
    846 
    847 /* Set and arm a POSIX realtime timer */
    848 int
    849 sys___timer_settime50(struct lwp *l,
    850     const struct sys___timer_settime50_args *uap,
    851     register_t *retval)
    852 {
    853 	/* {
    854 		syscallarg(timer_t) timerid;
    855 		syscallarg(int) flags;
    856 		syscallarg(const struct itimerspec *) value;
    857 		syscallarg(struct itimerspec *) ovalue;
    858 	} */
    859 	int error;
    860 	struct itimerspec value, ovalue, *ovp = NULL;
    861 
    862 	if ((error = copyin(SCARG(uap, value), &value,
    863 	    sizeof(struct itimerspec))) != 0)
    864 		return (error);
    865 
    866 	if (SCARG(uap, ovalue))
    867 		ovp = &ovalue;
    868 
    869 	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
    870 	    SCARG(uap, flags), l->l_proc)) != 0)
    871 		return error;
    872 
    873 	if (ovp)
    874 		return copyout(&ovalue, SCARG(uap, ovalue),
    875 		    sizeof(struct itimerspec));
    876 	return 0;
    877 }
    878 
    879 int
    880 dotimer_settime(int timerid, struct itimerspec *value,
    881     struct itimerspec *ovalue, int flags, struct proc *p)
    882 {
    883 	struct timespec now;
    884 	struct itimerspec val, oval;
    885 	struct ptimers *pts;
    886 	struct ptimer *pt;
    887 	int error;
    888 
    889 	pts = p->p_timers;
    890 
    891 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    892 		return EINVAL;
    893 	val = *value;
    894 	if ((error = itimespecfix(&val.it_value)) != 0 ||
    895 	    (error = itimespecfix(&val.it_interval)) != 0)
    896 		return error;
    897 
    898 	mutex_spin_enter(&timer_lock);
    899 restart:
    900 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    901 		mutex_spin_exit(&timer_lock);
    902 		return EINVAL;
    903 	}
    904 
    905 	oval = pt->pt_time;
    906 	pt->pt_time = val;
    907 
    908 	/*
    909 	 * If we've been passed a relative time for a realtime timer,
    910 	 * convert it to absolute; if an absolute time for a virtual
    911 	 * timer, convert it to relative and make sure we don't set it
    912 	 * to zero, which would cancel the timer, or let it go
    913 	 * negative, which would confuse the comparison tests.
    914 	 */
    915 	if (timespecisset(&pt->pt_time.it_value)) {
    916 		if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
    917 			if ((flags & TIMER_ABSTIME) == 0) {
    918 				if (pt->pt_type == CLOCK_REALTIME) {
    919 					getnanotime(&now);
    920 				} else { /* CLOCK_MONOTONIC */
    921 					getnanouptime(&now);
    922 				}
    923 				timespecadd(&pt->pt_time.it_value, &now,
    924 				    &pt->pt_time.it_value);
    925 			}
    926 		} else {
    927 			if ((flags & TIMER_ABSTIME) != 0) {
    928 				getnanotime(&now);
    929 				timespecsub(&pt->pt_time.it_value, &now,
    930 				    &pt->pt_time.it_value);
    931 				if (!timespecisset(&pt->pt_time.it_value) ||
    932 				    pt->pt_time.it_value.tv_sec < 0) {
    933 					pt->pt_time.it_value.tv_sec = 0;
    934 					pt->pt_time.it_value.tv_nsec = 1;
    935 				}
    936 			}
    937 		}
    938 	}
    939 
    940 	error = timer_settime(pt);
    941 	if (error == ERESTART) {
    942 		KASSERT(!CLOCK_VIRTUAL_P(pt->pt_type));
    943 		goto restart;
    944 	}
    945 	KASSERT(error == 0);
    946 	mutex_spin_exit(&timer_lock);
    947 
    948 	if (ovalue)
    949 		*ovalue = oval;
    950 
    951 	return (0);
    952 }
    953 
    954 /* Return the time remaining until a POSIX timer fires. */
    955 int
    956 sys___timer_gettime50(struct lwp *l,
    957     const struct sys___timer_gettime50_args *uap, register_t *retval)
    958 {
    959 	/* {
    960 		syscallarg(timer_t) timerid;
    961 		syscallarg(struct itimerspec *) value;
    962 	} */
    963 	struct itimerspec its;
