kern_time.c revision 1.206 1 /* $NetBSD: kern_time.c,v 1.206 2020/10/27 00:07:18 nia Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1986, 1989, 1993
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
61 */
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.206 2020/10/27 00:07:18 nia Exp $");
65
66 #include <sys/param.h>
67 #include <sys/resourcevar.h>
68 #include <sys/kernel.h>
69 #include <sys/systm.h>
70 #include <sys/proc.h>
71 #include <sys/vnode.h>
72 #include <sys/signalvar.h>
73 #include <sys/syslog.h>
74 #include <sys/timetc.h>
75 #include <sys/timex.h>
76 #include <sys/kauth.h>
77 #include <sys/mount.h>
78 #include <sys/syscallargs.h>
79 #include <sys/cpu.h>
80
81 static void timer_intr(void *);
82 static void itimerfire(struct ptimer *);
83 static void itimerfree(struct ptimers *, int);
84
85 kmutex_t timer_lock;
86
87 static void *timer_sih;
88 static TAILQ_HEAD(, ptimer) timer_queue;
89
90 struct pool ptimer_pool, ptimers_pool;
91
92 #define CLOCK_VIRTUAL_P(clockid) \
93 ((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)
94
95 CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
96 CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
97 CTASSERT(ITIMER_PROF == CLOCK_PROF);
98 CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC);
99
100 #define DELAYTIMER_MAX 32
101
102 /*
103 * Initialize timekeeping.
104 */
105 void
106 time_init(void)
107 {
108
109 pool_init(&ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
110 &pool_allocator_nointr, IPL_NONE);
111 pool_init(&ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
112 &pool_allocator_nointr, IPL_NONE);
113 }
114
115 void
116 time_init2(void)
117 {
118
119 TAILQ_INIT(&timer_queue);
120 mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
121 timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
122 timer_intr, NULL);
123 }
124
125 /* Time of day and interval timer support.
126 *
127 * These routines provide the kernel entry points to get and set
128 * the time-of-day and per-process interval timers. Subroutines
129 * here provide support for adding and subtracting timeval structures
130 * and decrementing interval timers, optionally reloading the interval
131 * timers when they expire.
132 */
133
134 /* This function is used by clock_settime and settimeofday */
135 static int
136 settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
137 {
138 struct timespec delta, now;
139
140 /*
141 * The time being set to an unreasonable value will cause
142 * unreasonable system behaviour.
143 */
144 if (ts->tv_sec < 0 || ts->tv_sec > (1LL << 36))
145 return (EINVAL);
146
147 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
148 nanotime(&now);
149 timespecsub(ts, &now, &delta);
150
151 if (check_kauth && kauth_authorize_system(kauth_cred_get(),
152 KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
153 &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
154 return (EPERM);
155 }
156
157 #ifdef notyet
158 if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
159 return (EPERM);
160 }
161 #endif
162
163 tc_setclock(ts);
164
165 resettodr();
166
167 return (0);
168 }
169
170 int
171 settime(struct proc *p, struct timespec *ts)
172 {
173 return (settime1(p, ts, true));
174 }
175
176 /* ARGSUSED */
177 int
178 sys___clock_gettime50(struct lwp *l,
179 const struct sys___clock_gettime50_args *uap, register_t *retval)
180 {
181 /* {
182 syscallarg(clockid_t) clock_id;
183 syscallarg(struct timespec *) tp;
184 } */
185 int error;
186 struct timespec ats;
187
188 error = clock_gettime1(SCARG(uap, clock_id), &ats);
189 if (error != 0)
190 return error;
191
192 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
193 }
194
195 /* ARGSUSED */
196 int
197 sys___clock_settime50(struct lwp *l,
198 const struct sys___clock_settime50_args *uap, register_t *retval)
199 {
200 /* {
201 syscallarg(clockid_t) clock_id;
202 syscallarg(const struct timespec *) tp;
203 } */
204 int error;
205 struct timespec ats;
206
207 if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
208 return error;
209
210 return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
211 }
212
213
214 int
215 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
216 bool check_kauth)
217 {
218 int error;
219
220 if (tp->tv_nsec < 0 || tp->tv_nsec >= 1000000000L)
221 return EINVAL;
222
223 switch (clock_id) {
224 case CLOCK_REALTIME:
225 if ((error = settime1(p, tp, check_kauth)) != 0)
226 return (error);
227 break;
228 case CLOCK_MONOTONIC:
229 return (EINVAL); /* read-only clock */
230 default:
231 return (EINVAL);
232 }
233
234 return 0;
235 }
236
237 int
238 sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
239 register_t *retval)
240 {
241 /* {
242 syscallarg(clockid_t) clock_id;
243 syscallarg(struct timespec *) tp;
244 } */
245 struct timespec ts;
246 int error;
247
248 if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
249 return error;
250
251 if (SCARG(uap, tp))
252 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
253
254 return error;
255 }
256
257 int
258 clock_getres1(clockid_t clock_id, struct timespec *ts)
259 {
260
261 switch (clock_id) {
262 case CLOCK_REALTIME:
