kern_time.c revision 1.209 1 /* $NetBSD: kern_time.c,v 1.209 2020/12/07 03:01:15 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009, 2020
5 * The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Christopher G. Demetriou, by Andrew Doran, and by Jason R. Thorpe.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1989, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.209 2020/12/07 03:01:15 christos Exp $");
66
67 #include <sys/param.h>
68 #include <sys/resourcevar.h>
69 #include <sys/kernel.h>
70 #include <sys/systm.h>
71 #include <sys/proc.h>
72 #include <sys/vnode.h>
73 #include <sys/signalvar.h>
74 #include <sys/syslog.h>
75 #include <sys/timetc.h>
76 #include <sys/timex.h>
77 #include <sys/kauth.h>
78 #include <sys/mount.h>
79 #include <sys/syscallargs.h>
80 #include <sys/cpu.h>
81
82 static kmutex_t itimer_mutex __cacheline_aligned;
83 static struct itlist itimer_realtime_changed_notify;
84
85 static void ptimer_intr(void *);
86 static void *ptimer_sih __read_mostly;
87 static struct itqueue ptimer_queue;
88
89 #define CLOCK_VIRTUAL_P(clockid) \
90 ((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)
91
92 CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
93 CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
94 CTASSERT(ITIMER_PROF == CLOCK_PROF);
95 CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC);
96
97 #define DELAYTIMER_MAX 32
98
99 /*
100 * Initialize timekeeping.
101 */
102 void
103 time_init(void)
104 {
105
106 mutex_init(&itimer_mutex, MUTEX_DEFAULT, IPL_SCHED);
107 LIST_INIT(&itimer_realtime_changed_notify);
108
109 TAILQ_INIT(&ptimer_queue);
110 ptimer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
111 ptimer_intr, NULL);
112 }
113
114 /*
115 * Check if the time will wrap if set to ts.
116 *
117 * ts - timespec describing the new time
118 * delta - the delta between the current time and ts
119 */
120 bool
121 time_wraps(struct timespec *ts, struct timespec *delta)
122 {
123
124 /*
125 * Don't allow the time to be set forward so far it
126 * will wrap and become negative, thus allowing an
127 * attacker to bypass the next check below. The
128 * cutoff is 1 year before rollover occurs, so even
129 * if the attacker uses adjtime(2) to move the time
130 * past the cutoff, it will take a very long time
131 * to get to the wrap point.
132 */
133 if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
134 (delta->tv_sec < 0 || delta->tv_nsec < 0))
135 return true;
136
137 return false;
138 }
139
140 /*
141 * itimer_lock:
142 *
143 * Acquire the interval timer data lock.
144 */
145 void
146 itimer_lock(void)
147 {
148 mutex_spin_enter(&itimer_mutex);
149 }
150
151 /*
152 * itimer_unlock:
153 *
154 * Release the interval timer data lock.
155 */
156 void
157 itimer_unlock(void)
158 {
159 mutex_spin_exit(&itimer_mutex);
160 }
161
162 /*
163 * itimer_lock_held:
164 *
165 * Check that the interval timer lock is held for diagnostic
166 * assertions.
167 */
168 static inline bool __diagused
169 itimer_lock_held(void)
170 {
171 return mutex_owned(&itimer_mutex);
172 }
173
174 /*
175 * Time of day and interval timer support.
176 *
177 * These routines provide the kernel entry points to get and set
178 * the time-of-day and per-process interval timers. Subroutines
179 * here provide support for adding and subtracting timeval structures
180 * and decrementing interval timers, optionally reloading the interval
181 * timers when they expire.
182 */
183
184 /* This function is used by clock_settime and settimeofday */
185 static int
186 settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
187 {
188 struct timespec delta, now;
189
190 /*
191 * The time being set to an unreasonable value will cause
192 * unreasonable system behaviour.
193 */
194 if (ts->tv_sec < 0 || ts->tv_sec > (1LL << 36))
195 return (EINVAL);
196
197 nanotime(&now);
198 timespecsub(ts, &now, &delta);
199
200 if (check_kauth && kauth_authorize_system(kauth_cred_get(),
201 KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
202 &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
203 return (EPERM);
204 }
205
206 #ifdef notyet
207 if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
208 return (EPERM);
209 }
210 #endif
211
212 tc_setclock(ts);
213
214 resettodr();
215
216 /*
217 * Notify pending CLOCK_REALTIME timers about the real time change.
218 * There may be inactive timers on this list, but this happens
219 * comparatively less often than timers firing, and so it's better
220 * to put the extra checks here than to complicate the other code
221 * path.
222 */
223 struct itimer *it;
224 itimer_lock();
225 LIST_FOREACH(it, &itimer_realtime_changed_notify, it_rtchgq) {
226 KASSERT(it->it_ops->ito_realtime_changed != NULL);
227 if (timespecisset(&it->it_time.it_value)) {
228 (*it->it_ops->ito_realtime_changed)(it);
229 }
230 }
231 itimer_unlock();
232
233 return (0);
234 }
235
236 int
237 settime(struct proc *p, struct timespec *ts)
238 {
239 return (settime1(p, ts, true));
240 }
241
242 /* ARGSUSED */
243 int
244 sys___clock_gettime50(struct lwp *l,
245 const struct sys___clock_gettime50_args *uap, register_t *retval)
246 {
247 /* {
248 syscallarg(clockid_t) clock_id;
249 syscallarg(struct timespec *) tp;
250 } */
251 int error;
252 struct timespec ats;
253
254 error = clock_gettime1(SCARG(uap, clock_id), &ats);
255 if (error != 0)
256 return error;
257
258 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
259 }
260
261 /* ARGSUSED */
262 int
263 sys___clock_settime50(struct lwp *l,
264 const struct sys___clock_settime50_args *uap, register_t *retval)
265 {
266 /* {
267 syscallarg(clockid_t) clock_id;
268 syscallarg(const struct timespec *) tp;
269 } */
270 int error;
271 struct timespec ats;
272
273 if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
274 return error;
275
276 return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
277 }
278
279
280 int
281 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
282 bool check_kauth)
283 {
284 int error;
285