    964 	int error;
    965 
    966 	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
    967 	    &its)) != 0)
    968 		return error;
    969 
    970 	return copyout(&its, SCARG(uap, value), sizeof(its));
    971 }
    972 
    973 int
    974 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
    975 {
    976 	struct ptimer *pt;
    977 	struct ptimers *pts;
    978 
    979 	pts = p->p_timers;
    980 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    981 		return (EINVAL);
    982 	mutex_spin_enter(&timer_lock);
    983 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    984 		mutex_spin_exit(&timer_lock);
    985 		return (EINVAL);
    986 	}
    987 	timer_gettime(pt, its);
    988 	mutex_spin_exit(&timer_lock);
    989 
    990 	return 0;
    991 }
    992 
    993 /*
    994  * Return the count of the number of times a periodic timer expired
    995  * while a notification was already pending. The counter is reset when
    996  * a timer expires and a notification can be posted.
    997  */
    998 int
    999 sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
   1000     register_t *retval)
   1001 {
   1002 	/* {
   1003 		syscallarg(timer_t) timerid;
   1004 	} */
   1005 	struct proc *p = l->l_proc;
   1006 	struct ptimers *pts;
   1007 	int timerid;
   1008 	struct ptimer *pt;
   1009 
   1010 	timerid = SCARG(uap, timerid);
   1011 
   1012 	pts = p->p_timers;
   1013 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
   1014 		return (EINVAL);
   1015 	mutex_spin_enter(&timer_lock);
   1016 	if ((pt = pts->pts_timers[timerid]) == NULL) {
   1017 		mutex_spin_exit(&timer_lock);
   1018 		return (EINVAL);
   1019 	}
   1020 	*retval = pt->pt_poverruns;
   1021 	if (*retval >= DELAYTIMER_MAX)
   1022 		*retval = DELAYTIMER_MAX;
   1023 	mutex_spin_exit(&timer_lock);
   1024 
   1025 	return (0);
   1026 }
   1027 
   1028 /*
   1029  * Real interval timer expired:
   1030  * send process whose timer expired an alarm signal.
   1031  * If time is not set up to reload, then just return.
   1032  * Else compute next time timer should go off which is > current time.
   1033  * This is where delay in processing this timeout causes multiple
   1034  * SIGALRM calls to be compressed into one.
   1035  */
   1036 void
   1037 realtimerexpire(void *arg)
   1038 {
   1039 	uint64_t last_val, next_val, interval, now_ns;
   1040 	struct timespec now, next;
   1041 	struct ptimer *pt;
   1042 	int backwards;
   1043 
   1044 	pt = arg;
   1045 
   1046 	mutex_spin_enter(&timer_lock);
   1047 	itimerfire(pt);
   1048 
   1049 	if (!timespecisset(&pt->pt_time.it_interval)) {
   1050 		timespecclear(&pt->pt_time.it_value);
   1051 		mutex_spin_exit(&timer_lock);
   1052 		return;
   1053 	}
   1054 
   1055 	if (pt->pt_type == CLOCK_MONOTONIC) {
   1056 		getnanouptime(&now);
   1057 	} else {
   1058 		getnanotime(&now);
   1059 	}
   1060 	backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
   1061 	timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
   1062 	/* Handle the easy case of non-overflown timers first. */
   1063 	if (!backwards && timespeccmp(&next, &now, >)) {
   1064 		pt->pt_time.it_value = next;
   1065 	} else {
   1066 		now_ns = timespec2ns(&now);
   1067 		last_val = timespec2ns(&pt->pt_time.it_value);
   1068 		interval = timespec2ns(&pt->pt_time.it_interval);
   1069 
   1070 		next_val = now_ns +
   1071 		    (now_ns - last_val + interval - 1) % interval;
   1072 
   1073 		if (backwards)
   1074 			next_val += interval;
   1075 		else
   1076 			pt->pt_overruns += (now_ns - last_val) / interval;
   1077 
   1078 		pt->pt_time.it_value.tv_sec = next_val / 1000000000;
   1079 		pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
   1080 	}
   1081 
   1082 	/*
   1083 	 * Reset the callout, if it's not going away.