263 case CLOCK_MONOTONIC:
264 ts->tv_sec = 0;
265 if (tc_getfrequency() > 1000000000)
266 ts->tv_nsec = 1;
267 else
268 ts->tv_nsec = 1000000000 / tc_getfrequency();
269 break;
270 default:
271 return EINVAL;
272 }
273
274 return 0;
275 }
276
277 /* ARGSUSED */
278 int
279 sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
280 register_t *retval)
281 {
282 /* {
283 syscallarg(struct timespec *) rqtp;
284 syscallarg(struct timespec *) rmtp;
285 } */
286 struct timespec rmt, rqt;
287 int error, error1;
288
289 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
290 if (error)
291 return (error);
292
293 error = nanosleep1(l, CLOCK_MONOTONIC, 0, &rqt,
294 SCARG(uap, rmtp) ? &rmt : NULL);
295 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
296 return error;
297
298 error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
299 return error1 ? error1 : error;
300 }
301
302 /* ARGSUSED */
303 int
304 sys_clock_nanosleep(struct lwp *l, const struct sys_clock_nanosleep_args *uap,
305 register_t *retval)
306 {
307 /* {
308 syscallarg(clockid_t) clock_id;
309 syscallarg(int) flags;
310 syscallarg(struct timespec *) rqtp;
311 syscallarg(struct timespec *) rmtp;
312 } */
313 struct timespec rmt, rqt;
314 int error, error1;
315
316 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
317 if (error)
318 goto out;
319
320 error = nanosleep1(l, SCARG(uap, clock_id), SCARG(uap, flags), &rqt,
321 SCARG(uap, rmtp) ? &rmt : NULL);
322 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
323 goto out;
324
325 if ((SCARG(uap, flags) & TIMER_ABSTIME) == 0 &&
326 (error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt))) != 0)
327 error = error1;
328 out:
329 *retval = error;
330 return 0;
331 }
332
333 int
334 nanosleep1(struct lwp *l, clockid_t clock_id, int flags, struct timespec *rqt,
335 struct timespec *rmt)
336 {
337 struct timespec rmtstart;
338 int error, timo;
339
340 if ((error = ts2timo(clock_id, flags, rqt, &timo, &rmtstart)) != 0) {
341 if (error == ETIMEDOUT) {
342 error = 0;
343 if (rmt != NULL)
344 rmt->tv_sec = rmt->tv_nsec = 0;
345 }
346 return error;
347 }
348
349 /*
350 * Avoid inadvertently sleeping forever
351 */
352 if (timo == 0)
353 timo = 1;
354 again:
355 error = kpause("nanoslp", true, timo, NULL);
356 if (error == EWOULDBLOCK)
357 error = 0;
358 if (rmt != NULL || error == 0) {
359 struct timespec rmtend;
360 struct timespec t0;
361 struct timespec *t;
362 int err;
363
364 err = clock_gettime1(clock_id, &rmtend);
365 if (err != 0)
366 return err;
367
368 t = (rmt != NULL) ? rmt : &t0;
369 if (flags & TIMER_ABSTIME) {
370 timespecsub(rqt, &rmtend, t);
371 } else {
372 timespecsub(&rmtend, &rmtstart, t);
373 timespecsub(rqt, t, t);
374 }
375 if (t->tv_sec < 0)
376 timespecclear(t);
377 if (error == 0) {
378 timo = tstohz(t);
379 if (timo > 0)
380 goto again;
381 }
382 }
383
384 if (error == ERESTART)
385 error = EINTR;
386
387 return error;
388 }
389
390 int
391 sys_clock_getcpuclockid2(struct lwp *l,
392 const struct sys_clock_getcpuclockid2_args *uap,
393 register_t *retval)
394 {
395 /* {
396 syscallarg(idtype_t idtype;
397 syscallarg(id_t id);
398 syscallarg(clockid_t *)clock_id;
399 } */
400 pid_t pid;
401 lwpid_t lid;
402 clockid_t clock_id;
403 id_t id = SCARG(uap, id);
404
405 switch (SCARG(uap, idtype)) {
406 case P_PID:
407 pid = id == 0 ? l->l_proc->p_pid : id;
408 clock_id = CLOCK_PROCESS_CPUTIME_ID | pid;
409 break;
410 case P_LWPID:
411 lid = id == 0 ? l->l_lid : id;
412 clock_id = CLOCK_THREAD_CPUTIME_ID | lid;
413 break;
414 default:
415 return EINVAL;
416 }
417 return copyout(&clock_id, SCARG(uap, clock_id), sizeof(clock_id));
418 }
419
420 /* ARGSUSED */
421 int
422 sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
423 register_t *retval)
424 {
425 /* {
426 syscallarg(struct timeval *) tp;
427 syscallarg(void *) tzp; really "struct timezone *";
428 } */
429 struct timeval atv;
430 int error = 0;
431 struct timezone tzfake;
432
433 if (SCARG(uap, tp)) {
434 memset(&atv, 0, sizeof(atv));
435 microtime(&atv);
436 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
437 if (error)
438 return (error);
439 }
440 if (SCARG(uap, tzp)) {
441 /*
442 * NetBSD has no kernel notion of time zone, so we just
443 * fake up a timezone struct and return it if demanded.
444 */
445 tzfake.tz_minuteswest = 0;
446 tzfake.tz_dsttime = 0;
447 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
448 }
449 return (error);
450 }
451
452 /* ARGSUSED */
453 int
454 sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
455 register_t *retval)
456 {
457 /* {
458 syscallarg(const struct timeval *) tv;
459 syscallarg(const void *) tzp; really "const struct timezone *";
460 } */
461
462 return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
463 }
464
465 int
466 settimeofday1(const struct timeval *utv, bool userspace,
467 const void *utzp, struct lwp *l, bool check_kauth)
468 {
469 struct timeval atv;
470 struct timespec ts;
471 int error;
472
473 /* Verify all parameters before changing time. */
474
475 /*
476 * NetBSD has no kernel notion of time zone, and only an
477 * obsolete program would try to set it, so we log a warning.