286 if (tp->tv_nsec < 0 || tp->tv_nsec >= 1000000000L)
287 return EINVAL;
288
289 switch (clock_id) {
290 case CLOCK_REALTIME:
291 if ((error = settime1(p, tp, check_kauth)) != 0)
292 return (error);
293 break;
294 case CLOCK_MONOTONIC:
295 return (EINVAL); /* read-only clock */
296 default:
297 return (EINVAL);
298 }
299
300 return 0;
301 }
302
303 int
304 sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
305 register_t *retval)
306 {
307 /* {
308 syscallarg(clockid_t) clock_id;
309 syscallarg(struct timespec *) tp;
310 } */
311 struct timespec ts;
312 int error;
313
314 if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
315 return error;
316
317 if (SCARG(uap, tp))
318 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
319
320 return error;
321 }
322
323 int
324 clock_getres1(clockid_t clock_id, struct timespec *ts)
325 {
326
327 switch (clock_id) {
328 case CLOCK_REALTIME:
329 case CLOCK_MONOTONIC:
330 ts->tv_sec = 0;
331 if (tc_getfrequency() > 1000000000)
332 ts->tv_nsec = 1;
333 else
334 ts->tv_nsec = 1000000000 / tc_getfrequency();
335 break;
336 default:
337 return EINVAL;
338 }
339
340 return 0;
341 }
342
343 /* ARGSUSED */
344 int
345 sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
346 register_t *retval)
347 {
348 /* {
349 syscallarg(struct timespec *) rqtp;
350 syscallarg(struct timespec *) rmtp;
351 } */
352 struct timespec rmt, rqt;
353 int error, error1;
354
355 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
356 if (error)
357 return (error);
358
359 error = nanosleep1(l, CLOCK_MONOTONIC, 0, &rqt,
360 SCARG(uap, rmtp) ? &rmt : NULL);
361 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
362 return error;
363
364 error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
365 return error1 ? error1 : error;
366 }
367
368 /* ARGSUSED */
369 int
370 sys_clock_nanosleep(struct lwp *l, const struct sys_clock_nanosleep_args *uap,
371 register_t *retval)
372 {
373 /* {
374 syscallarg(clockid_t) clock_id;
375 syscallarg(int) flags;
376 syscallarg(struct timespec *) rqtp;
377 syscallarg(struct timespec *) rmtp;
378 } */
379 struct timespec rmt, rqt;
380 int error, error1;
381
382 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
383 if (error)
384 goto out;
385
386 error = nanosleep1(l, SCARG(uap, clock_id), SCARG(uap, flags), &rqt,
387 SCARG(uap, rmtp) ? &rmt : NULL);
388 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
389 goto out;
390
391 if ((SCARG(uap, flags) & TIMER_ABSTIME) == 0 &&
392 (error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt))) != 0)
393 error = error1;
394 out:
395 *retval = error;
396 return 0;
397 }
398
399 int
400 nanosleep1(struct lwp *l, clockid_t clock_id, int flags, struct timespec *rqt,
401 struct timespec *rmt)
402 {
403 struct timespec rmtstart;
404 int error, timo;
405
406 if ((error = ts2timo(clock_id, flags, rqt, &timo, &rmtstart)) != 0) {
407 if (error == ETIMEDOUT) {
408 error = 0;
409 if (rmt != NULL)
410 rmt->tv_sec = rmt->tv_nsec = 0;
411 }
412 return error;
413 }
414
415 /*
416 * Avoid inadvertently sleeping forever
417 */
418 if (timo == 0)
419 timo = 1;
420 again:
421 error = kpause("nanoslp", true, timo, NULL);
422 if (error == EWOULDBLOCK)
423 error = 0;
424 if (rmt != NULL || error == 0) {
425 struct timespec rmtend;
426 struct timespec t0;
427 struct timespec *t;
428 int err;
429
430 err = clock_gettime1(clock_id, &rmtend);
431 if (err != 0)
432 return err;
433
434 t = (rmt != NULL) ? rmt : &t0;
435 if (flags & TIMER_ABSTIME) {
436 timespecsub(rqt, &rmtend, t);
437 } else {
438 timespecsub(&rmtend, &rmtstart, t);
439 timespecsub(rqt, t, t);
440 }
441 if (t->tv_sec < 0)
442 timespecclear(t);
443 if (error == 0) {
444 timo = tstohz(t);
445 if (timo > 0)
446 goto again;
447 }
448 }
449
450 if (error == ERESTART)
451 error = EINTR;
452
453 return error;
454 }
455
456 int
457 sys_clock_getcpuclockid2(struct lwp *l,
458 const struct sys_clock_getcpuclockid2_args *uap,
459 register_t *retval)
460 {
461 /* {
462 syscallarg(idtype_t idtype;
463 syscallarg(id_t id);
464 syscallarg(clockid_t *)clock_id;
465 } */
466 pid_t pid;
467 lwpid_t lid;
468 clockid_t clock_id;
469 id_t id = SCARG(uap, id);
470
471 switch (SCARG(uap, idtype)) {
472 case P_PID:
473 pid = id == 0 ? l->l_proc->p_pid : id;
474 clock_id = CLOCK_PROCESS_CPUTIME_ID | pid;
475 break;
476 case P_LWPID:
477 lid = id == 0 ? l->l_lid : id;
478 clock_id = CLOCK_THREAD_CPUTIME_ID | lid;
479 break;
480 default:
481 return EINVAL;
482 }
483 return copyout(&clock_id, SCARG(uap, clock_id), sizeof(clock_id));
484 }
485
486 /* ARGSUSED */
487 int
488 sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
489 register_t *retval)
490 {
491 /* {
492 syscallarg(struct timeval *) tp;
493 syscallarg(void *) tzp; really "struct timezone *";
494 } */
495 struct timeval atv;
496 int error = 0;
497 struct timezone tzfake;
498
499 if (SCARG(uap, tp)) {
500 memset(&atv, 0, sizeof(atv));
501 microtime(&atv);
502 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
503 if (error)
504 return (error);
505 }
506 if (SCARG(uap, tzp)) {
507 /*
508 * NetBSD has no kernel notion of time zone, so we just
509 * fake up a timezone struct and return it if demanded.
510 */
511 tzfake.tz_minuteswest = 0;
512 tzfake.tz_dsttime = 0;
513 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
514 }
515 return (error);
516 }
517
518 /* ARGSUSED */
519 int
520 sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
521 register_t *retval)
522 {
523 /* {
524 syscallarg(const struct timeval *) tv;
525 syscallarg(const void *) tzp; really "const struct timezone *";
526 } */
527
528 return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
529 }
530
531 int
532 settimeofday1(const struct timeval *utv, bool userspace,
533 const void *utzp, struct lwp *l, bool check_kauth)
534 {
535 struct timeval atv;
536 struct timespec ts;
537 int error;
538
539 /* Verify all parameters before changing time. */
540
541 /*
542 * NetBSD has no kernel notion of time zone, and only an
543 * obsolete program would try to set it, so we log a warning.
