kern_time.c revision 1.211 1 /* $NetBSD: kern_time.c,v 1.211 2021/04/03 12:57:21 simonb Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009, 2020
5 * The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Christopher G. Demetriou, by Andrew Doran, and by Jason R. Thorpe.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1989, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.211 2021/04/03 12:57:21 simonb Exp $");
66
67 #include <sys/param.h>
68 #include <sys/resourcevar.h>
69 #include <sys/kernel.h>
70 #include <sys/systm.h>
71 #include <sys/proc.h>
72 #include <sys/vnode.h>
73 #include <sys/signalvar.h>
74 #include <sys/syslog.h>
75 #include <sys/timetc.h>
76 #include <sys/timex.h>
77 #include <sys/kauth.h>
78 #include <sys/mount.h>
79 #include <sys/syscallargs.h>
80 #include <sys/cpu.h>
81
82 kmutex_t itimer_mutex __cacheline_aligned; /* XXX static */
83 static struct itlist itimer_realtime_changed_notify;
84
85 static void ptimer_intr(void *);
86 static void *ptimer_sih __read_mostly;
87 static TAILQ_HEAD(, ptimer) ptimer_queue;
88
89 #define CLOCK_VIRTUAL_P(clockid) \
90 ((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)
91
92 CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
93 CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
94 CTASSERT(ITIMER_PROF == CLOCK_PROF);
95 CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC);
96
97 #define DELAYTIMER_MAX 32
98
99 /*
100 * Initialize timekeeping.
101 */
102 void
103 time_init(void)
104 {
105
106 mutex_init(&itimer_mutex, MUTEX_DEFAULT, IPL_SCHED);
107 LIST_INIT(&itimer_realtime_changed_notify);
108
109 TAILQ_INIT(&ptimer_queue);
110 ptimer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
111 ptimer_intr, NULL);
112 }
113
114 /*
115 * Check if the time will wrap if set to ts.
116 *
117 * ts - timespec describing the new time
118 * delta - the delta between the current time and ts
119 */
120 bool
121 time_wraps(struct timespec *ts, struct timespec *delta)
122 {
123
124 /*
125 * Don't allow the time to be set forward so far it
126 * will wrap and become negative, thus allowing an
127 * attacker to bypass the next check below. The
128 * cutoff is 1 year before rollover occurs, so even
129 * if the attacker uses adjtime(2) to move the time
130 * past the cutoff, it will take a very long time
131 * to get to the wrap point.
132 */
133 if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
134 (delta->tv_sec < 0 || delta->tv_nsec < 0))
135 return true;
136
137 return false;
138 }
139
140 /*
141 * itimer_lock:
142 *
143 * Acquire the interval timer data lock.
144 */
145 void
146 itimer_lock(void)
147 {
148 mutex_spin_enter(&itimer_mutex);
149 }
150
151 /*
152 * itimer_unlock:
153 *
154 * Release the interval timer data lock.
155 */
156 void
157 itimer_unlock(void)
158 {
159 mutex_spin_exit(&itimer_mutex);
160 }
161
162 /*
163 * itimer_lock_held:
164 *
165 * Check that the interval timer lock is held for diagnostic
166 * assertions.
167 */
168 inline bool __diagused
169 itimer_lock_held(void)
170 {
171 return mutex_owned(&itimer_mutex);
172 }
173
174 /*
175 * Time of day and interval timer support.
176 *
177 * These routines provide the kernel entry points to get and set
178 * the time-of-day and per-process interval timers. Subroutines
179 * here provide support for adding and subtracting timeval structures
180 * and decrementing interval timers, optionally reloading the interval
181 * timers when they expire.
182 */
183
184 /* This function is used by clock_settime and settimeofday */
185 static int
186 settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
187 {
188 struct timespec delta, now;
189
190 /*
191 * The time being set to an unreasonable value will cause
192 * unreasonable system behaviour.
