Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.209
      1 /*	$NetBSD: kern_time.c,v 1.209 2020/12/07 03:01:15 christos Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009, 2020
      5  *     The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Christopher G. Demetriou, by Andrew Doran, and by Jason R. Thorpe.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1982, 1986, 1989, 1993
     35  *	The Regents of the University of California.  All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. Neither the name of the University nor the names of its contributors
     46  *    may be used to endorse or promote products derived from this software
     47  *    without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     59  * SUCH DAMAGE.
     60  *
     61  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.209 2020/12/07 03:01:15 christos Exp $");
     66 
     67 #include <sys/param.h>
     68 #include <sys/resourcevar.h>
     69 #include <sys/kernel.h>
     70 #include <sys/systm.h>
     71 #include <sys/proc.h>
     72 #include <sys/vnode.h>
     73 #include <sys/signalvar.h>
     74 #include <sys/syslog.h>
     75 #include <sys/timetc.h>
     76 #include <sys/timex.h>
     77 #include <sys/kauth.h>
     78 #include <sys/mount.h>
     79 #include <sys/syscallargs.h>
     80 #include <sys/cpu.h>
     81 
     82 static kmutex_t	itimer_mutex __cacheline_aligned;
     83 static struct itlist itimer_realtime_changed_notify;
     84 
     85 static void	ptimer_intr(void *);
     86 static void	*ptimer_sih __read_mostly;
     87 static struct itqueue ptimer_queue;
     88 
     89 #define	CLOCK_VIRTUAL_P(clockid)	\
     90 	((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)
     91 
     92 CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
     93 CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
     94 CTASSERT(ITIMER_PROF == CLOCK_PROF);
     95 CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC);
     96 
     97 #define	DELAYTIMER_MAX	32
     98 
     99 /*
    100  * Initialize timekeeping.
    101  */
    102 void
    103 time_init(void)
    104 {
    105 
    106 	mutex_init(&itimer_mutex, MUTEX_DEFAULT, IPL_SCHED);
    107 	LIST_INIT(&itimer_realtime_changed_notify);
    108 
    109 	TAILQ_INIT(&ptimer_queue);
    110 	ptimer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
    111 	    ptimer_intr, NULL);
    112 }
    113 
    114 /*
    115  * Check if the time will wrap if set to ts.
    116  *
    117  * ts - timespec describing the new time
    118  * delta - the delta between the current time and ts
    119  */
    120 bool
    121 time_wraps(struct timespec *ts, struct timespec *delta)
    122 {
    123 
    124 	/*
    125 	 * Don't allow the time to be set forward so far it
    126 	 * will wrap and become negative, thus allowing an
    127 	 * attacker to bypass the next check below.  The
    128 	 * cutoff is 1 year before rollover occurs, so even
    129 	 * if the attacker uses adjtime(2) to move the time
    130 	 * past the cutoff, it will take a very long time
    131 	 * to get to the wrap point.
    132 	 */
    133 	if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
    134 	    (delta->tv_sec < 0 || delta->tv_nsec < 0))
    135 		return true;
    136 
    137 	return false;
    138 }
    139 
    140 /*
    141  * itimer_lock:
    142  *
    143  *	Acquire the interval timer data lock.
    144  */
    145 void
    146 itimer_lock(void)
    147 {
    148 	mutex_spin_enter(&itimer_mutex);
    149 }
    150 
    151 /*
    152  * itimer_unlock:
    153  *
    154  *	Release the interval timer data lock.
    155  */
    156 void
    157 itimer_unlock(void)
    158 {
    159 	mutex_spin_exit(&itimer_mutex);
    160 }
    161 
    162 /*
    163  * itimer_lock_held:
    164  *
    165  *	Check that the interval timer lock is held for diagnostic
    166  *	assertions.
    167  */
    168 static inline bool __diagused
    169 itimer_lock_held(void)
    170 {
    171 	return mutex_owned(&itimer_mutex);
    172 }
    173 
    174 /*
    175  * Time of day and interval timer support.
    176  *
    177  * These routines provide the kernel entry points to get and set
    178  * the time-of-day and per-process interval timers.  Subroutines
    179  * here provide support for adding and subtracting timeval structures
    180  * and decrementing interval timers, optionally reloading the interval
    181  * timers when they expire.
    182  */
    183 
    184 /* This function is used by clock_settime and settimeofday */
    185 static int
    186 settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
    187 {
    188 	struct timespec delta, now;
    189 
    190 	/*
    191 	 * The time being set to an unreasonable value will cause
    192 	 * unreasonable system behaviour.
    193 	 */
    194 	if (ts->tv_sec < 0 || ts->tv_sec > (1LL << 36))
    195 		return (EINVAL);
    196 
    197 	nanotime(&now);
    198 	timespecsub(ts, &now, &delta);
    199 
    200 	if (check_kauth && kauth_authorize_system(kauth_cred_get(),
    201 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
    202 	    &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
    203 		return (EPERM);
    204 	}
    205 
    206 #ifdef notyet
    207 	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
    208 		return (EPERM);
    209 	}
    210 #endif
    211 
    212 	tc_setclock(ts);
    213 
    214 	resettodr();
    215 
    216 	/*
    217 	 * Notify pending CLOCK_REALTIME timers about the real time change.
    218 	 * There may be inactive timers on this list, but this happens
    219 	 * comparatively less often than timers firing, and so it's better
    220 	 * to put the extra checks here than to complicate the other code
    221 	 * path.