544 */
545 if (utzp)
546 log(LOG_WARNING, "pid %d attempted to set the "
547 "(obsolete) kernel time zone\n", l->l_proc->p_pid);
548
549 if (utv == NULL)
550 return 0;
551
552 if (userspace) {
553 if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
554 return error;
555 utv = &atv;
556 }
557
558 if (utv->tv_usec < 0 || utv->tv_usec >= 1000000)
559 return EINVAL;
560
561 TIMEVAL_TO_TIMESPEC(utv, &ts);
562 return settime1(l->l_proc, &ts, check_kauth);
563 }
564
565 int time_adjusted; /* set if an adjustment is made */
566
567 /* ARGSUSED */
568 int
569 sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
570 register_t *retval)
571 {
572 /* {
573 syscallarg(const struct timeval *) delta;
574 syscallarg(struct timeval *) olddelta;
575 } */
576 int error;
577 struct timeval atv, oldatv;
578
579 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
580 KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
581 return error;
582
583 if (SCARG(uap, delta)) {
584 error = copyin(SCARG(uap, delta), &atv,
585 sizeof(*SCARG(uap, delta)));
586 if (error)
587 return (error);
588 }
589 adjtime1(SCARG(uap, delta) ? &atv : NULL,
590 SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
591 if (SCARG(uap, olddelta))
592 error = copyout(&oldatv, SCARG(uap, olddelta),
593 sizeof(*SCARG(uap, olddelta)));
594 return error;
595 }
596
597 void
598 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
599 {
600 extern int64_t time_adjtime; /* in kern_ntptime.c */
601
602 if (olddelta) {
603 memset(olddelta, 0, sizeof(*olddelta));
604 mutex_spin_enter(&timecounter_lock);
605 olddelta->tv_sec = time_adjtime / 1000000;
606 olddelta->tv_usec = time_adjtime % 1000000;
607 if (olddelta->tv_usec < 0) {
608 olddelta->tv_usec += 1000000;
609 olddelta->tv_sec--;
610 }
611 mutex_spin_exit(&timecounter_lock);
612 }
613
614 if (delta) {
615 mutex_spin_enter(&timecounter_lock);
616 time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
617
618 if (time_adjtime) {
619 /* We need to save the system time during shutdown */
620 time_adjusted |= 1;
621 }
622 mutex_spin_exit(&timecounter_lock);
623 }
624 }
625
626 /*
627 * Interval timer support.
628 *
629 * The itimer_*() routines provide generic support for interval timers,
630 * both real (CLOCK_REALTIME, CLOCK_MONOTIME), and virtual (CLOCK_VIRTUAL,
631 * CLOCK_PROF).
632 *
633 * Real timers keep their deadline as an absolute time, and are fired
634 * by a callout. Virtual timers are kept as a linked-list of deltas,
635 * and are processed by hardclock().
636 *
637 * Because the real time timer callout may be delayed in real time due
638 * to interrupt processing on the system, it is possible for the real
639 * time timeout routine (itimer_callout()) run past after its deadline.
640 * It does not suffice, therefore, to reload the real timer .it_value
641 * from the timer's .it_interval. Rather, we compute the next deadline
642 * in absolute time based on the current time and the .it_interval value,
643 * and report any overruns.
644 *
645 * Note that while the virtual timers are supported in a generic fashion
646 * here, they only (currently) make sense as per-process timers, and thus
647 * only really work for that case.
648 */
649
650 /*
651 * itimer_init:
652 *
653 * Initialize the common data for an interval timer.
654 */
655 static void
656 itimer_init(struct itimer * const it, const struct itimer_ops * const ops,
657 clockid_t const id, struct itlist * const itl)
658 {
659
660 KASSERT(itimer_lock_held());
661 KASSERT(ops != NULL);
662
663 timespecclear(&it->it_time.it_value);
664 it->it_ops = ops;
665 it->it_clockid = id;
666 it->it_overruns = 0;
667 it->it_queued = false;
668 it->it_dying = false;
669 if (!CLOCK_VIRTUAL_P(id)) {
670 KASSERT(itl == NULL);
671 callout_init(&it->it_ch, CALLOUT_MPSAFE);
672 if (id == CLOCK_REALTIME && ops->ito_realtime_changed != NULL) {
673 LIST_INSERT_HEAD(&itimer_realtime_changed_notify,
674 it, it_rtchgq);
675 }
676 } else {
677 KASSERT(itl != NULL);
678 it->it_vlist = itl;
679 it->it_active = false;
680 }
681 }
682
683 /*
684 * itimer_fini:
685 *
686 * Release resources used by an interval timer.
687 *
688 * N.B. itimer_lock must be held on entry, and is released on exit.
689 */
690 static void
691 itimer_fini(struct itimer * const it)
692 {
693
694 KASSERT(itimer_lock_held());
695
696 it->it_dying = true;
697
698 /*
699 * For non-virtual timers, stop the callout, or wait for it to
700 * run if it has already fired. It cannot restart again after
701 * this point: the callout won't restart itself when dying, no
702 * other users holding the lock can restart it, and any other
703 * users waiting for callout_halt concurrently (itimer_settime)
704 * will restart from the top.
705 */
706 if (!CLOCK_VIRTUAL_P(it->it_clockid)) {
707 callout_halt(&it->it_ch, &itimer_mutex);
708 if (it->it_clockid == CLOCK_REALTIME &&
709 it->it_ops->ito_realtime_changed != NULL) {
710 LIST_REMOVE(it, it_rtchgq);
711 }
712 }
713
714 /* Remove it from the queue to be signalled. */
715 if (it->it_queued) {
716 TAILQ_REMOVE(it->it_ops->ito_queue, it, it_chain);
717 it->it_queued = false;
718 }
719
720 /* All done with the global state. */
721 itimer_unlock();
722
723 /* Destroy the callout, if needed. */
724 if (!CLOCK_VIRTUAL_P(it->it_clockid))
725 callout_destroy(&it->it_ch);
726 }
727
728 /*
729 * itimer_decr:
730 *
731 * Decrement an interval timer by a specified number of nanoseconds,
732 * which must be less than a second, i.e. < 1000000000. If the timer
733 * expires, then reload it. In this case, carry over (nsec - old value)
734 * to reduce the value reloaded into the timer so that the timer does
735 * not drift. This routine assumes that it is called in a context where
736 * the timers on which it is operating cannot change in value.
737 *
738 * Returns true if the timer has expired.