478 */
479 if (utzp)
480 log(LOG_WARNING, "pid %d attempted to set the "
481 "(obsolete) kernel time zone\n", l->l_proc->p_pid);
482
483 if (utv == NULL)
484 return 0;
485
486 if (userspace) {
487 if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
488 return error;
489 utv = &atv;
490 }
491
492 if (utv->tv_usec < 0 || utv->tv_usec >= 1000000)
493 return EINVAL;
494
495 TIMEVAL_TO_TIMESPEC(utv, &ts);
496 return settime1(l->l_proc, &ts, check_kauth);
497 }
498
499 int time_adjusted; /* set if an adjustment is made */
500
501 /* ARGSUSED */
502 int
503 sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
504 register_t *retval)
505 {
506 /* {
507 syscallarg(const struct timeval *) delta;
508 syscallarg(struct timeval *) olddelta;
509 } */
510 int error;
511 struct timeval atv, oldatv;
512
513 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
514 KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
515 return error;
516
517 if (SCARG(uap, delta)) {
518 error = copyin(SCARG(uap, delta), &atv,
519 sizeof(*SCARG(uap, delta)));
520 if (error)
521 return (error);
522 }
523 adjtime1(SCARG(uap, delta) ? &atv : NULL,
524 SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
525 if (SCARG(uap, olddelta))
526 error = copyout(&oldatv, SCARG(uap, olddelta),
527 sizeof(*SCARG(uap, olddelta)));
528 return error;
529 }
530
531 void
532 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
533 {
534 extern int64_t time_adjtime; /* in kern_ntptime.c */
535
536 if (olddelta) {
537 memset(olddelta, 0, sizeof(*olddelta));
538 mutex_spin_enter(&timecounter_lock);
539 olddelta->tv_sec = time_adjtime / 1000000;
540 olddelta->tv_usec = time_adjtime % 1000000;
541 if (olddelta->tv_usec < 0) {
542 olddelta->tv_usec += 1000000;
543 olddelta->tv_sec--;
544 }
545 mutex_spin_exit(&timecounter_lock);
546 }
547
548 if (delta) {
549 mutex_spin_enter(&timecounter_lock);
550 time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
551
552 if (time_adjtime) {
553 /* We need to save the system time during shutdown */
554 time_adjusted |= 1;
555 }
556 mutex_spin_exit(&timecounter_lock);
557 }
558 }
559
560 /*
561 * Interval timer support. Both the BSD getitimer() family and the POSIX
562 * timer_*() family of routines are supported.
563 *
564 * All timers are kept in an array pointed to by p_timers, which is
565 * allocated on demand - many processes don't use timers at all. The
566 * first four elements in this array are reserved for the BSD timers:
567 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element
568 * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be
569 * allocated by the timer_create() syscall.
570 *
571 * Realtime timers are kept in the ptimer structure as an absolute
572 * time; virtual time timers are kept as a linked list of deltas.
573 * Virtual time timers are processed in the hardclock() routine of
574 * kern_clock.c. The real time timer is processed by a callout
575 * routine, called from the softclock() routine. Since a callout may
576 * be delayed in real time due to interrupt processing in the system,
577 * it is possible for the real time timeout routine (realtimeexpire,
578 * given below), to be delayed in real time past when it is supposed
579 * to occur. It does not suffice, therefore, to reload the real timer
580 * .it_value from the real time timers .it_interval. Rather, we
581 * compute the next time in absolute time the timer should go off. */
582
583 /* Allocate a POSIX realtime timer. */
584 int
585 sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
586 register_t *retval)
587 {
588 /* {
589 syscallarg(clockid_t) clock_id;
590 syscallarg(struct sigevent *) evp;
591 syscallarg(timer_t *) timerid;
592 } */
593
594 return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
595 SCARG(uap, evp), copyin, l);
596 }
597
598 int
599 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
600 copyin_t fetch_event, struct lwp *l)
601 {
602 int error;
603 timer_t timerid;
604 struct ptimers *pts;
605 struct ptimer *pt;
606 struct proc *p;
607
608 p = l->l_proc;
609
610 if ((u_int)id > CLOCK_MONOTONIC)
611 return (EINVAL);
612
613 if ((pts = p->p_timers) == NULL)
614 pts = timers_alloc(p);
615
616 pt = pool_get(&ptimer_pool, PR_WAITOK | PR_ZERO);
617 if (evp != NULL) {
618 if (((error =
619 (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
620 ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
621 (pt->pt_ev.sigev_notify > SIGEV_SA)) ||
622 (pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
623 (pt->pt_ev.sigev_signo <= 0 ||
624 pt->pt_ev.sigev_signo >= NSIG))) {
625 pool_put(&ptimer_pool, pt);
626 return (error ? error : EINVAL);
627 }
628 }
629
630 /* Find a free timer slot, skipping those reserved for setitimer(). */
631 mutex_spin_enter(&timer_lock);
632 for (timerid = TIMER_MIN; timerid < TIMER_MAX; timerid++)
633 if (pts->pts_timers[timerid] == NULL)
634 break;
635 if (timerid == TIMER_MAX) {
636 mutex_spin_exit(&timer_lock);
637 pool_put(&ptimer_pool, pt);
638 return EAGAIN;
639 }
640 if (evp == NULL) {
641 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
642 switch (id) {
643 case CLOCK_REALTIME:
644 case CLOCK_MONOTONIC:
645 pt->pt_ev.sigev_signo = SIGALRM;
646 break;
647 case CLOCK_VIRTUAL:
648 pt->pt_ev.sigev_signo = SIGVTALRM;
649 break;
650 case CLOCK_PROF:
651 pt->pt_ev.sigev_signo = SIGPROF;
652 break;
653 }
654 pt->pt_ev.sigev_value.sival_int = timerid;
655 }
656 pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
657 pt->pt_info.ksi_errno = 0;
658 pt->pt_info.ksi_code = 0;
659 pt->pt_info.ksi_pid = p->p_pid;
660 pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
661 pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
662 pt->pt_type = id;
663 pt->pt_proc = p;
664 pt->pt_overruns = 0;
665 pt->pt_poverruns = 0;
666 pt->pt_entry = timerid;
667 pt->pt_queued = false;
668 timespecclear(&pt->pt_time.it_value);
669 if (!CLOCK_VIRTUAL_P(id))
670 callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
671 else
672 pt->pt_active = 0;
673
674 pts->pts_timers[timerid] = pt;
675 mutex_spin_exit(&timer_lock);
676
677 return copyout(&timerid, tid, sizeof(timerid));
678 }
679
680 /* Delete a POSIX realtime timer */
681 int
682 sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
683 register_t *retval)
684 {
685 /* {
686 syscallarg(timer_t) timerid;
687 } */
688 struct proc *p = l->l_proc;
689 timer_t timerid;
690 struct ptimers *pts;
691 struct ptimer *pt, *ptn;
692
693 timerid = SCARG(uap, timerid);
694 pts = p->p_timers;
695
696 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
697 return (EINVAL);
698
699 mutex_spin_enter(&timer_lock);
700 if ((pt = pts->pts_timers[timerid]) == NULL) {
701 mutex_spin_exit(&timer_lock);
702 return (EINVAL);
703 }
704 if (CLOCK_VIRTUAL_P(pt->pt_type)) {
705 if (pt->pt_active) {
706 ptn = LIST_NEXT(pt, pt_list);
707 LIST_REMOVE(pt, pt_list);
708 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
709 timespecadd(&pt->pt_time.it_value,
710 &ptn->pt_time.it_value,
711 &ptn->pt_time.it_value);
712 pt->pt_active = 0;
713 }
714 }
715
716 /* Free the timer and release the lock. */
717 itimerfree(pts, timerid);
718
719 return (0);
720 }
721
722 /*
723 * Set up the given timer. The value in pt->pt_time.it_value is taken
724 * to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC timers and
725 * a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
726 *
727 * If the callout had already fired but not yet run, fails with
728 * ERESTART -- caller must restart from the top to look up a timer.