   1084 	 *
   1085 	 * Don't need to check tshzto() return value, here.
   1086 	 * callout_reset() does it for us.
   1087 	 */
   1088 	if (!pt->pt_dying)
   1089 		callout_reset(&pt->pt_ch,
   1090 		    (pt->pt_type == CLOCK_MONOTONIC
   1091 			? tshztoup(&pt->pt_time.it_value)
   1092 			: tshzto(&pt->pt_time.it_value)),
   1093 		    realtimerexpire, pt);
   1094 	mutex_spin_exit(&timer_lock);
   1095 }
   1096 
   1097 /* BSD routine to get the value of an interval timer. */
   1098 /* ARGSUSED */
   1099 int
   1100 sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
   1101     register_t *retval)
   1102 {
   1103 	/* {
   1104 		syscallarg(int) which;
   1105 		syscallarg(struct itimerval *) itv;
   1106 	} */
   1107 	struct proc *p = l->l_proc;
   1108 	struct itimerval aitv;
   1109 	int error;
   1110 
   1111 	memset(&aitv, 0, sizeof(aitv));
   1112 	error = dogetitimer(p, SCARG(uap, which), &aitv);
   1113 	if (error)
   1114 		return error;
   1115 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
   1116 }
   1117 
   1118 int
   1119 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
   1120 {
   1121 	struct ptimers *pts;
   1122 	struct ptimer *pt;
   1123 	struct itimerspec its;
   1124 
   1125 	if ((u_int)which > ITIMER_MONOTONIC)
   1126 		return (EINVAL);
   1127 
   1128 	mutex_spin_enter(&timer_lock);
   1129 	pts = p->p_timers;
   1130 	if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
   1131 		timerclear(&itvp->it_value);
   1132 		timerclear(&itvp->it_interval);
   1133 	} else {
   1134 		timer_gettime(pt, &its);
   1135 		TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
   1136 		TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
   1137 	}
   1138 	mutex_spin_exit(&timer_lock);
   1139 
   1140 	return 0;
   1141 }
   1142 
   1143 /* BSD routine to set/arm an interval timer. */
   1144 /* ARGSUSED */
   1145 int
   1146 sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
   1147     register_t *retval)
   1148 {
   1149 	/* {
   1150 		syscallarg(int) which;
   1151 		syscallarg(const struct itimerval *) itv;
   1152 		syscallarg(struct itimerval *) oitv;
   1153 	} */
   1154 	struct proc *p = l->l_proc;
   1155 	int which = SCARG(uap, which);
   1156 	struct sys___getitimer50_args getargs;
   1157 	const struct itimerval *itvp;
   1158 	struct itimerval aitv;
   1159 	int error;
   1160 
   1161 	if ((u_int)which > ITIMER_MONOTONIC)
   1162 		return (EINVAL);
   1163 	itvp = SCARG(uap, itv);
   1164 	if (itvp &&
   1165 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval))) != 0)
   1166 		return (error);
   1167 	if (SCARG(uap, oitv) != NULL) {
   1168 		SCARG(&getargs, which) = which;
   1169 		SCARG(&getargs, itv) = SCARG(uap, oitv);
   1170 		if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
   1171 			return (error);
   1172 	}
   1173 	if (itvp == 0)
   1174 		return (0);
   1175 
   1176 	return dosetitimer(p, which, &aitv);
   1177 }
   1178 
   1179 int
   1180 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
   1181 {
   1182 	struct timespec now;
   1183 	struct ptimers *pts;
   1184 	struct ptimer *pt, *spare;
   1185 	int error;
   1186 
   1187 	KASSERT((u_int)which <= CLOCK_MONOTONIC);
   1188 	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
   1189 		return (EINVAL);
   1190 
   1191 	/*
   1192 	 * Don't bother allocating data structures if the process just
   1193 	 * wants to clear the timer.