739 */
740 static bool
741 itimer_decr(struct itimer *it, int nsec)
742 {
743 struct itimerspec *itp;
744 int error __diagused;
745
746 KASSERT(itimer_lock_held());
747 KASSERT(CLOCK_VIRTUAL_P(it->it_clockid));
748
749 itp = &it->it_time;
750 if (itp->it_value.tv_nsec < nsec) {
751 if (itp->it_value.tv_sec == 0) {
752 /* expired, and already in next interval */
753 nsec -= itp->it_value.tv_nsec;
754 goto expire;
755 }
756 itp->it_value.tv_nsec += 1000000000;
757 itp->it_value.tv_sec--;
758 }
759 itp->it_value.tv_nsec -= nsec;
760 nsec = 0;
761 if (timespecisset(&itp->it_value))
762 return false;
763 /* expired, exactly at end of interval */
764 expire:
765 if (timespecisset(&itp->it_interval)) {
766 itp->it_value = itp->it_interval;
767 itp->it_value.tv_nsec -= nsec;
768 if (itp->it_value.tv_nsec < 0) {
769 itp->it_value.tv_nsec += 1000000000;
770 itp->it_value.tv_sec--;
771 }
772 error = itimer_settime(it);
773 KASSERT(error == 0); /* virtual, never fails */
774 } else
775 itp->it_value.tv_nsec = 0; /* sec is already 0 */
776 return true;
777 }
778
779 /*
780 * itimer_fire:
781 *
782 * An interval timer has fired. Enqueue it for processing, if
783 * needed.
784 */
785 void
786 itimer_fire(struct itimer * const it)
787 {
788
789 KASSERT(itimer_lock_held());
790
791 if (!it->it_queued) {
792 TAILQ_INSERT_TAIL(it->it_ops->ito_queue, it, it_chain);
793 it->it_queued = true;
794 softint_schedule(*it->it_ops->ito_sihp);
795 }
796 }
797
798 static void itimer_callout(void *);
799
800 /*
801 * itimer_arm_real:
802 *
803 * Arm a non-virtual timer.
804 */
805 static void
806 itimer_arm_real(struct itimer * const it)
807 {
808 /*
809 * Don't need to check tshzto() return value, here.
810 * callout_reset() does it for us.
811 */
812 callout_reset(&it->it_ch,
813 (it->it_clockid == CLOCK_MONOTONIC
814 ? tshztoup(&it->it_time.it_value)
815 : tshzto(&it->it_time.it_value)),
816 itimer_callout, it);
817 }
818
819 /*
820 * itimer_callout:
821 *
822 * Callout to expire a non-virtual timer. Queue it up for processing,
823 * and then reload, if it is configured to do so.
824 *
825 * N.B. A delay in processing this callout causes multiple
826 * SIGALRM calls to be compressed into one.
827 */
828 static void
829 itimer_callout(void *arg)
830 {
831 uint64_t last_val, next_val, interval, now_ns;
832 struct timespec now, next;
833 struct itimer * const it = arg;
834 int backwards;
835
836 itimer_lock();
837 (*it->it_ops->ito_fire)(it);
838
839 if (!timespecisset(&it->it_time.it_interval)) {
840 timespecclear(&it->it_time.it_value);
841 itimer_unlock();
842 return;
843 }
844
845 if (it->it_clockid == CLOCK_MONOTONIC) {
846 getnanouptime(&now);
847 } else {
848 getnanotime(&now);
849 }
850 backwards = (timespeccmp(&it->it_time.it_value, &now, >));
851 timespecadd(&it->it_time.it_value, &it->it_time.it_interval, &next);
852 /* Handle the easy case of non-overflown timers first. */
853 if (!backwards && timespeccmp(&next, &now, >)) {
854 it->it_time.it_value = next;
855 } else {
856 now_ns = timespec2ns(&now);
857 last_val = timespec2ns(&it->it_time.it_value);
858 interval = timespec2ns(&it->it_time.it_interval);
859
860 next_val = now_ns +
861 (now_ns - last_val + interval - 1) % interval;
862
863 if (backwards)
864 next_val += interval;
865 else
866 it->it_overruns += (now_ns - last_val) / interval;
867
868 it->it_time.it_value.tv_sec = next_val / 1000000000;
869 it->it_time.it_value.tv_nsec = next_val % 1000000000;
870 }
871
872 /*
873 * Reset the callout, if it's not going away.
874 */
875 if (!it->it_dying)
876 itimer_arm_real(it);
877 itimer_unlock();
878 }
879
880 /*
881 * itimer_settime:
882 *
883 * Set up the given interval timer. The value in it->it_time.it_value
884 * is taken to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC
885 * timers and a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
886 *
887 * If the callout had already fired but not yet run, fails with
888 * ERESTART -- caller must restart from the top to look up a timer.
889 */
890 int
891 itimer_settime(struct itimer *it)
892 {
893 struct itimer *itn, *pitn;
894 struct itlist *itl;
895
896 KASSERT(itimer_lock_held());
897
898 if (!CLOCK_VIRTUAL_P(it->it_clockid)) {
899 /*
900 * Try to stop the callout. However, if it had already
901 * fired, we have to drop the lock to wait for it, so
902 * the world may have changed and pt may not be there
903 * any more. In that case, tell the caller to start
904 * over from the top.
905 */
906 if (callout_halt(&it->it_ch, &itimer_mutex))
907 return ERESTART;
908
909 /* Now we can touch it and start it up again. */
910 if (timespecisset(&it->it_time.it_value))
911 itimer_arm_real(it);
912 } else {
913 if (it->it_active) {
914 itn = LIST_NEXT(it, it_list);
915 LIST_REMOVE(it, it_list);
916 for ( ; itn; itn = LIST_NEXT(itn, it_list))
917 timespecadd(&it->it_time.it_value,
918 &itn->it_time.it_value,
919 &itn->it_time.it_value);
920 }
921 if (timespecisset(&it->it_time.it_value)) {
922 itl = it->it_vlist;
923 for (itn = LIST_FIRST(itl), pitn = NULL;
924 itn && timespeccmp(&it->it_time.it_value,
925 &itn->it_time.it_value, >);
926 pitn = itn, itn = LIST_NEXT(itn, it_list))
927 timespecsub(&it->it_time.it_value,
928 &itn->it_time.it_value,
929 &it->it_time.it_value);
930
931 if (pitn)
932 LIST_INSERT_AFTER(pitn, it, it_list);
933 else
934 LIST_INSERT_HEAD(itl, it, it_list);
935
936 for ( ; itn ; itn = LIST_NEXT(itn, it_list))
937 timespecsub(&itn->it_time.it_value,
938 &it->it_time.it_value,
939 &itn->it_time.it_value);
940
941 it->it_active = true;
942 } else {
943 it->it_active = false;
944 }
945 }
946
947 /* Success! */
948 return 0;
949 }
950
951 /*
952 * itimer_gettime:
953 *
954 * Return the remaining time of an interval timer.