729 */
730 int
731 timer_settime(struct ptimer *pt)
732 {
733 struct ptimer *ptn, *pptn;
734 struct ptlist *ptl;
735
736 KASSERT(mutex_owned(&timer_lock));
737
738 if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
739 /*
740 * Try to stop the callout. However, if it had already
741 * fired, we have to drop the lock to wait for it, so
742 * the world may have changed and pt may not be there
743 * any more. In that case, tell the caller to start
744 * over from the top.
745 */
746 if (callout_halt(&pt->pt_ch, &timer_lock))
747 return ERESTART;
748
749 /* Now we can touch pt and start it up again. */
750 if (timespecisset(&pt->pt_time.it_value)) {
751 /*
752 * Don't need to check tshzto() return value, here.
753 * callout_reset() does it for us.
754 */
755 callout_reset(&pt->pt_ch,
756 pt->pt_type == CLOCK_MONOTONIC ?
757 tshztoup(&pt->pt_time.it_value) :
758 tshzto(&pt->pt_time.it_value),
759 realtimerexpire, pt);
760 }
761 } else {
762 if (pt->pt_active) {
763 ptn = LIST_NEXT(pt, pt_list);
764 LIST_REMOVE(pt, pt_list);
765 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
766 timespecadd(&pt->pt_time.it_value,
767 &ptn->pt_time.it_value,
768 &ptn->pt_time.it_value);
769 }
770 if (timespecisset(&pt->pt_time.it_value)) {
771 if (pt->pt_type == CLOCK_VIRTUAL)
772 ptl = &pt->pt_proc->p_timers->pts_virtual;
773 else
774 ptl = &pt->pt_proc->p_timers->pts_prof;
775
776 for (ptn = LIST_FIRST(ptl), pptn = NULL;
777 ptn && timespeccmp(&pt->pt_time.it_value,
778 &ptn->pt_time.it_value, >);
779 pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
780 timespecsub(&pt->pt_time.it_value,
781 &ptn->pt_time.it_value,
782 &pt->pt_time.it_value);
783
784 if (pptn)
785 LIST_INSERT_AFTER(pptn, pt, pt_list);
786 else
787 LIST_INSERT_HEAD(ptl, pt, pt_list);
788
789 for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
790 timespecsub(&ptn->pt_time.it_value,
791 &pt->pt_time.it_value,
792 &ptn->pt_time.it_value);
793
794 pt->pt_active = 1;
795 } else
796 pt->pt_active = 0;
797 }
798
799 /* Success! */
800 return 0;
801 }
802
803 void
804 timer_gettime(struct ptimer *pt, struct itimerspec *aits)
805 {
806 struct timespec now;
807 struct ptimer *ptn;
808
809 KASSERT(mutex_owned(&timer_lock));
810
811 *aits = pt->pt_time;
812 if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
813 /*
814 * Convert from absolute to relative time in .it_value
815 * part of real time timer. If time for real time
816 * timer has passed return 0, else return difference
817 * between current time and time for the timer to go
818 * off.