   1194 	 */
   1195 	spare = NULL;
   1196 	pts = p->p_timers;
   1197  retry:
   1198 	if (!timerisset(&itvp->it_value) && (pts == NULL ||
   1199 	    pts->pts_timers[which] == NULL))
   1200 		return (0);
   1201 	if (pts == NULL)
   1202 		pts = timers_alloc(p);
   1203 	mutex_spin_enter(&timer_lock);
   1204 restart:
   1205 	pt = pts->pts_timers[which];
   1206 	if (pt == NULL) {
   1207 		if (spare == NULL) {
   1208 			mutex_spin_exit(&timer_lock);
   1209 			spare = pool_get(&ptimer_pool, PR_WAITOK | PR_ZERO);
   1210 			goto retry;
   1211 		}
   1212 		pt = spare;
   1213 		spare = NULL;
   1214 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
   1215 		pt->pt_ev.sigev_value.sival_int = which;
   1216 		pt->pt_overruns = 0;
   1217 		pt->pt_proc = p;
   1218 		pt->pt_type = which;
   1219 		pt->pt_entry = which;
   1220 		pt->pt_queued = false;
   1221 		if (!CLOCK_VIRTUAL_P(which))
   1222 			callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
   1223 		else
   1224 			pt->pt_active = 0;
   1225 
   1226 		switch (which) {
   1227 		case ITIMER_REAL:
   1228 		case ITIMER_MONOTONIC:
   1229 			pt->pt_ev.sigev_signo = SIGALRM;
   1230 			break;
   1231 		case ITIMER_VIRTUAL:
   1232 			pt->pt_ev.sigev_signo = SIGVTALRM;
   1233 			break;
   1234 		case ITIMER_PROF:
   1235 			pt->pt_ev.sigev_signo = SIGPROF;
   1236 			break;
   1237 		}
   1238 		pts->pts_timers[which] = pt;
   1239 	}
   1240 
   1241 	TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
   1242 	TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
   1243 
   1244 	if (timespecisset(&pt->pt_time.it_value)) {
   1245 		/* Convert to absolute time */
   1246 		/* XXX need to wrap in splclock for timecounters case? */
   1247 		switch (which) {
   1248 		case ITIMER_REAL:
   1249 			getnanotime(&now);
   1250 			timespecadd(&pt->pt_time.it_value, &now,
   1251 			    &pt->pt_time.it_value);
   1252 			break;
   1253 		case ITIMER_MONOTONIC:
   1254 			getnanouptime(&now);
   1255 			timespecadd(&pt->pt_time.it_value, &now,
   1256 			    &pt->pt_time.it_value);
   1257 			break;
   1258 		default:
   1259 			break;
   1260 		}
   1261 	}
   1262 	error = timer_settime(pt);
   1263 	if (error == ERESTART) {
   1264 		KASSERT(!CLOCK_VIRTUAL_P(pt->pt_type));
   1265 		goto restart;
   1266 	}
   1267 	KASSERT(error == 0);
   1268 	mutex_spin_exit(&timer_lock);
   1269 	if (spare != NULL)
   1270 		pool_put(&ptimer_pool, spare);
   1271 
   1272 	return (0);
   1273 }
   1274 
   1275 /* Utility routines to manage the array of pointers to timers. */
   1276 struct ptimers *
   1277 timers_alloc(struct proc *p)
   1278 {
   1279 	struct ptimers *pts;
   1280 	int i;
   1281 
   1282 	pts = pool_get(&ptimers_pool, PR_WAITOK);
   1283 	LIST_INIT(&pts->pts_virtual);
   1284 	LIST_INIT(&pts->pts_prof);
   1285 	for (i = 0; i < TIMER_MAX; i++)
   1286 		pts->pts_timers[i] = NULL;
   1287 	mutex_spin_enter(&timer_lock);
   1288 	if (p->p_timers == NULL) {
   1289 		p->p_timers = pts;
   1290 		mutex_spin_exit(&timer_lock);
   1291 		return pts;
   1292 	}
   1293 	mutex_spin_exit(&timer_lock);
   1294 	pool_put(&ptimers_pool, pts);
   1295 	return p->p_timers;
   1296 }
   1297 
   1298 /*
   1299  * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
   1300  * then clean up all timers and free all the data structures. If
   1301  * "which" is set to TIMERS_POSIX, only clean up the timers allocated
   1302  * by timer_create(), not the BSD setitimer() timers, and only free the
   1303  * structure if none of those remain.