955 */
956 void
957 itimer_gettime(const struct itimer *it, struct itimerspec *aits)
958 {
959 struct timespec now;
960 struct itimer *itn;
961
962 KASSERT(itimer_lock_held());
963
964 *aits = it->it_time;
965 if (!CLOCK_VIRTUAL_P(it->it_clockid)) {
966 /*
967 * Convert from absolute to relative time in .it_value
968 * part of real time timer. If time for real time
969 * timer has passed return 0, else return difference
970 * between current time and time for the timer to go
971 * off.
972 */
973 if (timespecisset(&aits->it_value)) {
974 if (it->it_clockid == CLOCK_REALTIME) {
975 getnanotime(&now);
976 } else { /* CLOCK_MONOTONIC */
977 getnanouptime(&now);
978 }
979 if (timespeccmp(&aits->it_value, &now, <))
980 timespecclear(&aits->it_value);
981 else
982 timespecsub(&aits->it_value, &now,
983 &aits->it_value);
984 }
985 } else if (it->it_active) {
986 for (itn = LIST_FIRST(it->it_vlist); itn && itn != it;
987 itn = LIST_NEXT(itn, it_list))
988 timespecadd(&aits->it_value,
989 &itn->it_time.it_value, &aits->it_value);
990 KASSERT(itn != NULL); /* it should be findable on the list */
991 } else
992 timespecclear(&aits->it_value);
993 }
994
995 /*
996 * Per-process timer support.
997 *
998 * Both the BSD getitimer() family and the POSIX timer_*() family of
999 * routines are supported.
1000 *
1001 * All timers are kept in an array pointed to by p_timers, which is
1002 * allocated on demand - many processes don't use timers at all. The
1003 * first four elements in this array are reserved for the BSD timers:
1004 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element
1005 * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be
1006 * allocated by the timer_create() syscall.
1007 *
1008 * These timers are a "sub-class" of interval timer.
1009 */
1010
1011 /*
1012 * ptimer_free:
1013 *
1014 * Free the per-process timer at the specified index.
1015 */
1016 static void
1017 ptimer_free(struct ptimers *pts, int index)
1018 {
1019 struct itimer *it;
1020 struct ptimer *pt;
1021
1022 KASSERT(itimer_lock_held());
1023
1024 it = pts->pts_timers[index];
1025 pt = container_of(it, struct ptimer, pt_itimer);
1026 pts->pts_timers[index] = NULL;
1027 itimer_fini(it); /* releases itimer_lock */
1028 kmem_free(pt, sizeof(*pt));
1029 }
1030
1031 /*
1032 * ptimers_alloc:
1033 *
1034 * Allocate a ptimers for the specified process.
1035 */
1036 static struct ptimers *
1037 ptimers_alloc(struct proc *p)
1038 {
1039 struct ptimers *pts;
1040 int i;
1041
1042 pts = kmem_alloc(sizeof(*pts), KM_SLEEP);
1043 LIST_INIT(&pts->pts_virtual);
1044 LIST_INIT(&pts->pts_prof);
1045 for (i = 0; i < TIMER_MAX; i++)
1046 pts->pts_timers[i] = NULL;
1047 itimer_lock();
1048 if (p->p_timers == NULL) {
1049 p->p_timers = pts;
1050 itimer_unlock();
1051 return pts;
1052 }
1053 itimer_unlock();
1054 kmem_free(pts, sizeof(*pts));
1055 return p->p_timers;
1056 }
1057
1058 /*
1059 * ptimers_free:
1060 *
1061 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1062 * then clean up all timers and free all the data structures. If
1063 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1064 * by timer_create(), not the BSD setitimer() timers, and only free the
1065 * structure if none of those remain.
1066 *
1067 * This function is exported because it is needed in the exec and
1068 * exit code paths.
1069 */
1070 void
1071 ptimers_free(struct proc *p, int which)
1072 {
1073 struct ptimers *pts;
1074 struct itimer *itn;
1075 struct timespec ts;
1076 int i;
1077
1078 if (p->p_timers == NULL)
1079 return;
1080
1081 pts = p->p_timers;
1082 itimer_lock();
1083 if (which == TIMERS_ALL) {
1084 p->p_timers = NULL;
1085 i = 0;
1086 } else {
1087 timespecclear(&ts);
1088 for (itn = LIST_FIRST(&pts->pts_virtual);
1089 itn && itn != pts->pts_timers[ITIMER_VIRTUAL];
1090 itn = LIST_NEXT(itn, it_list)) {
1091 KASSERT(itn->it_clockid == CLOCK_VIRTUAL);
1092 timespecadd(&ts, &itn->it_time.it_value, &ts);
1093 }
1094 LIST_FIRST(&pts->pts_virtual) = NULL;
1095 if (itn) {
1096 KASSERT(itn->it_clockid == CLOCK_VIRTUAL);
1097 timespecadd(&ts, &itn->it_time.it_value,
1098 &itn->it_time.it_value);
1099 LIST_INSERT_HEAD(&pts->pts_virtual, itn, it_list);
1100 }
1101 timespecclear(&ts);
1102 for (itn = LIST_FIRST(&pts->pts_prof);
1103 itn && itn != pts->pts_timers[ITIMER_PROF];
1104 itn = LIST_NEXT(itn, it_list)) {
1105 KASSERT(itn->it_clockid == CLOCK_PROF);
1106 timespecadd(&ts, &itn->it_time.it_value, &ts);
1107 }
1108 LIST_FIRST(&pts->pts_prof) = NULL;
1109 if (itn) {
1110 KASSERT(itn->it_clockid == CLOCK_PROF);
1111 timespecadd(&ts, &itn->it_time.it_value,
1112 &itn->it_time.it_value);
1113 LIST_INSERT_HEAD(&pts->pts_prof, itn, it_list);
1114 }
1115 i = TIMER_MIN;
1116 }
1117 for ( ; i < TIMER_MAX; i++) {
1118 if (pts->pts_timers[i] != NULL) {
1119 /* Free the timer and release the lock. */
1120 ptimer_free(pts, i);
1121 /* Reacquire the lock for the next one. */
1122 itimer_lock();
1123 }
1124 }
1125 if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
1126 pts->pts_timers[2] == NULL && pts->pts_timers[3] == NULL) {
1127 p->p_timers = NULL;
1128 itimer_unlock();
1129 kmem_free(pts, sizeof(*pts));
1130 } else
1131 itimer_unlock();
1132 }
1133
1134 /*
1135 * ptimer_fire:
1136 *
1137 * Fire a per-process timer.
1138 */
1139 static void
1140 ptimer_fire(struct itimer *it)
1141 {
1142 struct ptimer *pt = container_of(it, struct ptimer, pt_itimer);
1143
1144 KASSERT(itimer_lock_held());
1145
1146 /*
1147 * XXX Can overrun, but we don't do signal queueing yet, anyway.