    222 	 */
    223 	struct itimer *it;
    224 	itimer_lock();
    225 	LIST_FOREACH(it, &itimer_realtime_changed_notify, it_rtchgq) {
    226 		KASSERT(it->it_ops->ito_realtime_changed != NULL);
    227 		if (timespecisset(&it->it_time.it_value)) {
    228 			(*it->it_ops->ito_realtime_changed)(it);
    229 		}
    230 	}
    231 	itimer_unlock();
    232 
    233 	return (0);
    234 }
    235 
    236 int
    237 settime(struct proc *p, struct timespec *ts)
    238 {
    239 	return (settime1(p, ts, true));
    240 }
    241 
    242 /* ARGSUSED */
    243 int
    244 sys___clock_gettime50(struct lwp *l,
    245     const struct sys___clock_gettime50_args *uap, register_t *retval)
    246 {
    247 	/* {
    248 		syscallarg(clockid_t) clock_id;
    249 		syscallarg(struct timespec *) tp;
    250 	} */
    251 	int error;
    252 	struct timespec ats;
    253 
    254 	error = clock_gettime1(SCARG(uap, clock_id), &ats);
    255 	if (error != 0)
    256 		return error;
    257 
    258 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    259 }
    260 
    261 /* ARGSUSED */
    262 int
    263 sys___clock_settime50(struct lwp *l,
    264     const struct sys___clock_settime50_args *uap, register_t *retval)
    265 {
    266 	/* {
    267 		syscallarg(clockid_t) clock_id;
    268 		syscallarg(const struct timespec *) tp;
    269 	} */
    270 	int error;
    271 	struct timespec ats;
    272 
    273 	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
    274 		return error;
    275 
    276 	return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
    277 }
    278 
    279 
    280 int
    281 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
    282     bool check_kauth)
    283 {
    284 	int error;
    285 
    286 	if (tp->tv_nsec < 0 || tp->tv_nsec >= 1000000000L)
    287 		return EINVAL;
    288 
    289 	switch (clock_id) {
    290 	case CLOCK_REALTIME:
    291 		if ((error = settime1(p, tp, check_kauth)) != 0)
    292 			return (error);
    293 		break;
    294 	case CLOCK_MONOTONIC:
    295 		return (EINVAL);	/* read-only clock */
    296 	default:
    297 		return (EINVAL);
    298 	}
    299 
    300 	return 0;
    301 }
    302 
    303 int
    304 sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
    305     register_t *retval)
    306 {
    307 	/* {
    308 		syscallarg(clockid_t) clock_id;
    309 		syscallarg(struct timespec *) tp;
    310 	} */
    311 	struct timespec ts;
    312 	int error;
    313 
    314 	if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
    315 		return error;
    316 
    317 	if (SCARG(uap, tp))
    318 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    319 
    320 	return error;
    321 }
    322 
    323 int
    324 clock_getres1(clockid_t clock_id, struct timespec *ts)
    325 {
    326 
    327 	switch (clock_id) {
    328 	case CLOCK_REALTIME:
    329 	case CLOCK_MONOTONIC:
    330 		ts->tv_sec = 0;
    331 		if (tc_getfrequency() > 1000000000)
    332 			ts->tv_nsec = 1;
    333 		else
    334 			ts->tv_nsec = 1000000000 / tc_getfrequency();
    335 		break;
    336 	default:
    337 		return EINVAL;
    338 	}
    339 
    340 	return 0;
    341 }
    342 
    343 /* ARGSUSED */
    344 int
    345 sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
    346     register_t *retval)
    347 {
    348 	/* {
    349 		syscallarg(struct timespec *) rqtp;
    350 		syscallarg(struct timespec *) rmtp;
    351 	} */
    352 	struct timespec rmt, rqt;
    353 	int error, error1;
    354 
    355 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    356 	if (error)
    357 		return (error);
    358 
    359 	error = nanosleep1(l, CLOCK_MONOTONIC, 0, &rqt,
    360 	    SCARG(uap, rmtp) ? &rmt : NULL);
    361 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
    362 		return error;
    363 
    364 	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
    365 	return error1 ? error1 : error;
    366 }
    367 
    368 /* ARGSUSED */
    369 int
    370 sys_clock_nanosleep(struct lwp *l, const struct sys_clock_nanosleep_args *uap,
    371     register_t *retval)
    372 {
    373 	/* {
    374 		syscallarg(clockid_t) clock_id;
    375 		syscallarg(int) flags;
    376 		syscallarg(struct timespec *) rqtp;
    377 		syscallarg(struct timespec *) rmtp;
    378 	} */
    379 	struct timespec rmt, rqt;
    380 	int error, error1;
    381 
    382 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    383 	if (error)
    384 		goto out;
    385 
    386 	error = nanosleep1(l, SCARG(uap, clock_id), SCARG(uap, flags), &rqt,
    387 	    SCARG(uap, rmtp) ? &rmt : NULL);
    388 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
    389 		goto out;
    390 
    391 	if ((SCARG(uap, flags) & TIMER_ABSTIME) == 0 &&
    392 	    (error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt))) != 0)
    393 		error = error1;
    394 out:
    395 	*retval = error;
    396 	return 0;
    397 }
    398 
    399 int
    400 nanosleep1(struct lwp *l, clockid_t clock_id, int flags, struct timespec *rqt,
    401     struct timespec *rmt)
    402 {
    403 	struct timespec rmtstart;
    404 	int error, timo;
    405 
    406 	if ((error = ts2timo(clock_id, flags, rqt, &timo, &rmtstart)) != 0) {
    407 		if (error == ETIMEDOUT) {
    408 			error = 0;
    409 			if (rmt != NULL)
    410 				rmt->tv_sec = rmt->tv_nsec = 0;
    411 		}
    412 		return error;
    413 	}
    414 
    415 	/*
    416 	 * Avoid inadvertently sleeping forever
    417 	 */
    418 	if (timo == 0)
    419 		timo = 1;
    420 again:
    421 	error = kpause("nanoslp", true, timo, NULL);
    422 	if (error == EWOULDBLOCK)
    423 		error = 0;
    424 	if (rmt != NULL || error == 0) {
    425 		struct timespec rmtend;
    426 		struct timespec t0;
    427 		struct timespec *t;
    428 		int err;
    429 
    430 		err = clock_gettime1(clock_id, &rmtend);
    431 		if (err != 0)
    432 			return err;
    433 
    434 		t = (rmt != NULL) ? rmt : &t0;
    435 		if (flags & TIMER_ABSTIME) {
    436 			timespecsub(rqt, &rmtend, t);
    437 		} else {
    438 			timespecsub(&rmtend, &rmtstart, t);
    439 			timespecsub(rqt, t, t);
    440 		}
    441 		if (t->tv_sec < 0)
    442 			timespecclear(t);
    443 		if (error == 0) {
    444 			timo = tstohz(t);
    445 			if (timo > 0)
    446 				goto again;
    447 		}
    448 	}
    449 
    450 	if (error == ERESTART)
    451 		error = EINTR;
    452 
    453 	return error;
    454 }
    455 
    456 int
    457 sys_clock_getcpuclockid2(struct lwp *l,
    458     const struct sys_clock_getcpuclockid2_args *uap,
    459     register_t *retval)
    460 {
    461 	/* {
    462 		syscallarg(idtype_t idtype;
    463 		syscallarg(id_t id);
    464 		syscallarg(clockid_t *)clock_id;
    465 	} */
    466 	pid_t pid;
    467 	lwpid_t lid;
    468 	clockid_t clock_id;
    469 	id_t id = SCARG(uap, id);
    470 
    471 	switch (SCARG(uap, idtype)) {
    472 	case P_PID:
    473 		pid = id == 0 ? l->l_proc->p_pid : id;
    474 		clock_id = CLOCK_PROCESS_CPUTIME_ID | pid;
    475 		break;
    476 	case P_LWPID:
    477 		lid = id == 0 ? l->l_lid : id;
    478 		clock_id = CLOCK_THREAD_CPUTIME_ID | lid;
    479 		break;
    480 	default:
    481 		return EINVAL;
    482 	}
    483 	return copyout(&clock_id, SCARG(uap, clock_id), sizeof(clock_id));
    484 }
    485 
    486 /* ARGSUSED */
    487 int
    488 sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
    489     register_t *retval)
    490 {
    491 	/* {
    492 		syscallarg(struct timeval *) tp;
    493 		syscallarg(void *) tzp;		really "struct timezone *";
    494 	} */
    495 	struct timeval atv;
    496 	int error = 0;
    497 	struct timezone tzfake;
    498 
    499 	if (SCARG(uap, tp)) {
    500 		memset(&atv, 0, sizeof(atv));
    501 		microtime(&atv);
    502 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    503 		if (error)
    504 			return (error);
    505 	}
    506 	if (SCARG(uap, tzp)) {
    507 		/*
    508 		 * NetBSD has no kernel notion of time zone, so we just
    509 		 * fake up a timezone struct and return it if demanded.
    510 		 */
    511 		tzfake.tz_minuteswest = 0;
    512 		tzfake.tz_dsttime = 0;
    513 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    514 	}
    515 	return (error);
    516 }
    517 
    518 /* ARGSUSED */
    519 int
    520 sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
    521     register_t *retval)
    522 {
    523 	/* {
    524 		syscallarg(const struct timeval *) tv;
    525 		syscallarg(const void *) tzp; really "const struct timezone *";
    526 	} */
    527 
    528 	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
    529 }
    530 
    531 int
    532 settimeofday1(const struct timeval *utv, bool userspace,
    533     const void *utzp, struct lwp *l, bool check_kauth)
    534 {
    535 	struct timeval atv;
    536 	struct timespec ts;
    537 	int error;
    538 
    539 	/* Verify all parameters before changing time. */
    540 
    541 	/*
    542 	 * NetBSD has no kernel notion of time zone, and only an
    543 	 * obsolete program would try to set it, so we log a warning.