   1304  */
   1305 void
   1306 timers_free(struct proc *p, int which)
   1307 {
   1308 	struct ptimers *pts;
   1309 	struct ptimer *ptn;
   1310 	struct timespec ts;
   1311 	int i;
   1312 
   1313 	if (p->p_timers == NULL)
   1314 		return;
   1315 
   1316 	pts = p->p_timers;
   1317 	mutex_spin_enter(&timer_lock);
   1318 	if (which == TIMERS_ALL) {
   1319 		p->p_timers = NULL;
   1320 		i = 0;
   1321 	} else {
   1322 		timespecclear(&ts);
   1323 		for (ptn = LIST_FIRST(&pts->pts_virtual);
   1324 		     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
   1325 		     ptn = LIST_NEXT(ptn, pt_list)) {
   1326 			KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
   1327 			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
   1328 		}
   1329 		LIST_FIRST(&pts->pts_virtual) = NULL;
   1330 		if (ptn) {
   1331 			KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
   1332 			timespecadd(&ts, &ptn->pt_time.it_value,
   1333 			    &ptn->pt_time.it_value);
   1334 			LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
   1335 		}
   1336 		timespecclear(&ts);
   1337 		for (ptn = LIST_FIRST(&pts->pts_prof);
   1338 		     ptn && ptn != pts->pts_timers[ITIMER_PROF];
   1339 		     ptn = LIST_NEXT(ptn, pt_list)) {
   1340 			KASSERT(ptn->pt_type == CLOCK_PROF);
   1341 			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
   1342 		}
   1343 		LIST_FIRST(&pts->pts_prof) = NULL;
   1344 		if (ptn) {
   1345 			KASSERT(ptn->pt_type == CLOCK_PROF);
   1346 			timespecadd(&ts, &ptn->pt_time.it_value,
   1347 			    &ptn->pt_time.it_value);
   1348 			LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
   1349 		}
   1350 		i = TIMER_MIN;
   1351 	}
   1352 	for ( ; i < TIMER_MAX; i++) {
   1353 		if (pts->pts_timers[i] != NULL) {
   1354 			/* Free the timer and release the lock.  */
   1355 			itimerfree(pts, i);
   1356 			/* Reacquire the lock for the next one.  */
   1357 			mutex_spin_enter(&timer_lock);
   1358 		}
   1359 	}
   1360 	if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
   1361 	    pts->pts_timers[2] == NULL && pts->pts_timers[3] == NULL) {
   1362 		p->p_timers = NULL;
   1363 		mutex_spin_exit(&timer_lock);
   1364 		pool_put(&ptimers_pool, pts);
   1365 	} else
   1366 		mutex_spin_exit(&timer_lock);
   1367 }
   1368 
   1369 static void
   1370 itimerfree(struct ptimers *pts, int index)
   1371 {
   1372 	struct ptimer *pt;
   1373 
   1374 	KASSERT(mutex_owned(&timer_lock));
   1375 
   1376 	pt = pts->pts_timers[index];
   1377 
   1378 	/*
   1379 	 * Prevent new references, and notify the callout not to
   1380 	 * restart itself.