1148 * XXX Relying on the clock interrupt is stupid.
1149 */
1150 if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
1151 return;
1152 }
1153 itimer_fire(it);
1154 }
1155
1156 /*
1157 * Operations vector for per-process timers (BSD and POSIX).
1158 */
1159 static const struct itimer_ops ptimer_itimer_ops = {
1160 .ito_queue = &ptimer_queue,
1161 .ito_sihp = &ptimer_sih,
1162 .ito_fire = &ptimer_fire,
1163 };
1164
1165 /*
1166 * sys_timer_create:
1167 *
1168 * System call to create a POSIX timer.
1169 */
1170 int
1171 sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
1172 register_t *retval)
1173 {
1174 /* {
1175 syscallarg(clockid_t) clock_id;
1176 syscallarg(struct sigevent *) evp;
1177 syscallarg(timer_t *) timerid;
1178 } */
1179
1180 return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
1181 SCARG(uap, evp), copyin, l);
1182 }
1183
1184 int
1185 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
1186 copyin_t fetch_event, struct lwp *l)
1187 {
1188 int error;
1189 timer_t timerid;
1190 struct itlist *itl;
1191 struct ptimers *pts;
1192 struct ptimer *pt;
1193 struct proc *p;
1194
1195 p = l->l_proc;
1196
1197 if ((u_int)id > CLOCK_MONOTONIC)
1198 return (EINVAL);
1199
1200 if ((pts = p->p_timers) == NULL)
1201 pts = ptimers_alloc(p);
1202
1203 pt = kmem_zalloc(sizeof(*pt), KM_SLEEP);
1204 if (evp != NULL) {
1205 if (((error =
1206 (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
1207 ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
1208 (pt->pt_ev.sigev_notify > SIGEV_SA)) ||
1209 (pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
1210 (pt->pt_ev.sigev_signo <= 0 ||
1211 pt->pt_ev.sigev_signo >= NSIG))) {
1212 kmem_free(pt, sizeof(*pt));
1213 return (error ? error : EINVAL);
1214 }
1215 }
1216
1217 /* Find a free timer slot, skipping those reserved for setitimer(). */
1218 itimer_lock();
1219 for (timerid = TIMER_MIN; timerid < TIMER_MAX; timerid++)
1220 if (pts->pts_timers[timerid] == NULL)
1221 break;
1222 if (timerid == TIMER_MAX) {
1223 itimer_unlock();
1224 kmem_free(pt, sizeof(*pt));
1225 return EAGAIN;
1226 }
1227 if (evp == NULL) {
1228 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1229 switch (id) {
1230 case CLOCK_REALTIME:
1231 case CLOCK_MONOTONIC:
1232 pt->pt_ev.sigev_signo = SIGALRM;
1233 break;
1234 case CLOCK_VIRTUAL:
1235 pt->pt_ev.sigev_signo = SIGVTALRM;
1236 break;
1237 case CLOCK_PROF:
1238 pt->pt_ev.sigev_signo = SIGPROF;
1239 break;
1240 }
1241 pt->pt_ev.sigev_value.sival_int = timerid;
1242 }
1243
1244 switch (id) {
1245 case CLOCK_VIRTUAL:
1246 itl = &pts->pts_virtual;
1247 break;
1248 case CLOCK_PROF:
1249 itl = &pts->pts_prof;
1250 break;
1251 default:
1252 itl = NULL;
1253 }
1254
1255 itimer_init(&pt->pt_itimer, &ptimer_itimer_ops, id, itl);
1256 pt->pt_proc = p;
1257 pt->pt_poverruns = 0;
1258 pt->pt_entry = timerid;
1259
1260 pts->pts_timers[timerid] = &pt->pt_itimer;
1261 itimer_unlock();
1262
1263 return copyout(&timerid, tid, sizeof(timerid));
1264 }
1265
1266 /*
1267 * sys_timer_delete:
1268 *
1269 * System call to delete a POSIX timer.
1270 */
1271 int
1272 sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
1273 register_t *retval)
1274 {
1275 /* {
1276 syscallarg(timer_t) timerid;
1277 } */
1278 struct proc *p = l->l_proc;
1279 timer_t timerid;
1280 struct ptimers *pts;
1281 struct itimer *it, *itn;
1282
1283 timerid = SCARG(uap, timerid);
1284 pts = p->p_timers;
1285
1286 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
1287 return (EINVAL);
1288
1289 itimer_lock();
1290 if ((it = pts->pts_timers[timerid]) == NULL) {
1291 itimer_unlock();
1292 return (EINVAL);
1293 }
1294
1295 if (CLOCK_VIRTUAL_P(it->it_clockid)) {
1296 if (it->it_active) {
1297 itn = LIST_NEXT(it, it_list);
1298 LIST_REMOVE(it, it_list);
1299 for ( ; itn; itn = LIST_NEXT(itn, it_list))
1300 timespecadd(&it->it_time.it_value,
1301 &itn->it_time.it_value,
1302 &itn->it_time.it_value);
1303 it->it_active = false;
1304 }
1305 }
1306
1307 /* Free the timer and release the lock. */
1308 ptimer_free(pts, timerid);
1309
1310 return (0);
1311 }
1312
1313 /*
1314 * sys___timer_settime50:
1315 *
1316 * System call to set/arm a POSIX timer.
1317 */
1318 int
1319 sys___timer_settime50(struct lwp *l,
1320 const struct sys___timer_settime50_args *uap,
1321 register_t *retval)
1322 {
1323 /* {
1324 syscallarg(timer_t) timerid;
1325 syscallarg(int) flags;
1326 syscallarg(const struct itimerspec *) value;
1327 syscallarg(struct itimerspec *) ovalue;
1328 } */
1329 int error;
1330 struct itimerspec value, ovalue, *ovp = NULL;
1331
1332 if ((error = copyin(SCARG(uap, value), &value,
1333 sizeof(struct itimerspec))) != 0)
1334 return (error);
1335
1336 if (SCARG(uap, ovalue))
1337 ovp = &ovalue;
1338
1339 if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
1340 SCARG(uap, flags), l->l_proc)) != 0)
1341 return error;
1342
1343 if (ovp)
1344 return copyout(&ovalue, SCARG(uap, ovalue),
1345 sizeof(struct itimerspec));
1346 return 0;
1347 }
1348
1349 int
1350 dotimer_settime(int timerid, struct itimerspec *value,
1351 struct itimerspec *ovalue, int flags, struct proc *p)
1352 {
1353 struct timespec now;
1354 struct itimerspec val, oval;
1355 struct ptimers *pts;
1356 struct itimer *it;
1357 int error;
1358
1359 pts = p->p_timers;
1360
1361 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
1362 return EINVAL;
1363 val = *value;
1364 if ((error = itimespecfix(&val.it_value)) != 0 ||
1365 (error = itimespecfix(&val.it_interval)) != 0)
1366 return error;
1367
1368 itimer_lock();
1369 restart:
1370 if ((it = pts->pts_timers[timerid]) == NULL) {
1371 itimer_unlock();
1372 return EINVAL;
1373 }
1374
1375 oval = it->it_time;
1376 it->it_time = val;
1377
1378 /*
1379 * If we've been passed a relative time for a realtime timer,
1380 * convert it to absolute; if an absolute time for a virtual
1381 * timer, convert it to relative and make sure we don't set it
1382 * to zero, which would cancel the timer, or let it go
1383 * negative, which would confuse the comparison tests.