819 */
820 if (timespecisset(&aits->it_value)) {
821 if (pt->pt_type == CLOCK_REALTIME) {
822 getnanotime(&now);
823 } else { /* CLOCK_MONOTONIC */
824 getnanouptime(&now);
825 }
826 if (timespeccmp(&aits->it_value, &now, <))
827 timespecclear(&aits->it_value);
828 else
829 timespecsub(&aits->it_value, &now,
830 &aits->it_value);
831 }
832 } else if (pt->pt_active) {
833 if (pt->pt_type == CLOCK_VIRTUAL)
834 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
835 else
836 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
837 for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
838 timespecadd(&aits->it_value,
839 &ptn->pt_time.it_value, &aits->it_value);
840 KASSERT(ptn != NULL); /* pt should be findable on the list */
841 } else
842 timespecclear(&aits->it_value);
843 }
844
845
846
847 /* Set and arm a POSIX realtime timer */
848 int
849 sys___timer_settime50(struct lwp *l,
850 const struct sys___timer_settime50_args *uap,
851 register_t *retval)
852 {
853 /* {
854 syscallarg(timer_t) timerid;
855 syscallarg(int) flags;
856 syscallarg(const struct itimerspec *) value;
857 syscallarg(struct itimerspec *) ovalue;
858 } */
859 int error;
860 struct itimerspec value, ovalue, *ovp = NULL;
861
862 if ((error = copyin(SCARG(uap, value), &value,
863 sizeof(struct itimerspec))) != 0)
864 return (error);
865
866 if (SCARG(uap, ovalue))
867 ovp = &ovalue;
868
869 if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
870 SCARG(uap, flags), l->l_proc)) != 0)
871 return error;
872
873 if (ovp)
874 return copyout(&ovalue, SCARG(uap, ovalue),
875 sizeof(struct itimerspec));
876 return 0;
877 }
878
879 int
880 dotimer_settime(int timerid, struct itimerspec *value,
881 struct itimerspec *ovalue, int flags, struct proc *p)
882 {
883 struct timespec now;
884 struct itimerspec val, oval;
885 struct ptimers *pts;
886 struct ptimer *pt;
887 int error;
888
889 pts = p->p_timers;
890
891 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
892 return EINVAL;
893 val = *value;
894 if ((error = itimespecfix(&val.it_value)) != 0 ||
895 (error = itimespecfix(&val.it_interval)) != 0)
896 return error;
897
898 mutex_spin_enter(&timer_lock);
899 restart:
900 if ((pt = pts->pts_timers[timerid]) == NULL) {
901 mutex_spin_exit(&timer_lock);
902 return EINVAL;
903 }
904
905 oval = pt->pt_time;
906 pt->pt_time = val;
907
908 /*
909 * If we've been passed a relative time for a realtime timer,
910 * convert it to absolute; if an absolute time for a virtual
911 * timer, convert it to relative and make sure we don't set it
912 * to zero, which would cancel the timer, or let it go
913 * negative, which would confuse the comparison tests.
914 */
915 if (timespecisset(&pt->pt_time.it_value)) {
916 if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
917 if ((flags & TIMER_ABSTIME) == 0) {
918 if (pt->pt_type == CLOCK_REALTIME) {
919 getnanotime(&now);
920 } else { /* CLOCK_MONOTONIC */
921 getnanouptime(&now);
922 }
923 timespecadd(&pt->pt_time.it_value, &now,
924 &pt->pt_time.it_value);
925 }
926 } else {
927 if ((flags & TIMER_ABSTIME) != 0) {
928 getnanotime(&now);
929 timespecsub(&pt->pt_time.it_value, &now,
930 &pt->pt_time.it_value);
931 if (!timespecisset(&pt->pt_time.it_value) ||
932 pt->pt_time.it_value.tv_sec < 0) {
933 pt->pt_time.it_value.tv_sec = 0;
934 pt->pt_time.it_value.tv_nsec = 1;
935 }
936 }
937 }
938 }
939
940 error = timer_settime(pt);
941 if (error == ERESTART) {
942 KASSERT(!CLOCK_VIRTUAL_P(pt->pt_type));
943 goto restart;
944 }
945 KASSERT(error == 0);
946 mutex_spin_exit(&timer_lock);
947
948 if (ovalue)
949 *ovalue = oval;
950
951 return (0);
952 }
953
954 /* Return the time remaining until a POSIX timer fires. */
955 int
956 sys___timer_gettime50(struct lwp *l,
957 const struct sys___timer_gettime50_args *uap, register_t *retval)
958 {
959 /* {
960 syscallarg(timer_t) timerid;
961 syscallarg(struct itimerspec *) value;
962 } */
963 struct itimerspec its;
964 int error;
965
966 if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
967 &its)) != 0)
968 return error;
969
970 return copyout(&its, SCARG(uap, value), sizeof(its));
971 }
972
973 int
974 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
975 {
976 struct ptimer *pt;
977 struct ptimers *pts;
978
979 pts = p->p_timers;
980 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
981 return (EINVAL);
982 mutex_spin_enter(&timer_lock);
983 if ((pt = pts->pts_timers[timerid]) == NULL) {
984 mutex_spin_exit(&timer_lock);
985 return (EINVAL);
986 }
987 timer_gettime(pt, its);
988 mutex_spin_exit(&timer_lock);
989
990 return 0;
991 }
992
993 /*
994 * Return the count of the number of times a periodic timer expired
995 * while a notification was already pending. The counter is reset when
996 * a timer expires and a notification can be posted.
997 */
998 int
999 sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
1000 register_t *retval)
1001 {
1002 /* {
1003 syscallarg(timer_t) timerid;
1004 } */
1005 struct proc *p = l->l_proc;
1006 struct ptimers *pts;
1007 int timerid;
1008 struct ptimer *pt;
1009
1010 timerid = SCARG(uap, timerid);
1011
1012 pts = p->p_timers;
1013 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
1014 return (EINVAL);
1015 mutex_spin_enter(&timer_lock);
1016 if ((pt = pts->pts_timers[timerid]) == NULL) {
1017 mutex_spin_exit(&timer_lock);
1018 return (EINVAL);
1019 }
1020 *retval = pt->pt_poverruns;
1021 if (*retval >= DELAYTIMER_MAX)
1022 *retval = DELAYTIMER_MAX;
1023 mutex_spin_exit(&timer_lock);
1024
1025 return (0);
1026 }
1027
1028 /*
1029 * Real interval timer expired:
1030 * send process whose timer expired an alarm signal.
1031 * If time is not set up to reload, then just return.
1032 * Else compute next time timer should go off which is > current time.
1033 * This is where delay in processing this timeout causes multiple
1034 * SIGALRM calls to be compressed into one.