    544 	 */
    545 	if (utzp)
    546 		log(LOG_WARNING, "pid %d attempted to set the "
    547 		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
    548 
    549 	if (utv == NULL)
    550 		return 0;
    551 
    552 	if (userspace) {
    553 		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
    554 			return error;
    555 		utv = &atv;
    556 	}
    557 
    558 	if (utv->tv_usec < 0 || utv->tv_usec >= 1000000)
    559 		return EINVAL;
    560 
    561 	TIMEVAL_TO_TIMESPEC(utv, &ts);
    562 	return settime1(l->l_proc, &ts, check_kauth);
    563 }
    564 
    565 int	time_adjusted;			/* set if an adjustment is made */
    566 
    567 /* ARGSUSED */
    568 int
    569 sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
    570     register_t *retval)
    571 {
    572 	/* {
    573 		syscallarg(const struct timeval *) delta;
    574 		syscallarg(struct timeval *) olddelta;
    575 	} */
    576 	int error;
    577 	struct timeval atv, oldatv;
    578 
    579 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
    580 	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
    581 		return error;
    582 
    583 	if (SCARG(uap, delta)) {
    584 		error = copyin(SCARG(uap, delta), &atv,
    585 		    sizeof(*SCARG(uap, delta)));
    586 		if (error)
    587 			return (error);
    588 	}
    589 	adjtime1(SCARG(uap, delta) ? &atv : NULL,
    590 	    SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
    591 	if (SCARG(uap, olddelta))
    592 		error = copyout(&oldatv, SCARG(uap, olddelta),
    593 		    sizeof(*SCARG(uap, olddelta)));
    594 	return error;
    595 }
    596 
    597 void
    598 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
    599 {
    600 	extern int64_t time_adjtime;  /* in kern_ntptime.c */
    601 
    602 	if (olddelta) {
    603 		memset(olddelta, 0, sizeof(*olddelta));
    604 		mutex_spin_enter(&timecounter_lock);
    605 		olddelta->tv_sec = time_adjtime / 1000000;
    606 		olddelta->tv_usec = time_adjtime % 1000000;
    607 		if (olddelta->tv_usec < 0) {
    608 			olddelta->tv_usec += 1000000;
    609 			olddelta->tv_sec--;
    610 		}
    611 		mutex_spin_exit(&timecounter_lock);
    612 	}
    613 
    614 	if (delta) {
    615 		mutex_spin_enter(&timecounter_lock);
    616 		time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
    617 
    618 		if (time_adjtime) {
    619 			/* We need to save the system time during shutdown */
    620 			time_adjusted |= 1;
    621 		}
    622 		mutex_spin_exit(&timecounter_lock);
    623 	}
    624 }
    625 
    626 /*
    627  * Interval timer support.
    628  *
    629  * The itimer_*() routines provide generic support for interval timers,
    630  * both real (CLOCK_REALTIME, CLOCK_MONOTIME), and virtual (CLOCK_VIRTUAL,
    631  * CLOCK_PROF).
    632  *
    633  * Real timers keep their deadline as an absolute time, and are fired
    634  * by a callout.  Virtual timers are kept as a linked-list of deltas,
    635  * and are processed by hardclock().
    636  *
    637  * Because the real time timer callout may be delayed in real time due
    638  * to interrupt processing on the system, it is possible for the real
    639  * time timeout routine (itimer_callout()) run past after its deadline.
    640  * It does not suffice, therefore, to reload the real timer .it_value
    641  * from the timer's .it_interval.  Rather, we compute the next deadline
    642  * in absolute time based on the current time and the .it_interval value,
    643  * and report any overruns.
    644  *
    645  * Note that while the virtual timers are supported in a generic fashion
    646  * here, they only (currently) make sense as per-process timers, and thus
    647  * only really work for that case.
    648  */
    649 
    650 /*
    651  * itimer_init:
    652  *
    653  *	Initialize the common data for an interval timer.
    654  */
    655 static void
    656 itimer_init(struct itimer * const it, const struct itimer_ops * const ops,
    657     clockid_t const id, struct itlist * const itl)
    658 {
    659 
    660 	KASSERT(itimer_lock_held());
    661 	KASSERT(ops != NULL);
    662 
    663 	timespecclear(&it->it_time.it_value);
    664 	it->it_ops = ops;
    665 	it->it_clockid = id;
    666 	it->it_overruns = 0;
    667 	it->it_queued = false;
    668 	it->it_dying = false;
    669 	if (!CLOCK_VIRTUAL_P(id)) {
    670 		KASSERT(itl == NULL);
    671 		callout_init(&it->it_ch, CALLOUT_MPSAFE);
    672 		if (id == CLOCK_REALTIME && ops->ito_realtime_changed != NULL) {
    673 			LIST_INSERT_HEAD(&itimer_realtime_changed_notify,
    674 			    it, it_rtchgq);
    675 		}
    676 	} else {
    677 		KASSERT(itl != NULL);
    678 		it->it_vlist = itl;
    679 		it->it_active = false;
    680 	}
    681 }
    682 
    683 /*
    684  * itimer_fini:
    685  *
    686  *	Release resources used by an interval timer.
    687  *
    688  *	N.B. itimer_lock must be held on entry, and is released on exit.
    689  */
    690 static void
    691 itimer_fini(struct itimer * const it)
    692 {
    693 
    694 	KASSERT(itimer_lock_held());
    695 
    696 	it->it_dying = true;
    697 
    698 	/*
    699 	 * For non-virtual timers, stop the callout, or wait for it to
    700 	 * run if it has already fired.  It cannot restart again after
    701 	 * this point: the callout won't restart itself when dying, no
    702 	 * other users holding the lock can restart it, and any other
    703 	 * users waiting for callout_halt concurrently (itimer_settime)
    704 	 * will restart from the top.
    705 	 */
    706 	if (!CLOCK_VIRTUAL_P(it->it_clockid)) {
    707 		callout_halt(&it->it_ch, &itimer_mutex);
    708 		if (it->it_clockid == CLOCK_REALTIME &&
    709 		    it->it_ops->ito_realtime_changed != NULL) {
    710 			LIST_REMOVE(it, it_rtchgq);
    711 		}
    712 	}
    713 
    714 	/* Remove it from the queue to be signalled.  */
    715 	if (it->it_queued) {
    716 		TAILQ_REMOVE(it->it_ops->ito_queue, it, it_chain);
    717 		it->it_queued = false;
    718 	}
    719 
    720 	/* All done with the global state.  */
    721 	itimer_unlock();
    722 
    723 	/* Destroy the callout, if needed. */
    724 	if (!CLOCK_VIRTUAL_P(it->it_clockid))
    725 		callout_destroy(&it->it_ch);
    726 }
    727 
    728 /*
    729  * itimer_decr:
    730  *
    731  *	Decrement an interval timer by a specified number of nanoseconds,
    732  *	which must be less than a second, i.e. < 1000000000.  If the timer
    733  *	expires, then reload it.  In this case, carry over (nsec - old value)
    734  *	to reduce the value reloaded into the timer so that the timer does
    735  *	not drift.  This routine assumes that it is called in a context where
    736  *	the timers on which it is operating cannot change in value.
    737  *
    738  *	Returns true if the timer has expired.