1384 */
1385 if (timespecisset(&it->it_time.it_value)) {
1386 if (!CLOCK_VIRTUAL_P(it->it_clockid)) {
1387 if ((flags & TIMER_ABSTIME) == 0) {
1388 if (it->it_clockid == CLOCK_REALTIME) {
1389 getnanotime(&now);
1390 } else { /* CLOCK_MONOTONIC */
1391 getnanouptime(&now);
1392 }
1393 timespecadd(&it->it_time.it_value, &now,
1394 &it->it_time.it_value);
1395 }
1396 } else {
1397 if ((flags & TIMER_ABSTIME) != 0) {
1398 getnanotime(&now);
1399 timespecsub(&it->it_time.it_value, &now,
1400 &it->it_time.it_value);
1401 if (!timespecisset(&it->it_time.it_value) ||
1402 it->it_time.it_value.tv_sec < 0) {
1403 it->it_time.it_value.tv_sec = 0;
1404 it->it_time.it_value.tv_nsec = 1;
1405 }
1406 }
1407 }
1408 }
1409
1410 error = itimer_settime(it);
1411 if (error == ERESTART) {
1412 KASSERT(!CLOCK_VIRTUAL_P(it->it_clockid));
1413 goto restart;
1414 }
1415 KASSERT(error == 0);
1416 itimer_unlock();
1417
1418 if (ovalue)
1419 *ovalue = oval;
1420
1421 return (0);
1422 }
1423
1424 /*
1425 * sys___timer_gettime50:
1426 *
1427 * System call to return the time remaining until a POSIX timer fires.
1428 */
1429 int
1430 sys___timer_gettime50(struct lwp *l,
1431 const struct sys___timer_gettime50_args *uap, register_t *retval)
1432 {
1433 /* {
1434 syscallarg(timer_t) timerid;
1435 syscallarg(struct itimerspec *) value;
1436 } */
1437 struct itimerspec its;
1438 int error;
1439
1440 if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
1441 &its)) != 0)
1442 return error;
1443
1444 return copyout(&its, SCARG(uap, value), sizeof(its));
1445 }
1446
1447 int
1448 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
1449 {
1450 struct itimer *it;
1451 struct ptimers *pts;
1452
1453 pts = p->p_timers;
1454 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
1455 return (EINVAL);
1456 itimer_lock();
1457 if ((it = pts->pts_timers[timerid]) == NULL) {
1458 itimer_unlock();
1459 return (EINVAL);
1460 }
1461 itimer_gettime(it, its);
1462 itimer_unlock();
1463
1464 return 0;
1465 }
1466
1467 /*
1468 * sys_timer_getoverrun:
1469 *
1470 * System call to return the number of times a POSIX timer has
1471 * expired while a notification was already pending. The counter
1472 * is reset when a timer expires and a notification can be posted.
1473 */
1474 int
1475 sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
1476 register_t *retval)
1477 {
1478 /* {
1479 syscallarg(timer_t) timerid;
1480 } */
1481 struct proc *p = l->l_proc;
1482 struct ptimers *pts;
1483 int timerid;
1484 struct itimer *it;
1485 struct ptimer *pt;
1486
1487 timerid = SCARG(uap, timerid);
1488
1489 pts = p->p_timers;
1490 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
1491 return (EINVAL);
1492 itimer_lock();
1493 if ((it = pts->pts_timers[timerid]) == NULL) {
1494 itimer_unlock();
1495 return (EINVAL);
1496 }
1497 pt = container_of(it, struct ptimer, pt_itimer);
1498 *retval = pt->pt_poverruns;
1499 if (*retval >= DELAYTIMER_MAX)
1500 *retval = DELAYTIMER_MAX;
1501 itimer_unlock();
1502
1503 return (0);
1504 }
1505
1506 /*
1507 * sys___getitimer50:
1508 *
1509 * System call to get the time remaining before a BSD timer fires.
1510 */
1511 int
1512 sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
1513 register_t *retval)
1514 {
1515 /* {
1516 syscallarg(int) which;
1517 syscallarg(struct itimerval *) itv;
1518 } */
1519 struct proc *p = l->l_proc;
1520 struct itimerval aitv;
1521 int error;
1522
1523 memset(&aitv, 0, sizeof(aitv));
1524 error = dogetitimer(p, SCARG(uap, which), &aitv);
1525 if (error)
1526 return error;
1527 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1528 }
1529
1530 int
1531 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1532 {
1533 struct ptimers *pts;
1534 struct itimer *it;
1535 struct itimerspec its;
1536
1537 if ((u_int)which > ITIMER_MONOTONIC)
1538 return (EINVAL);
1539
1540 itimer_lock();
1541 pts = p->p_timers;
1542 if (pts == NULL || (it = pts->pts_timers[which]) == NULL) {
1543 timerclear(&itvp->it_value);
1544 timerclear(&itvp->it_interval);
1545 } else {
1546 itimer_gettime(it, &its);
1547 TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
1548 TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
1549 }
1550 itimer_unlock();
1551
1552 return 0;
1553 }
1554
1555 /*
1556 * sys___setitimer50:
1557 *
1558 * System call to set/arm a BSD timer.