   1381 	 */
   1382 	pts->pts_timers[index] = NULL;
   1383 	pt->pt_dying = true;
   1384 
   1385 	/*
   1386 	 * For non-virtual timers, stop the callout, or wait for it to
   1387 	 * run if it has already fired.  It cannot restart again after
   1388 	 * this point: the callout won't restart itself when dying, no
   1389 	 * other users holding the lock can restart it, and any other
   1390 	 * users waiting for callout_halt concurrently (timer_settime)
   1391 	 * will restart from the top.
   1392 	 */
   1393 	if (!CLOCK_VIRTUAL_P(pt->pt_type))
   1394 		callout_halt(&pt->pt_ch, &timer_lock);
   1395 
   1396 	/* Remove it from the queue to be signalled.  */
   1397 	if (pt->pt_queued)
   1398 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
   1399 
   1400 	/* All done with the global state.  */
   1401 	mutex_spin_exit(&timer_lock);
   1402 
   1403 	/* Destroy the callout, if needed, and free the ptimer.  */
   1404 	if (!CLOCK_VIRTUAL_P(pt->pt_type))
   1405 		callout_destroy(&pt->pt_ch);
   1406 	pool_put(&ptimer_pool, pt);
   1407 }
   1408 
   1409 /*
   1410  * Decrement an interval timer by a specified number
   1411  * of nanoseconds, which must be less than a second,
   1412  * i.e. < 1000000000.  If the timer expires, then reload
   1413  * it.  In this case, carry over (nsec - old value) to
   1414  * reduce the value reloaded into the timer so that
   1415  * the timer does not drift.  This routine assumes
   1416  * that it is called in a context where the timers
   1417  * on which it is operating cannot change in value.
   1418  */
   1419 static int
   1420 itimerdecr(struct ptimer *pt, int nsec)
   1421 {
   1422 	struct itimerspec *itp;
   1423 	int error __diagused;
   1424 
   1425 	KASSERT(mutex_owned(&timer_lock));
   1426 	KASSERT(CLOCK_VIRTUAL_P(pt->pt_type));
   1427 
   1428 	itp = &pt->pt_time;
   1429 	if (itp->it_value.tv_nsec < nsec) {
   1430 		if (itp->it_value.tv_sec == 0) {
   1431 			/* expired, and already in next interval */
   1432 			nsec -= itp->it_value.tv_nsec;
   1433 			goto expire;
   1434 		}
   1435 		itp->it_value.tv_nsec += 1000000000;
   1436 		itp->it_value.tv_sec--;
   1437 	}
   1438 	itp->it_value.tv_nsec -= nsec;
   1439 	nsec = 0;
   1440 	if (timespecisset(&itp->it_value))
   1441 		return (1);
   1442 	/* expired, exactly at end of interval */
   1443 expire:
   1444 	if (timespecisset(&itp->it_interval)) {
   1445 		itp->it_value = itp->it_interval;
   1446 		itp->it_value.tv_nsec -= nsec;
   1447 		if (itp->it_value.tv_nsec < 0) {
   1448 			itp->it_value.tv_nsec += 1000000000;
   1449 			itp->it_value.tv_sec--;
   1450 		}
   1451 		error = timer_settime(pt);
   1452 		KASSERT(error == 0); /* virtual, never fails */
   1453 	} else
   1454 		itp->it_value.tv_nsec = 0;		/* sec is already 0 */
   1455 	return (0);
   1456 }
   1457 
   1458 static void
   1459 itimerfire(struct ptimer *pt)
   1460 {
   1461 
   1462 	KASSERT(mutex_owned(&timer_lock));
   1463 
   1464 	/*
   1465 	 * XXX Can overrun, but we don't do signal queueing yet, anyway.