    739  */
    740 static bool
    741 itimer_decr(struct itimer *it, int nsec)
    742 {
    743 	struct itimerspec *itp;
    744 	int error __diagused;
    745 
    746 	KASSERT(itimer_lock_held());
    747 	KASSERT(CLOCK_VIRTUAL_P(it->it_clockid));
    748 
    749 	itp = &it->it_time;
    750 	if (itp->it_value.tv_nsec < nsec) {
    751 		if (itp->it_value.tv_sec == 0) {
    752 			/* expired, and already in next interval */
    753 			nsec -= itp->it_value.tv_nsec;
    754 			goto expire;
    755 		}
    756 		itp->it_value.tv_nsec += 1000000000;
    757 		itp->it_value.tv_sec--;
    758 	}
    759 	itp->it_value.tv_nsec -= nsec;
    760 	nsec = 0;
    761 	if (timespecisset(&itp->it_value))
    762 		return false;
    763 	/* expired, exactly at end of interval */
    764  expire:
    765 	if (timespecisset(&itp->it_interval)) {
    766 		itp->it_value = itp->it_interval;
    767 		itp->it_value.tv_nsec -= nsec;
    768 		if (itp->it_value.tv_nsec < 0) {
    769 			itp->it_value.tv_nsec += 1000000000;
    770 			itp->it_value.tv_sec--;
    771 		}
    772 		error = itimer_settime(it);
    773 		KASSERT(error == 0); /* virtual, never fails */
    774 	} else
    775 		itp->it_value.tv_nsec = 0;		/* sec is already 0 */
    776 	return true;
    777 }
    778 
    779 /*
    780  * itimer_fire:
    781  *
    782  *	An interval timer has fired.  Enqueue it for processing, if
    783  *	needed.
    784  */
    785 void
    786 itimer_fire(struct itimer * const it)
    787 {
    788 
    789 	KASSERT(itimer_lock_held());
    790 
    791 	if (!it->it_queued) {
    792 		TAILQ_INSERT_TAIL(it->it_ops->ito_queue, it, it_chain);
    793 		it->it_queued = true;
    794 		softint_schedule(*it->it_ops->ito_sihp);
    795 	}
    796 }
    797 
    798 static void itimer_callout(void *);
    799 
    800 /*
    801  * itimer_arm_real:
    802  *
    803  *	Arm a non-virtual timer.
    804  */
    805 static void
    806 itimer_arm_real(struct itimer * const it)
    807 {
    808 	/*
    809 	 * Don't need to check tshzto() return value, here.
    810 	 * callout_reset() does it for us.
    811 	 */
    812 	callout_reset(&it->it_ch,
    813 	    (it->it_clockid == CLOCK_MONOTONIC
    814 		? tshztoup(&it->it_time.it_value)
    815 		: tshzto(&it->it_time.it_value)),
    816 	    itimer_callout, it);
    817 }
    818 
    819 /*
    820  * itimer_callout:
    821  *
    822  *	Callout to expire a non-virtual timer.  Queue it up for processing,
    823  *	and then reload, if it is configured to do so.
    824  *
    825  *	N.B. A delay in processing this callout causes multiple
    826  *	SIGALRM calls to be compressed into one.
    827  */
    828 static void
    829 itimer_callout(void *arg)
    830 {
    831 	uint64_t last_val, next_val, interval, now_ns;
    832 	struct timespec now, next;
    833 	struct itimer * const it = arg;
    834 	int backwards;
    835 
    836 	itimer_lock();
    837 	(*it->it_ops->ito_fire)(it);
    838 
    839 	if (!timespecisset(&it->it_time.it_interval)) {
    840 		timespecclear(&it->it_time.it_value);
    841 		itimer_unlock();
    842 		return;
    843 	}
    844 
    845 	if (it->it_clockid == CLOCK_MONOTONIC) {
    846 		getnanouptime(&now);
    847 	} else {
    848 		getnanotime(&now);
    849 	}
    850 	backwards = (timespeccmp(&it->it_time.it_value, &now, >));
    851 	timespecadd(&it->it_time.it_value, &it->it_time.it_interval, &next);
    852 	/* Handle the easy case of non-overflown timers first. */
    853 	if (!backwards && timespeccmp(&next, &now, >)) {
    854 		it->it_time.it_value = next;
    855 	} else {
    856 		now_ns = timespec2ns(&now);
    857 		last_val = timespec2ns(&it->it_time.it_value);
    858 		interval = timespec2ns(&it->it_time.it_interval);
    859 
    860 		next_val = now_ns +
    861 		    (now_ns - last_val + interval - 1) % interval;
    862 
    863 		if (backwards)
    864 			next_val += interval;
    865 		else
    866 			it->it_overruns += (now_ns - last_val) / interval;
    867 
    868 		it->it_time.it_value.tv_sec = next_val / 1000000000;
    869 		it->it_time.it_value.tv_nsec = next_val % 1000000000;
    870 	}
    871 
    872 	/*
    873 	 * Reset the callout, if it's not going away.
    874 	 */
    875 	if (!it->it_dying)
    876 		itimer_arm_real(it);
    877 	itimer_unlock();
    878 }
    879 
    880 /*
    881  * itimer_settime:
    882  *
    883  *	Set up the given interval timer. The value in it->it_time.it_value
    884  *	is taken to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC
    885  *	timers and a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
    886  *
    887  *	If the callout had already fired but not yet run, fails with
    888  *	ERESTART -- caller must restart from the top to look up a timer.
    889  */
    890 int
    891 itimer_settime(struct itimer *it)
    892 {
    893 	struct itimer *itn, *pitn;
    894 	struct itlist *itl;
    895 
    896 	KASSERT(itimer_lock_held());
    897 
    898 	if (!CLOCK_VIRTUAL_P(it->it_clockid)) {
    899 		/*
    900 		 * Try to stop the callout.  However, if it had already
    901 		 * fired, we have to drop the lock to wait for it, so
    902 		 * the world may have changed and pt may not be there
    903 		 * any more.  In that case, tell the caller to start
    904 		 * over from the top.
    905 		 */
    906 		if (callout_halt(&it->it_ch, &itimer_mutex))
    907 			return ERESTART;
    908 
    909 		/* Now we can touch it and start it up again. */
    910 		if (timespecisset(&it->it_time.it_value))
    911 			itimer_arm_real(it);
    912 	} else {
    913 		if (it->it_active) {
    914 			itn = LIST_NEXT(it, it_list);
    915 			LIST_REMOVE(it, it_list);
    916 			for ( ; itn; itn = LIST_NEXT(itn, it_list))
    917 				timespecadd(&it->it_time.it_value,
    918 				    &itn->it_time.it_value,
    919 				    &itn->it_time.it_value);
    920 		}
    921 		if (timespecisset(&it->it_time.it_value)) {
    922 			itl = it->it_vlist;
    923 			for (itn = LIST_FIRST(itl), pitn = NULL;
    924 			     itn && timespeccmp(&it->it_time.it_value,
    925 				 &itn->it_time.it_value, >);
    926 			     pitn = itn, itn = LIST_NEXT(itn, it_list))
    927 				timespecsub(&it->it_time.it_value,
    928 				    &itn->it_time.it_value,
    929 				    &it->it_time.it_value);
    930 
    931 			if (pitn)
    932 				LIST_INSERT_AFTER(pitn, it, it_list);
    933 			else
    934 				LIST_INSERT_HEAD(itl, it, it_list);
    935 
    936 			for ( ; itn ; itn = LIST_NEXT(itn, it_list))
    937 				timespecsub(&itn->it_time.it_value,
    938 				    &it->it_time.it_value,
    939 				    &itn->it_time.it_value);
    940 
    941 			it->it_active = true;
    942 		} else {
    943 			it->it_active = false;
    944 		}
    945 	}
    946 
    947 	/* Success!  */
    948 	return 0;
    949 }
    950 
    951 /*
    952  * itimer_gettime:
    953  *
    954  *	Return the remaining time of an interval timer.