1035 */
1036 void
1037 realtimerexpire(void *arg)
1038 {
1039 uint64_t last_val, next_val, interval, now_ns;
1040 struct timespec now, next;
1041 struct ptimer *pt;
1042 int backwards;
1043
1044 pt = arg;
1045
1046 mutex_spin_enter(&timer_lock);
1047 itimerfire(pt);
1048
1049 if (!timespecisset(&pt->pt_time.it_interval)) {
1050 timespecclear(&pt->pt_time.it_value);
1051 mutex_spin_exit(&timer_lock);
1052 return;
1053 }
1054
1055 if (pt->pt_type == CLOCK_MONOTONIC) {
1056 getnanouptime(&now);
1057 } else {
1058 getnanotime(&now);
1059 }
1060 backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
1061 timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
1062 /* Handle the easy case of non-overflown timers first. */
1063 if (!backwards && timespeccmp(&next, &now, >)) {
1064 pt->pt_time.it_value = next;
1065 } else {
1066 now_ns = timespec2ns(&now);
1067 last_val = timespec2ns(&pt->pt_time.it_value);
1068 interval = timespec2ns(&pt->pt_time.it_interval);
1069
1070 next_val = now_ns +
1071 (now_ns - last_val + interval - 1) % interval;
1072
1073 if (backwards)
1074 next_val += interval;
1075 else
1076 pt->pt_overruns += (now_ns - last_val) / interval;
1077
1078 pt->pt_time.it_value.tv_sec = next_val / 1000000000;
1079 pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
1080 }
1081
1082 /*
1083 * Reset the callout, if it's not going away.
1084 *
1085 * Don't need to check tshzto() return value, here.
1086 * callout_reset() does it for us.
1087 */
1088 if (!pt->pt_dying)
1089 callout_reset(&pt->pt_ch,
1090 (pt->pt_type == CLOCK_MONOTONIC
1091 ? tshztoup(&pt->pt_time.it_value)
1092 : tshzto(&pt->pt_time.it_value)),
1093 realtimerexpire, pt);
1094 mutex_spin_exit(&timer_lock);
1095 }
1096
1097 /* BSD routine to get the value of an interval timer. */
1098 /* ARGSUSED */
1099 int
1100 sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
1101 register_t *retval)
1102 {
1103 /* {
1104 syscallarg(int) which;
1105 syscallarg(struct itimerval *) itv;
1106 } */
1107 struct proc *p = l->l_proc;
1108 struct itimerval aitv;
1109 int error;
1110
1111 memset(&aitv, 0, sizeof(aitv));
1112 error = dogetitimer(p, SCARG(uap, which), &aitv);
1113 if (error)
1114 return error;
1115 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1116 }
1117
1118 int
1119 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1120 {
1121 struct ptimers *pts;
1122 struct ptimer *pt;
1123 struct itimerspec its;
1124
1125 if ((u_int)which > ITIMER_MONOTONIC)
1126 return (EINVAL);
1127
1128 mutex_spin_enter(&timer_lock);
1129 pts = p->p_timers;
1130 if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
1131 timerclear(&itvp->it_value);
1132 timerclear(&itvp->it_interval);
1133 } else {
1134 timer_gettime(pt, &its);
1135 TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
1136 TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
1137 }
1138 mutex_spin_exit(&timer_lock);
1139
1140 return 0;
1141 }
1142
1143 /* BSD routine to set/arm an interval timer. */
1144 /* ARGSUSED */
1145 int
1146 sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
1147 register_t *retval)
1148 {
1149 /* {
1150 syscallarg(int) which;
1151 syscallarg(const struct itimerval *) itv;
1152 syscallarg(struct itimerval *) oitv;
1153 } */
1154 struct proc *p = l->l_proc;
1155 int which = SCARG(uap, which);
1156 struct sys___getitimer50_args getargs;
1157 const struct itimerval *itvp;
1158 struct itimerval aitv;
1159 int error;
1160
1161 if ((u_int)which > ITIMER_MONOTONIC)
1162 return (EINVAL);
1163 itvp = SCARG(uap, itv);
1164 if (itvp &&
1165 (error = copyin(itvp, &aitv, sizeof(struct itimerval))) != 0)
1166 return (error);
1167 if (SCARG(uap, oitv) != NULL) {
1168 SCARG(&getargs, which) = which;
1169 SCARG(&getargs, itv) = SCARG(uap, oitv);
1170 if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
1171 return (error);
1172 }
1173 if (itvp == 0)
1174 return (0);
1175
1176 return dosetitimer(p, which, &aitv);
1177 }
1178
1179 int
1180 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1181 {
1182 struct timespec now;
1183 struct ptimers *pts;
1184 struct ptimer *pt, *spare;
1185 int error;
1186
1187 KASSERT((u_int)which <= CLOCK_MONOTONIC);
1188 if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1189 return (EINVAL);
1190
1191 /*
1192 * Don't bother allocating data structures if the process just
1193 * wants to clear the timer.