   1466 	 * XXX Relying on the clock interrupt is stupid.
   1467 	 */
   1468 	if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL || pt->pt_queued) {
   1469 		return;
   1470 	}
   1471 	TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
   1472 	pt->pt_queued = true;
   1473 	softint_schedule(timer_sih);
   1474 }
   1475 
   1476 void
   1477 timer_tick(lwp_t *l, bool user)
   1478 {
   1479 	struct ptimers *pts;
   1480 	struct ptimer *pt;
   1481 	proc_t *p;
   1482 
   1483 	p = l->l_proc;
   1484 	if (p->p_timers == NULL)
   1485 		return;
   1486 
   1487 	mutex_spin_enter(&timer_lock);
   1488 	if ((pts = l->l_proc->p_timers) != NULL) {
   1489 		/*
   1490 		 * Run current process's virtual and profile time, as needed.
   1491 		 */
   1492 		if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
   1493 			if (itimerdecr(pt, tick * 1000) == 0)
   1494 				itimerfire(pt);
   1495 		if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
   1496 			if (itimerdecr(pt, tick * 1000) == 0)
   1497 				itimerfire(pt);
   1498 	}
   1499 	mutex_spin_exit(&timer_lock);
   1500 }
   1501 
   1502 static void
   1503 timer_intr(void *cookie)
   1504 {
   1505 	ksiginfo_t ksi;
   1506 	struct ptimer *pt;
   1507 	proc_t *p;
   1508 
   1509 	mutex_enter(&proc_lock);
   1510 	mutex_spin_enter(&timer_lock);
   1511 	while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
   1512 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
   1513 		KASSERT(pt->pt_queued);
   1514 		pt->pt_queued = false;
   1515 
   1516 		if (pt->pt_proc->p_timers == NULL) {
   1517 			/* Process is dying. */
   1518 			continue;
   1519 		}
   1520 		p = pt->pt_proc;
   1521 		if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
   1522 			continue;
   1523 		}
   1524 		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
   1525 			pt->pt_overruns++;
   1526 			continue;
   1527 		}
   1528 
   1529 		KSI_INIT(&ksi);
   1530 		ksi.ksi_signo = pt->pt_ev.sigev_signo;
   1531 		ksi.ksi_code = SI_TIMER;
   1532 		ksi.ksi_value = pt->pt_ev.sigev_value;
   1533 		pt->pt_poverruns = pt->pt_overruns;
   1534 		pt->pt_overruns = 0;
   1535 		mutex_spin_exit(&timer_lock);
   1536 		kpsignal(p, &ksi, NULL);
   1537 		mutex_spin_enter(&timer_lock);
   1538 	}
   1539 	mutex_spin_exit(&timer_lock);
   1540 	mutex_exit(&proc_lock);
   1541 }
   1542 
   1543 /*
   1544  * Check if the time will wrap if set to ts.
   1545  *
   1546  * ts - timespec describing the new time
   1547  * delta - the delta between the current time and ts
   1548  */
   1549 bool
   1550 time_wraps(struct timespec *ts, struct timespec *delta)
   1551 {
   1552 
   1553 	/*
   1554 	 * Don't allow the time to be set forward so far it
   1555 	 * will wrap and become negative, thus allowing an
   1556 	 * attacker to bypass the next check below.  The
   1557 	 * cutoff is 1 year before rollover occurs, so even
   1558 	 * if the attacker uses adjtime(2) to move the time
   1559 	 * past the cutoff, it will take a very long time
   1560 	 * to get to the wrap point.
   1561 	 */
   1562 	if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
   1563 	    (delta->tv_sec < 0 || delta->tv_nsec < 0))
   1564 		return true;
   1565 
   1566 	return false;
   1567 }
   1568