    955  */
    956 void
    957 itimer_gettime(const struct itimer *it, struct itimerspec *aits)
    958 {
    959 	struct timespec now;
    960 	struct itimer *itn;
    961 
    962 	KASSERT(itimer_lock_held());
    963 
    964 	*aits = it->it_time;
    965 	if (!CLOCK_VIRTUAL_P(it->it_clockid)) {
    966 		/*
    967 		 * Convert from absolute to relative time in .it_value
    968 		 * part of real time timer.  If time for real time
    969 		 * timer has passed return 0, else return difference
    970 		 * between current time and time for the timer to go
    971 		 * off.
    972 		 */
    973 		if (timespecisset(&aits->it_value)) {
    974 			if (it->it_clockid == CLOCK_REALTIME) {
    975 				getnanotime(&now);
    976 			} else { /* CLOCK_MONOTONIC */
    977 				getnanouptime(&now);
    978 			}
    979 			if (timespeccmp(&aits->it_value, &now, <))
    980 				timespecclear(&aits->it_value);
    981 			else
    982 				timespecsub(&aits->it_value, &now,
    983 				    &aits->it_value);
    984 		}
    985 	} else if (it->it_active) {
    986 		for (itn = LIST_FIRST(it->it_vlist); itn && itn != it;
    987 		     itn = LIST_NEXT(itn, it_list))
    988 			timespecadd(&aits->it_value,
    989 			    &itn->it_time.it_value, &aits->it_value);
    990 		KASSERT(itn != NULL); /* it should be findable on the list */
    991 	} else
    992 		timespecclear(&aits->it_value);
    993 }
    994 
    995 /*
    996  * Per-process timer support.
    997  *
    998  * Both the BSD getitimer() family and the POSIX timer_*() family of
    999  * routines are supported.
   1000  *
   1001  * All timers are kept in an array pointed to by p_timers, which is
   1002  * allocated on demand - many processes don't use timers at all. The
   1003  * first four elements in this array are reserved for the BSD timers:
   1004  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element
   1005  * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be
   1006  * allocated by the timer_create() syscall.
   1007  *
   1008  * These timers are a "sub-class" of interval timer.
   1009  */
   1010 
   1011 /*
   1012  * ptimer_free:
   1013  *
   1014  *	Free the per-process timer at the specified index.
   1015  */
   1016 static void
   1017 ptimer_free(struct ptimers *pts, int index)
   1018 {
   1019 	struct itimer *it;
   1020 	struct ptimer *pt;
   1021 
   1022 	KASSERT(itimer_lock_held());
   1023 
   1024 	it = pts->pts_timers[index];
   1025 	pt = container_of(it, struct ptimer, pt_itimer);
   1026 	pts->pts_timers[index] = NULL;
   1027 	itimer_fini(it);	/* releases itimer_lock */
   1028 	kmem_free(pt, sizeof(*pt));
   1029 }
   1030 
   1031 /*
   1032  * ptimers_alloc:
   1033  *
   1034  *	Allocate a ptimers for the specified process.
   1035  */
   1036 static struct ptimers *
   1037 ptimers_alloc(struct proc *p)
   1038 {
   1039 	struct ptimers *pts;
   1040 	int i;
   1041 
   1042 	pts = kmem_alloc(sizeof(*pts), KM_SLEEP);
   1043 	LIST_INIT(&pts->pts_virtual);
   1044 	LIST_INIT(&pts->pts_prof);
   1045 	for (i = 0; i < TIMER_MAX; i++)
   1046 		pts->pts_timers[i] = NULL;
   1047 	itimer_lock();
   1048 	if (p->p_timers == NULL) {
   1049 		p->p_timers = pts;
   1050 		itimer_unlock();
   1051 		return pts;
   1052 	}
   1053 	itimer_unlock();
   1054 	kmem_free(pts, sizeof(*pts));
   1055 	return p->p_timers;
   1056 }
   1057 
   1058 /*
   1059  * ptimers_free:
   1060  *
   1061  *	Clean up the per-process timers. If "which" is set to TIMERS_ALL,
   1062  *	then clean up all timers and free all the data structures. If
   1063  *	"which" is set to TIMERS_POSIX, only clean up the timers allocated
   1064  *	by timer_create(), not the BSD setitimer() timers, and only free the
   1065  *	structure if none of those remain.
   1066  *
   1067  *	This function is exported because it is needed in the exec and
   1068  *	exit code paths.
   1069  */
   1070 void
   1071 ptimers_free(struct proc *p, int which)
   1072 {
   1073 	struct ptimers *pts;
   1074 	struct itimer *itn;
   1075 	struct timespec ts;
   1076 	int i;
   1077 
   1078 	if (p->p_timers == NULL)
   1079 		return;
   1080 
   1081 	pts = p->p_timers;
   1082 	itimer_lock();
   1083 	if (which == TIMERS_ALL) {
   1084 		p->p_timers = NULL;
   1085 		i = 0;
   1086 	} else {
   1087 		timespecclear(&ts);
   1088 		for (itn = LIST_FIRST(&pts->pts_virtual);
   1089 		     itn && itn != pts->pts_timers[ITIMER_VIRTUAL];
   1090 		     itn = LIST_NEXT(itn, it_list)) {
   1091 			KASSERT(itn->it_clockid == CLOCK_VIRTUAL);
   1092 			timespecadd(&ts, &itn->it_time.it_value, &ts);
   1093 		}
   1094 		LIST_FIRST(&pts->pts_virtual) = NULL;
   1095 		if (itn) {
   1096 			KASSERT(itn->it_clockid == CLOCK_VIRTUAL);
   1097 			timespecadd(&ts, &itn->it_time.it_value,
   1098 			    &itn->it_time.it_value);
   1099 			LIST_INSERT_HEAD(&pts->pts_virtual, itn, it_list);
   1100 		}
   1101 		timespecclear(&ts);
   1102 		for (itn = LIST_FIRST(&pts->pts_prof);
   1103 		     itn && itn != pts->pts_timers[ITIMER_PROF];
   1104 		     itn = LIST_NEXT(itn, it_list)) {
   1105 			KASSERT(itn->it_clockid == CLOCK_PROF);
   1106 			timespecadd(&ts, &itn->it_time.it_value, &ts);
   1107 		}
   1108 		LIST_FIRST(&pts->pts_prof) = NULL;
   1109 		if (itn) {
   1110 			KASSERT(itn->it_clockid == CLOCK_PROF);
   1111 			timespecadd(&ts, &itn->it_time.it_value,
   1112 			    &itn->it_time.it_value);
   1113 			LIST_INSERT_HEAD(&pts->pts_prof, itn, it_list);
   1114 		}
   1115 		i = TIMER_MIN;
   1116 	}
   1117 	for ( ; i < TIMER_MAX; i++) {
   1118 		if (pts->pts_timers[i] != NULL) {
   1119 			/* Free the timer and release the lock.  */
   1120 			ptimer_free(pts, i);
   1121 			/* Reacquire the lock for the next one.  */
   1122 			itimer_lock();
   1123 		}
   1124 	}
   1125 	if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
   1126 	    pts->pts_timers[2] == NULL && pts->pts_timers[3] == NULL) {
   1127 		p->p_timers = NULL;
   1128 		itimer_unlock();
   1129 		kmem_free(pts, sizeof(*pts));
   1130 	} else
   1131 		itimer_unlock();
   1132 }
   1133 
   1134 /*
   1135  * ptimer_fire:
   1136  *
   1137  *	Fire a per-process timer.