1559 */
1560 int
1561 sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
1562 register_t *retval)
1563 {
1564 /* {
1565 syscallarg(int) which;
1566 syscallarg(const struct itimerval *) itv;
1567 syscallarg(struct itimerval *) oitv;
1568 } */
1569 struct proc *p = l->l_proc;
1570 int which = SCARG(uap, which);
1571 struct sys___getitimer50_args getargs;
1572 const struct itimerval *itvp;
1573 struct itimerval aitv;
1574 int error;
1575
1576 if ((u_int)which > ITIMER_MONOTONIC)
1577 return (EINVAL);
1578 itvp = SCARG(uap, itv);
1579 if (itvp &&
1580 (error = copyin(itvp, &aitv, sizeof(struct itimerval))) != 0)
1581 return (error);
1582 if (SCARG(uap, oitv) != NULL) {
1583 SCARG(&getargs, which) = which;
1584 SCARG(&getargs, itv) = SCARG(uap, oitv);
1585 if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
1586 return (error);
1587 }
1588 if (itvp == 0)
1589 return (0);
1590
1591 return dosetitimer(p, which, &aitv);
1592 }
1593
1594 int
1595 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1596 {
1597 struct timespec now;
1598 struct ptimers *pts;
1599 struct ptimer *spare;
1600 struct itimer *it;
1601 struct itlist *itl;
1602 int error;
1603
1604 KASSERT((u_int)which <= CLOCK_MONOTONIC);
1605 if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1606 return (EINVAL);
1607
1608 /*
1609 * Don't bother allocating data structures if the process just
1610 * wants to clear the timer.
1611 */
1612 spare = NULL;
1613 pts = p->p_timers;
1614 retry:
1615 if (!timerisset(&itvp->it_value) && (pts == NULL ||
1616 pts->pts_timers[which] == NULL))
1617 return (0);
1618 if (pts == NULL)
1619 pts = ptimers_alloc(p);
1620 itimer_lock();
1621 restart:
1622 it = pts->pts_timers[which];
1623 if (it == NULL) {
1624 struct ptimer *pt;
1625
1626 if (spare == NULL) {
1627 itimer_unlock();
1628 spare = kmem_zalloc(sizeof(*spare), KM_SLEEP);
1629 goto retry;
1630 }
1631 pt = spare;
1632 spare = NULL;
1633
1634 it = &pt->pt_itimer;
1635 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1636 pt->pt_ev.sigev_value.sival_int = which;
1637
1638 switch (which) {
1639 case ITIMER_REAL:
1640 case ITIMER_MONOTONIC:
1641 itl = NULL;
1642 pt->pt_ev.sigev_signo = SIGALRM;
1643 break;
1644 case ITIMER_VIRTUAL:
1645 itl = &pts->pts_virtual;
1646 pt->pt_ev.sigev_signo = SIGVTALRM;
1647 break;
1648 case ITIMER_PROF:
1649 itl = &pts->pts_prof;
1650 pt->pt_ev.sigev_signo = SIGPROF;
1651 break;
1652 default:
1653 panic("%s: can't happen %d", __func__, which);
1654 }
1655 itimer_init(it, &ptimer_itimer_ops, which, itl);
1656 pt->pt_proc = p;
1657 pt->pt_entry = which;
1658
1659 pts->pts_timers[which] = it;
1660 }
1661
1662 TIMEVAL_TO_TIMESPEC(&itvp->it_value, &it->it_time.it_value);
1663 TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &it->it_time.it_interval);
1664
1665 if (timespecisset(&it->it_time.it_value)) {
1666 /* Convert to absolute time */
1667 /* XXX need to wrap in splclock for timecounters case? */
1668 switch (which) {
1669 case ITIMER_REAL:
1670 getnanotime(&now);
1671 timespecadd(&it->it_time.it_value, &now,
1672 &it->it_time.it_value);
1673 break;
1674 case ITIMER_MONOTONIC:
1675 getnanouptime(&now);
1676 timespecadd(&it->it_time.it_value, &now,
1677 &it->it_time.it_value);
1678 break;
1679 default:
1680 break;
1681 }
1682 }
1683 error = itimer_settime(it);
1684 if (error == ERESTART) {
1685 KASSERT(!CLOCK_VIRTUAL_P(it->it_clockid));
1686 goto restart;
1687 }
1688 KASSERT(error == 0);
1689 itimer_unlock();
1690 if (spare != NULL)
1691 kmem_free(spare, sizeof(*spare));
1692
1693 return (0);
1694 }
1695
1696 /*
1697 * ptimer_tick:
1698 *
1699 * Called from hardclock() to decrement per-process virtual timers.
1700 */
1701 void
1702 ptimer_tick(lwp_t *l, bool user)
1703 {
1704 struct ptimers *pts;
1705 struct itimer *it;
1706 proc_t *p;
1707
1708 p = l->l_proc;
1709 if (p->p_timers == NULL)
1710 return;
1711
1712 itimer_lock();
1713 if ((pts = l->l_proc->p_timers) != NULL) {
1714 /*
1715 * Run current process's virtual and profile time, as needed.
1716 */
1717 if (user && (it = LIST_FIRST(&pts->pts_virtual)) != NULL)
1718 if (itimer_decr(it, tick * 1000))
1719 (*it->it_ops->ito_fire)(it);
1720 if ((it = LIST_FIRST(&pts->pts_prof)) != NULL)
1721 if (itimer_decr(it, tick * 1000))
1722 (*it->it_ops->ito_fire)(it);
1723 }
1724 itimer_unlock();
1725 }
1726
1727 /*
1728 * ptimer_intr:
1729 *
1730 * Software interrupt handler for processing per-process
1731 * timer expiration.
1732 */
1733 static void
1734 ptimer_intr(void *cookie)
1735 {
1736 ksiginfo_t ksi;
1737 struct itimer *it;
1738 struct ptimer *pt;
1739 proc_t *p;
1740
1741 mutex_enter(&proc_lock);
1742 itimer_lock();
1743 while ((it = TAILQ_FIRST(&ptimer_queue)) != NULL) {
1744 TAILQ_REMOVE(&ptimer_queue, it, it_chain);
1745 KASSERT(it->it_ops->ito_queue == &ptimer_queue);
1746 KASSERT(it->it_queued);
1747 it->it_queued = false;
1748
1749 pt = container_of(it, struct ptimer, pt_itimer);
1750
1751 p = pt->pt_proc;
1752 if (p->p_timers == NULL) {
1753 /* Process is dying. */
1754 continue;
1755 }
1756 if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
1757 continue;
1758 }
1759 if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
1760 it->it_overruns++;
1761 continue;
1762 }
1763
1764 KSI_INIT(&ksi);
1765 ksi.ksi_signo = pt->pt_ev.sigev_signo;
1766 ksi.ksi_code = SI_TIMER;
1767 ksi.ksi_value = pt->pt_ev.sigev_value;
1768 pt->pt_poverruns = it->it_overruns;
1769 it->it_overruns = 0;
1770 itimer_unlock();
1771 kpsignal(p, &ksi, NULL);
1772 itimer_lock();
1773 }
1774 itimer_unlock();
1775 mutex_exit(&proc_lock);
1776 }
1777