1194 */
1195 spare = NULL;
1196 pts = p->p_timers;
1197 retry:
1198 if (!timerisset(&itvp->it_value) && (pts == NULL ||
1199 pts->pts_timers[which] == NULL))
1200 return (0);
1201 if (pts == NULL)
1202 pts = timers_alloc(p);
1203 mutex_spin_enter(&timer_lock);
1204 restart:
1205 pt = pts->pts_timers[which];
1206 if (pt == NULL) {
1207 if (spare == NULL) {
1208 mutex_spin_exit(&timer_lock);
1209 spare = pool_get(&ptimer_pool, PR_WAITOK | PR_ZERO);
1210 goto retry;
1211 }
1212 pt = spare;
1213 spare = NULL;
1214 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1215 pt->pt_ev.sigev_value.sival_int = which;
1216 pt->pt_overruns = 0;
1217 pt->pt_proc = p;
1218 pt->pt_type = which;
1219 pt->pt_entry = which;
1220 pt->pt_queued = false;
1221 if (!CLOCK_VIRTUAL_P(which))
1222 callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
1223 else
1224 pt->pt_active = 0;
1225
1226 switch (which) {
1227 case ITIMER_REAL:
1228 case ITIMER_MONOTONIC:
1229 pt->pt_ev.sigev_signo = SIGALRM;
1230 break;
1231 case ITIMER_VIRTUAL:
1232 pt->pt_ev.sigev_signo = SIGVTALRM;
1233 break;
1234 case ITIMER_PROF:
1235 pt->pt_ev.sigev_signo = SIGPROF;
1236 break;
1237 }
1238 pts->pts_timers[which] = pt;
1239 }
1240
1241 TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
1242 TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
1243
1244 if (timespecisset(&pt->pt_time.it_value)) {
1245 /* Convert to absolute time */
1246 /* XXX need to wrap in splclock for timecounters case? */
1247 switch (which) {
1248 case ITIMER_REAL:
1249 getnanotime(&now);
1250 timespecadd(&pt->pt_time.it_value, &now,
1251 &pt->pt_time.it_value);
1252 break;
1253 case ITIMER_MONOTONIC:
1254 getnanouptime(&now);
1255 timespecadd(&pt->pt_time.it_value, &now,
1256 &pt->pt_time.it_value);
1257 break;
1258 default:
1259 break;
1260 }
1261 }
1262 error = timer_settime(pt);
1263 if (error == ERESTART) {
1264 KASSERT(!CLOCK_VIRTUAL_P(pt->pt_type));
1265 goto restart;
1266 }
1267 KASSERT(error == 0);
1268 mutex_spin_exit(&timer_lock);
1269 if (spare != NULL)
1270 pool_put(&ptimer_pool, spare);
1271
1272 return (0);
1273 }
1274
1275 /* Utility routines to manage the array of pointers to timers. */
1276 struct ptimers *
1277 timers_alloc(struct proc *p)
1278 {
1279 struct ptimers *pts;
1280 int i;
1281
1282 pts = pool_get(&ptimers_pool, PR_WAITOK);
1283 LIST_INIT(&pts->pts_virtual);
1284 LIST_INIT(&pts->pts_prof);
1285 for (i = 0; i < TIMER_MAX; i++)
1286 pts->pts_timers[i] = NULL;
1287 mutex_spin_enter(&timer_lock);
1288 if (p->p_timers == NULL) {
1289 p->p_timers = pts;
1290 mutex_spin_exit(&timer_lock);
1291 return pts;
1292 }
1293 mutex_spin_exit(&timer_lock);
1294 pool_put(&ptimers_pool, pts);
1295 return p->p_timers;
1296 }
1297
1298 /*
1299 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1300 * then clean up all timers and free all the data structures. If
1301 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1302 * by timer_create(), not the BSD setitimer() timers, and only free the
1303 * structure if none of those remain.
1304 */
1305 void
1306 timers_free(struct proc *p, int which)
1307 {
1308 struct ptimers *pts;
1309 struct ptimer *ptn;
1310 struct timespec ts;
1311 int i;
1312
1313 if (p->p_timers == NULL)
1314 return;
1315
1316 pts = p->p_timers;
1317 mutex_spin_enter(&timer_lock);
1318 if (which == TIMERS_ALL) {
1319 p->p_timers = NULL;
1320 i = 0;
1321 } else {
1322 timespecclear(&ts);
1323 for (ptn = LIST_FIRST(&pts->pts_virtual);
1324 ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1325 ptn = LIST_NEXT(ptn, pt_list)) {
1326 KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1327 timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1328 }
1329 LIST_FIRST(&pts->pts_virtual) = NULL;
1330 if (ptn) {
1331 KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1332 timespecadd(&ts, &ptn->pt_time.it_value,
1333 &ptn->pt_time.it_value);
1334 LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
1335 }
1336 timespecclear(&ts);
1337 for (ptn = LIST_FIRST(&pts->pts_prof);
1338 ptn && ptn != pts->pts_timers[ITIMER_PROF];
1339 ptn = LIST_NEXT(ptn, pt_list)) {
1340 KASSERT(ptn->pt_type == CLOCK_PROF);
1341 timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1342 }
1343 LIST_FIRST(&pts->pts_prof) = NULL;
1344 if (ptn) {
1345 KASSERT(ptn->pt_type == CLOCK_PROF);
1346 timespecadd(&ts, &ptn->pt_time.it_value,
1347 &ptn->pt_time.it_value);
1348 LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
1349 }
1350 i = TIMER_MIN;
1351 }
1352 for ( ; i < TIMER_MAX; i++) {
1353 if (pts->pts_timers[i] != NULL) {
1354 /* Free the timer and release the lock. */
1355 itimerfree(pts, i);
1356 /* Reacquire the lock for the next one. */
1357 mutex_spin_enter(&timer_lock);
1358 }
1359 }
1360 if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
1361 pts->pts_timers[2] == NULL && pts->pts_timers[3] == NULL) {
1362 p->p_timers = NULL;
1363 mutex_spin_exit(&timer_lock);
1364 pool_put(&ptimers_pool, pts);
1365 } else
1366 mutex_spin_exit(&timer_lock);
1367 }
1368
1369 static void
1370 itimerfree(struct ptimers *pts, int index)
1371 {
1372 struct ptimer *pt;
1373
1374 KASSERT(mutex_owned(&timer_lock));
1375
1376 pt = pts->pts_timers[index];
1377
1378 /*
1379 * Prevent new references, and notify the callout not to
1380 * restart itself.
1381 */
1382 pts->pts_timers[index] = NULL;
1383 pt->pt_dying = true;
1384
1385 /*
1386 * For non-virtual timers, stop the callout, or wait for it to
1387 * run if it has already fired. It cannot restart again after
1388 * this point: the callout won't restart itself when dying, no
1389 * other users holding the lock can restart it, and any other
1390 * users waiting for callout_halt concurrently (timer_settime)
1391 * will restart from the top.