   1138  */
   1139 static void
   1140 ptimer_fire(struct itimer *it)
   1141 {
   1142 	struct ptimer *pt = container_of(it, struct ptimer, pt_itimer);
   1143 
   1144 	KASSERT(itimer_lock_held());
   1145 
   1146 	/*
   1147 	 * XXX Can overrun, but we don't do signal queueing yet, anyway.
   1148 	 * XXX Relying on the clock interrupt is stupid.
   1149 	 */
   1150 	if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
   1151 		return;
   1152 	}
   1153 	itimer_fire(it);
   1154 }
   1155 
   1156 /*
   1157  * Operations vector for per-process timers (BSD and POSIX).
   1158  */
   1159 static const struct itimer_ops ptimer_itimer_ops = {
   1160 	.ito_queue = &ptimer_queue,
   1161 	.ito_sihp = &ptimer_sih,
   1162 	.ito_fire = &ptimer_fire,
   1163 };
   1164 
   1165 /*
   1166  * sys_timer_create:
   1167  *
   1168  *	System call to create a POSIX timer.
   1169  */
   1170 int
   1171 sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
   1172     register_t *retval)
   1173 {
   1174 	/* {
   1175 		syscallarg(clockid_t) clock_id;
   1176 		syscallarg(struct sigevent *) evp;
   1177 		syscallarg(timer_t *) timerid;
   1178 	} */
   1179 
   1180 	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
   1181 	    SCARG(uap, evp), copyin, l);
   1182 }
   1183 
   1184 int
   1185 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
   1186     copyin_t fetch_event, struct lwp *l)
   1187 {
   1188 	int error;
   1189 	timer_t timerid;
   1190 	struct itlist *itl;
   1191 	struct ptimers *pts;
   1192 	struct ptimer *pt;
   1193 	struct proc *p;
   1194 
   1195 	p = l->l_proc;
   1196 
   1197 	if ((u_int)id > CLOCK_MONOTONIC)
   1198 		return (EINVAL);
   1199 
   1200 	if ((pts = p->p_timers) == NULL)
   1201 		pts = ptimers_alloc(p);
   1202 
   1203 	pt = kmem_zalloc(sizeof(*pt), KM_SLEEP);
   1204 	if (evp != NULL) {
   1205 		if (((error =
   1206 		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
   1207 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
   1208 			(pt->pt_ev.sigev_notify > SIGEV_SA)) ||
   1209 			(pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
   1210 			 (pt->pt_ev.sigev_signo <= 0 ||
   1211 			  pt->pt_ev.sigev_signo >= NSIG))) {
   1212 			kmem_free(pt, sizeof(*pt));
   1213 			return (error ? error : EINVAL);
   1214 		}
   1215 	}
   1216 
   1217 	/* Find a free timer slot, skipping those reserved for setitimer(). */
   1218 	itimer_lock();
   1219 	for (timerid = TIMER_MIN; timerid < TIMER_MAX; timerid++)
   1220 		if (pts->pts_timers[timerid] == NULL)
   1221 			break;
   1222 	if (timerid == TIMER_MAX) {
   1223 		itimer_unlock();
   1224 		kmem_free(pt, sizeof(*pt));
   1225 		return EAGAIN;
   1226 	}
   1227 	if (evp == NULL) {
   1228 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
   1229 		switch (id) {
   1230 		case CLOCK_REALTIME:
   1231 		case CLOCK_MONOTONIC:
   1232 			pt->pt_ev.sigev_signo = SIGALRM;
   1233 			break;
   1234 		case CLOCK_VIRTUAL:
   1235 			pt->pt_ev.sigev_signo = SIGVTALRM;
   1236 			break;
   1237 		case CLOCK_PROF:
   1238 			pt->pt_ev.sigev_signo = SIGPROF;
   1239 			break;
   1240 		}
   1241 		pt->pt_ev.sigev_value.sival_int = timerid;
   1242 	}
   1243 
   1244 	switch (id) {
   1245 	case CLOCK_VIRTUAL:
   1246 		itl = &pts->pts_virtual;
   1247 		break;
   1248 	case CLOCK_PROF:
   1249 		itl = &pts->pts_prof;
   1250 		break;
   1251 	default:
   1252 		itl = NULL;
   1253 	}
   1254 
   1255 	itimer_init(&pt->pt_itimer, &ptimer_itimer_ops, id, itl);
   1256 	pt->pt_proc = p;
   1257 	pt->pt_poverruns = 0;
   1258 	pt->pt_entry = timerid;
   1259 
   1260 	pts->pts_timers[timerid] = &pt->pt_itimer;
   1261 	itimer_unlock();
   1262 
   1263 	return copyout(&timerid, tid, sizeof(timerid));
   1264 }
   1265 
   1266 /*
   1267  * sys_timer_delete:
   1268  *
   1269  *	System call to delete a POSIX timer.
   1270  */
   1271 int
   1272 sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
   1273     register_t *retval)
   1274 {
   1275 	/* {
   1276 		syscallarg(timer_t) timerid;
   1277 	} */
   1278 	struct proc *p = l->l_proc;
   1279 	timer_t timerid;
   1280 	struct ptimers *pts;
   1281 	struct itimer *it, *itn;
   1282 
   1283 	timerid = SCARG(uap, timerid);
   1284 	pts = p->p_timers;
   1285 
   1286 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
   1287 		return (EINVAL);
   1288 
   1289 	itimer_lock();
   1290 	if ((it = pts->pts_timers[timerid]) == NULL) {
   1291 		itimer_unlock();
   1292 		return (EINVAL);
   1293 	}
   1294 
   1295 	if (CLOCK_VIRTUAL_P(it->it_clockid)) {
   1296 		if (it->it_active) {
   1297 			itn = LIST_NEXT(it, it_list);
   1298 			LIST_REMOVE(it, it_list);
   1299 			for ( ; itn; itn = LIST_NEXT(itn, it_list))
   1300 				timespecadd(&it->it_time.it_value,
   1301 				    &itn->it_time.it_value,
   1302 				    &itn->it_time.it_value);
   1303 			it->it_active = false;
   1304 		}
   1305 	}
   1306 
   1307 	/* Free the timer and release the lock.  */
   1308 	ptimer_free(pts, timerid);
   1309 
   1310 	return (0);
   1311 }
   1312 
   1313 /*
   1314  * sys___timer_settime50:
   1315  *
   1316  *	System call to set/arm a POSIX timer.
   1317  */
   1318 int
   1319 sys___timer_settime50(struct lwp *l,
   1320     const struct sys___timer_settime50_args *uap,
   1321     register_t *retval)
   1322 {
   1323 	/* {
   1324 		syscallarg(timer_t) timerid;
   1325 		syscallarg(int) flags;
   1326 		syscallarg(const struct itimerspec *) value;
   1327 		syscallarg(struct itimerspec *) ovalue;
   1328 	} */
   1329 	int error;
   1330 	struct itimerspec value, ovalue, *ovp = NULL;
   1331 
   1332 	if ((error = copyin(SCARG(uap, value), &value,
   1333 	    sizeof(struct itimerspec))) != 0)
   1334 		return (error);
   1335 
   1336 	if (SCARG(uap, ovalue))
   1337 		ovp = &ovalue;
   1338 
   1339 	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
   1340 	    SCARG(uap, flags), l->l_proc)) != 0)
   1341 		return error;
   1342 
   1343 	if (ovp)
   1344 		return copyout(&ovalue, SCARG(uap, ovalue),
   1345 		    sizeof(struct itimerspec));
   1346 	return 0;
   1347 }
   1348 
   1349 int
   1350 dotimer_settime(int timerid, struct itimerspec *value,
   1351     struct itimerspec *ovalue, int flags, struct proc *p)
   1352 {
   1353 	struct timespec now;
   1354 	struct itimerspec val, oval;
   1355 	struct ptimers *pts;
   1356 	struct itimer *it;
   1357 	int error;
   1358 
   1359 	pts = p->p_timers;
   1360 
   1361 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
   1362 		return EINVAL;
   1363 	val = *value;
   1364 	if ((error = itimespecfix(&val.it_value)) != 0 ||
   1365 	    (error = itimespecfix(&val.it_interval)) != 0)
   1366 		return error;
   1367 
   1368 	itimer_lock();
   1369  restart:
   1370 	if ((it = pts->pts_timers[timerid]) == NULL) {
   1371 		itimer_unlock();
   1372 		return EINVAL;
   1373 	}
   1374 
   1375 	oval = it->it_time;
   1376 	it->it_time = val;
   1377 
   1378 	/*
   1379 	 * If we've been passed a relative time for a realtime timer,
   1380 	 * convert it to absolute; if an absolute time for a virtual
   1381 	 * timer, convert it to relative and make sure we don't set it
   1382 	 * to zero, which would cancel the timer, or let it go
   1383 	 * negative, which would confuse the comparison tests.
   1384 	 */
   1385 	if (timespecisset(&it->it_time.it_value)) {
   1386 		if (!CLOCK_VIRTUAL_P(it->it_clockid)) {
   1387 			if ((flags & TIMER_ABSTIME) == 0) {
   1388 				if (it->it_clockid == CLOCK_REALTIME) {
   1389 					getnanotime(&now);
   1390 				} else { /* CLOCK_MONOTONIC */
   1391 					getnanouptime(&now);
   1392 				}
   1393 				timespecadd(&it->it_time.it_value, &now,
   1394 				    &it->it_time.it_value);
   1395 			}
   1396 		} else {
   1397 			if ((flags & TIMER_ABSTIME) != 0) {
   1398 				getnanotime(&now);
   1399 				timespecsub(&it->it_time.it_value, &now,
   1400 				    &it->it_time.it_value);
   1401 				if (!timespecisset(&it->it_time.it_value) ||
   1402 				    it->it_time.it_value.tv_sec < 0) {
   1403 					it->it_time.it_value.tv_sec = 0;
   1404 					it->it_time.it_value.tv_nsec = 1;
   1405 				}
   1406 			}
   1407 		}
   1408 	}
   1409 
   1410 	error = itimer_settime(it);
   1411 	if (error == ERESTART) {
   1412 		KASSERT(!CLOCK_VIRTUAL_P(it->it_clockid));
   1413 		goto restart;
   1414 	}
   1415 	KASSERT(error == 0);
   1416 	itimer_unlock();
   1417 
   1418 	if (ovalue)
   1419 		*ovalue = oval;
   1420 
   1421 	return (0);
   1422 }
   1423 
   1424 /*
   1425  * sys___timer_gettime50:
   1426  *
   1427  *	System call to return the time remaining until a POSIX timer fires.
   1428  */
   1429 int
   1430 sys___timer_gettime50(struct lwp *l,
   1431     const struct sys___timer_gettime50_args *uap, register_t *retval)
   1432 {
   1433 	/* {
   1434 		syscallarg(timer_t) timerid;
   1435 		syscallarg(struct itimerspec *) value;
   1436 	} */
   1437 	struct itimerspec its;
   1438 	int error;
   1439 
   1440 	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
   1441 	    &its)) != 0)
   1442 		return error;
   1443 
   1444 	return copyout(&its, SCARG(uap, value), sizeof(its));
   1445 }
   1446 
   1447 int
   1448 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
   1449 {
   1450 	struct itimer *it;
   1451 	struct ptimers *pts;
   1452 
   1453 	pts = p->p_timers;
   1454 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
   1455 		return (EINVAL);
   1456 	itimer_lock();
   1457 	if ((it = pts->pts_timers[timerid]) == NULL) {
   1458 		itimer_unlock();
   1459 		return (EINVAL);
   1460 	}
   1461 	itimer_gettime(it, its);
   1462 	itimer_unlock();
   1463 
   1464 	return 0;
   1465 }
   1466 
   1467 /*
   1468  * sys_timer_getoverrun:
   1469  *
   1470  *	System call to return the number of times a POSIX timer has
   1471  *	expired while a notification was already pending.  The counter
   1472  *	is reset when a timer expires and a notification can be posted.
   1473  */
   1474 int
   1475 sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
   1476     register_t *retval)
   1477 {
   1478 	/* {
   1479 		syscallarg(timer_t) timerid;
   1480 	} */
   1481 	struct proc *p = l->l_proc;
   1482 	struct ptimers *pts;
   1483 	int timerid;
   1484 	struct itimer *it;
   1485 	struct ptimer *pt;
   1486 
   1487 	timerid = SCARG(uap, timerid);
   1488 
   1489 	pts = p->p_timers;
   1490 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
   1491 		return (EINVAL);
   1492 	itimer_lock();
   1493 	if ((it = pts->pts_timers[timerid]) == NULL) {
   1494 		itimer_unlock();
   1495 		return (EINVAL);
   1496 	}
   1497 	pt = container_of(it, struct ptimer, pt_itimer);
   1498 	*retval = pt->pt_poverruns;
   1499 	if (*retval >= DELAYTIMER_MAX)
   1500 		*retval = DELAYTIMER_MAX;
   1501 	itimer_unlock();
   1502 
   1503 	return (0);
   1504 }
   1505 
   1506 /*
   1507  * sys___getitimer50:
   1508  *
   1509  *	System call to get the time remaining before a BSD timer fires.
   1510  */
   1511 int
   1512 sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
   1513     register_t *retval)
   1514 {
   1515 	/* {
   1516 		syscallarg(int) which;
   1517 		syscallarg(struct itimerval *) itv;
   1518 	} */
   1519 	struct proc *p = l->l_proc;
   1520 	struct itimerval aitv;
   1521 	int error;
   1522 
   1523 	memset(&aitv, 0, sizeof(aitv));
   1524 	error = dogetitimer(p, SCARG(uap, which), &aitv);
   1525 	if (error)
   1526 		return error;
   1527 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
   1528 }
   1529 
   1530 int
   1531 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
   1532 {
   1533 	struct ptimers *pts;
   1534 	struct itimer *it;
   1535 	struct itimerspec its;
   1536 
   1537 	if ((u_int)which > ITIMER_MONOTONIC)
   1538 		return (EINVAL);
   1539 
   1540 	itimer_lock();
   1541 	pts = p->p_timers;
   1542 	if (pts == NULL || (it = pts->pts_timers[which]) == NULL) {
   1543 		timerclear(&itvp->it_value);
   1544 		timerclear(&itvp->it_interval);
   1545 	} else {
   1546 		itimer_gettime(it, &its);
   1547 		TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
   1548 		TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
   1549 	}
   1550 	itimer_unlock();
   1551 
   1552 	return 0;
   1553 }
   1554 
   1555 /*
   1556  * sys___setitimer50:
   1557  *
   1558  *	System call to set/arm a BSD timer.