1392 */
1393 if (!CLOCK_VIRTUAL_P(pt->pt_type))
1394 callout_halt(&pt->pt_ch, &timer_lock);
1395
1396 /* Remove it from the queue to be signalled. */
1397 if (pt->pt_queued)
1398 TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1399
1400 /* All done with the global state. */
1401 mutex_spin_exit(&timer_lock);
1402
1403 /* Destroy the callout, if needed, and free the ptimer. */
1404 if (!CLOCK_VIRTUAL_P(pt->pt_type))
1405 callout_destroy(&pt->pt_ch);
1406 pool_put(&ptimer_pool, pt);
1407 }
1408
1409 /*
1410 * Decrement an interval timer by a specified number
1411 * of nanoseconds, which must be less than a second,
1412 * i.e. < 1000000000. If the timer expires, then reload
1413 * it. In this case, carry over (nsec - old value) to
1414 * reduce the value reloaded into the timer so that
1415 * the timer does not drift. This routine assumes
1416 * that it is called in a context where the timers
1417 * on which it is operating cannot change in value.
1418 */
1419 static int
1420 itimerdecr(struct ptimer *pt, int nsec)
1421 {
1422 struct itimerspec *itp;
1423 int error __diagused;
1424
1425 KASSERT(mutex_owned(&timer_lock));
1426 KASSERT(CLOCK_VIRTUAL_P(pt->pt_type));
1427
1428 itp = &pt->pt_time;
1429 if (itp->it_value.tv_nsec < nsec) {
1430 if (itp->it_value.tv_sec == 0) {
1431 /* expired, and already in next interval */
1432 nsec -= itp->it_value.tv_nsec;
1433 goto expire;
1434 }
1435 itp->it_value.tv_nsec += 1000000000;
1436 itp->it_value.tv_sec--;
1437 }
1438 itp->it_value.tv_nsec -= nsec;
1439 nsec = 0;
1440 if (timespecisset(&itp->it_value))
1441 return (1);
1442 /* expired, exactly at end of interval */
1443 expire:
1444 if (timespecisset(&itp->it_interval)) {
1445 itp->it_value = itp->it_interval;
1446 itp->it_value.tv_nsec -= nsec;
1447 if (itp->it_value.tv_nsec < 0) {
1448 itp->it_value.tv_nsec += 1000000000;
1449 itp->it_value.tv_sec--;
1450 }
1451 error = timer_settime(pt);
1452 KASSERT(error == 0); /* virtual, never fails */
1453 } else
1454 itp->it_value.tv_nsec = 0; /* sec is already 0 */
1455 return (0);
1456 }
1457
1458 static void
1459 itimerfire(struct ptimer *pt)
1460 {
1461
1462 KASSERT(mutex_owned(&timer_lock));
1463
1464 /*
1465 * XXX Can overrun, but we don't do signal queueing yet, anyway.
1466 * XXX Relying on the clock interrupt is stupid.
1467 */
1468 if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL || pt->pt_queued) {
1469 return;
1470 }
1471 TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
1472 pt->pt_queued = true;
1473 softint_schedule(timer_sih);
1474 }
1475
1476 void
1477 timer_tick(lwp_t *l, bool user)
1478 {
1479 struct ptimers *pts;
1480 struct ptimer *pt;
1481 proc_t *p;
1482
1483 p = l->l_proc;
1484 if (p->p_timers == NULL)
1485 return;
1486
1487 mutex_spin_enter(&timer_lock);
1488 if ((pts = l->l_proc->p_timers) != NULL) {
1489 /*
1490 * Run current process's virtual and profile time, as needed.
1491 */
1492 if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
1493 if (itimerdecr(pt, tick * 1000) == 0)
1494 itimerfire(pt);
1495 if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
1496 if (itimerdecr(pt, tick * 1000) == 0)
1497 itimerfire(pt);
1498 }
1499 mutex_spin_exit(&timer_lock);
1500 }
1501
1502 static void
1503 timer_intr(void *cookie)
1504 {
1505 ksiginfo_t ksi;
1506 struct ptimer *pt;
1507 proc_t *p;
1508
1509 mutex_enter(&proc_lock);
1510 mutex_spin_enter(&timer_lock);
1511 while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
1512 TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1513 KASSERT(pt->pt_queued);
1514 pt->pt_queued = false;
1515
1516 if (pt->pt_proc->p_timers == NULL) {
1517 /* Process is dying. */
1518 continue;
1519 }
1520 p = pt->pt_proc;
1521 if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
1522 continue;
1523 }
1524 if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
1525 pt->pt_overruns++;
1526 continue;
1527 }
1528
1529 KSI_INIT(&ksi);
1530 ksi.ksi_signo = pt->pt_ev.sigev_signo;
1531 ksi.ksi_code = SI_TIMER;
1532 ksi.ksi_value = pt->pt_ev.sigev_value;
1533 pt->pt_poverruns = pt->pt_overruns;
1534 pt->pt_overruns = 0;
1535 mutex_spin_exit(&timer_lock);
1536 kpsignal(p, &ksi, NULL);
1537 mutex_spin_enter(&timer_lock);
1538 }
1539 mutex_spin_exit(&timer_lock);
1540 mutex_exit(&proc_lock);
1541 }
1542
1543 /*
1544 * Check if the time will wrap if set to ts.
1545 *
1546 * ts - timespec describing the new time
1547 * delta - the delta between the current time and ts
1548 */
1549 bool
1550 time_wraps(struct timespec *ts, struct timespec *delta)
1551 {
1552
1553 /*
1554 * Don't allow the time to be set forward so far it
1555 * will wrap and become negative, thus allowing an
1556 * attacker to bypass the next check below. The
1557 * cutoff is 1 year before rollover occurs, so even
1558 * if the attacker uses adjtime(2) to move the time
1559 * past the cutoff, it will take a very long time
1560 * to get to the wrap point.
1561 */
1562 if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
1563 (delta->tv_sec < 0 || delta->tv_nsec < 0))
1564 return true;
1565
1566 return false;
1567 }
1568