   1559  */
   1560 int
   1561 sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
   1562     register_t *retval)
   1563 {
   1564 	/* {
   1565 		syscallarg(int) which;
   1566 		syscallarg(const struct itimerval *) itv;
   1567 		syscallarg(struct itimerval *) oitv;
   1568 	} */
   1569 	struct proc *p = l->l_proc;
   1570 	int which = SCARG(uap, which);
   1571 	struct sys___getitimer50_args getargs;
   1572 	const struct itimerval *itvp;
   1573 	struct itimerval aitv;
   1574 	int error;
   1575 
   1576 	if ((u_int)which > ITIMER_MONOTONIC)
   1577 		return (EINVAL);
   1578 	itvp = SCARG(uap, itv);
   1579 	if (itvp &&
   1580 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval))) != 0)
   1581 		return (error);
   1582 	if (SCARG(uap, oitv) != NULL) {
   1583 		SCARG(&getargs, which) = which;
   1584 		SCARG(&getargs, itv) = SCARG(uap, oitv);
   1585 		if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
   1586 			return (error);
   1587 	}
   1588 	if (itvp == 0)
   1589 		return (0);
   1590 
   1591 	return dosetitimer(p, which, &aitv);
   1592 }
   1593 
   1594 int
   1595 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
   1596 {
   1597 	struct timespec now;
   1598 	struct ptimers *pts;
   1599 	struct ptimer *spare;
   1600 	struct itimer *it;
   1601 	struct itlist *itl;
   1602 	int error;
   1603 
   1604 	KASSERT((u_int)which <= CLOCK_MONOTONIC);
   1605 	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
   1606 		return (EINVAL);
   1607 
   1608 	/*
   1609 	 * Don't bother allocating data structures if the process just
   1610 	 * wants to clear the timer.
   1611 	 */
   1612 	spare = NULL;
   1613 	pts = p->p_timers;
   1614  retry:
   1615 	if (!timerisset(&itvp->it_value) && (pts == NULL ||
   1616 	    pts->pts_timers[which] == NULL))
   1617 		return (0);
   1618 	if (pts == NULL)
   1619 		pts = ptimers_alloc(p);
   1620 	itimer_lock();
   1621  restart:
   1622 	it = pts->pts_timers[which];
   1623 	if (it == NULL) {
   1624 		struct ptimer *pt;
   1625 
   1626 		if (spare == NULL) {
   1627 			itimer_unlock();
   1628 			spare = kmem_zalloc(sizeof(*spare), KM_SLEEP);
   1629 			goto retry;
   1630 		}
   1631 		pt = spare;
   1632 		spare = NULL;
   1633 
   1634 		it = &pt->pt_itimer;
   1635 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
   1636 		pt->pt_ev.sigev_value.sival_int = which;
   1637 
   1638 		switch (which) {
   1639 		case ITIMER_REAL:
   1640 		case ITIMER_MONOTONIC:
   1641 			itl = NULL;
   1642 			pt->pt_ev.sigev_signo = SIGALRM;
   1643 			break;
   1644 		case ITIMER_VIRTUAL:
   1645 			itl = &pts->pts_virtual;
   1646 			pt->pt_ev.sigev_signo = SIGVTALRM;
   1647 			break;
   1648 		case ITIMER_PROF:
   1649 			itl = &pts->pts_prof;
   1650 			pt->pt_ev.sigev_signo = SIGPROF;
   1651 			break;
   1652 		default:
   1653 			panic("%s: can't happen %d", __func__, which);
   1654 		}
   1655 		itimer_init(it, &ptimer_itimer_ops, which, itl);
   1656 		pt->pt_proc = p;
   1657 		pt->pt_entry = which;
   1658 
   1659 		pts->pts_timers[which] = it;
   1660 	}
   1661 
   1662 	TIMEVAL_TO_TIMESPEC(&itvp->it_value, &it->it_time.it_value);
   1663 	TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &it->it_time.it_interval);
   1664 
   1665 	if (timespecisset(&it->it_time.it_value)) {
   1666 		/* Convert to absolute time */
   1667 		/* XXX need to wrap in splclock for timecounters case? */
   1668 		switch (which) {
   1669 		case ITIMER_REAL:
   1670 			getnanotime(&now);
   1671 			timespecadd(&it->it_time.it_value, &now,
   1672 			    &it->it_time.it_value);
   1673 			break;
   1674 		case ITIMER_MONOTONIC:
   1675 			getnanouptime(&now);
   1676 			timespecadd(&it->it_time.it_value, &now,
   1677 			    &it->it_time.it_value);
   1678 			break;
   1679 		default:
   1680 			break;
   1681 		}
   1682 	}
   1683 	error = itimer_settime(it);
   1684 	if (error == ERESTART) {
   1685 		KASSERT(!CLOCK_VIRTUAL_P(it->it_clockid));
   1686 		goto restart;
   1687 	}
   1688 	KASSERT(error == 0);
   1689 	itimer_unlock();
   1690 	if (spare != NULL)
   1691 		kmem_free(spare, sizeof(*spare));
   1692 
   1693 	return (0);
   1694 }
   1695 
   1696 /*
   1697  * ptimer_tick:
   1698  *
   1699  *	Called from hardclock() to decrement per-process virtual timers.
   1700  */
   1701 void
   1702 ptimer_tick(lwp_t *l, bool user)
   1703 {
   1704 	struct ptimers *pts;
   1705 	struct itimer *it;
   1706 	proc_t *p;
   1707 
   1708 	p = l->l_proc;
   1709 	if (p->p_timers == NULL)
   1710 		return;
   1711 
   1712 	itimer_lock();
   1713 	if ((pts = l->l_proc->p_timers) != NULL) {
   1714 		/*
   1715 		 * Run current process's virtual and profile time, as needed.
   1716 		 */
   1717 		if (user && (it = LIST_FIRST(&pts->pts_virtual)) != NULL)
   1718 			if (itimer_decr(it, tick * 1000))
   1719 				(*it->it_ops->ito_fire)(it);
   1720 		if ((it = LIST_FIRST(&pts->pts_prof)) != NULL)
   1721 			if (itimer_decr(it, tick * 1000))
   1722 				(*it->it_ops->ito_fire)(it);
   1723 	}
   1724 	itimer_unlock();
   1725 }
   1726 
   1727 /*
   1728  * ptimer_intr:
   1729  *
   1730  *	Software interrupt handler for processing per-process
   1731  *	timer expiration.
   1732  */
   1733 static void
   1734 ptimer_intr(void *cookie)
   1735 {
   1736 	ksiginfo_t ksi;
   1737 	struct itimer *it;
   1738 	struct ptimer *pt;
   1739 	proc_t *p;
   1740 
   1741 	mutex_enter(&proc_lock);
   1742 	itimer_lock();
   1743 	while ((it = TAILQ_FIRST(&ptimer_queue)) != NULL) {
   1744 		TAILQ_REMOVE(&ptimer_queue, it, it_chain);
   1745 		KASSERT(it->it_ops->ito_queue == &ptimer_queue);
   1746 		KASSERT(it->it_queued);
   1747 		it->it_queued = false;
   1748 
   1749 		pt = container_of(it, struct ptimer, pt_itimer);
   1750 
   1751 		p = pt->pt_proc;
   1752 		if (p->p_timers == NULL) {
   1753 			/* Process is dying. */
   1754 			continue;
   1755 		}
   1756 		if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
   1757 			continue;
   1758 		}
   1759 		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
   1760 			it->it_overruns++;
   1761 			continue;
   1762 		}
   1763 
   1764 		KSI_INIT(&ksi);
   1765 		ksi.ksi_signo = pt->pt_ev.sigev_signo;
   1766 		ksi.ksi_code = SI_TIMER;
   1767 		ksi.ksi_value = pt->pt_ev.sigev_value;
   1768 		pt->pt_poverruns = it->it_overruns;
   1769 		it->it_overruns = 0;
   1770 		itimer_unlock();
   1771 		kpsignal(p, &ksi, NULL);
   1772 		itimer_lock();
   1773 	}
   1774 	itimer_unlock();
   1775 	mutex_exit(&proc_lock);
   1776 }
   1777