193 */
194 if (ts->tv_sec < 0 || ts->tv_sec > (1LL << 36))
195 return (EINVAL);
196
197 nanotime(&now);
198 timespecsub(ts, &now, &delta);
199
200 if (check_kauth && kauth_authorize_system(kauth_cred_get(),
201 KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
202 &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
203 return (EPERM);
204 }
205
206 #ifdef notyet
207 if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
208 return (EPERM);
209 }
210 #endif
211
212 tc_setclock(ts);
213
214 resettodr();
215
216 /*
217 * Notify pending CLOCK_REALTIME timers about the real time change.
218 * There may be inactive timers on this list, but this happens
219 * comparatively less often than timers firing, and so it's better
220 * to put the extra checks here than to complicate the other code
221 * path.
222 */
223 struct itimer *it;
224 itimer_lock();
225 LIST_FOREACH(it, &itimer_realtime_changed_notify, it_rtchgq) {
226 KASSERT(it->it_ops->ito_realtime_changed != NULL);
227 if (timespecisset(&it->it_time.it_value)) {
228 (*it->it_ops->ito_realtime_changed)(it);
229 }
230 }
231 itimer_unlock();
232
233 return (0);
234 }
235
236 int
237 settime(struct proc *p, struct timespec *ts)
238 {
239 return (settime1(p, ts, true));
240 }
241
242 /* ARGSUSED */
243 int
244 sys___clock_gettime50(struct lwp *l,
245 const struct sys___clock_gettime50_args *uap, register_t *retval)
246 {
247 /* {
248 syscallarg(clockid_t) clock_id;
249 syscallarg(struct timespec *) tp;
250 } */
251 int error;
252 struct timespec ats;
253
254 error = clock_gettime1(SCARG(uap, clock_id), &ats);
255 if (error != 0)
256 return error;
257
258 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
259 }
260
261 /* ARGSUSED */
262 int
263 sys___clock_settime50(struct lwp *l,
264 const struct sys___clock_settime50_args *uap, register_t *retval)
265 {
266 /* {
267 syscallarg(clockid_t) clock_id;
268 syscallarg(const struct timespec *) tp;
269 } */
270 int error;
271 struct timespec ats;
272
273 if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
274 return error;
275
276 return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
277 }
278
279
280 int
281 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
282 bool check_kauth)
283 {
284 int error;
285
286 if (tp->tv_nsec < 0 || tp->tv_nsec >= 1000000000L)
287 return EINVAL;
288
289 switch (clock_id) {
290 case CLOCK_REALTIME:
291 if ((error = settime1(p, tp, check_kauth)) != 0)
292 return (error);
293 break;
294 case CLOCK_MONOTONIC:
295 return (EINVAL); /* read-only clock */
296 default:
297 return (EINVAL);
298 }
299
300 return 0;
301 }
302
303 int
304 sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
305 register_t *retval)
306 {
307 /* {
308 syscallarg(clockid_t) clock_id;
309 syscallarg(struct timespec *) tp;
310 } */
311 struct timespec ts;
312 int error;
313
314 if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
315 return error;
316
317 if (SCARG(uap, tp))
318 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
319
320 return error;
321 }
322
323 int
324 clock_getres1(clockid_t clock_id, struct timespec *ts)
325 {
326
327 switch (clock_id) {
328 case CLOCK_REALTIME:
329 case CLOCK_MONOTONIC:
330 ts->tv_sec = 0;
331 if (tc_getfrequency() > 1000000000)
332 ts->tv_nsec = 1;
333 else
334 ts->tv_nsec = 1000000000 / tc_getfrequency();
335 break;
336 default:
337 return EINVAL;
338 }
339
340 return 0;
341 }
342
343 /* ARGSUSED */
344 int
345 sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
346 register_t *retval)
347 {
348 /* {
349 syscallarg(struct timespec *) rqtp;
350 syscallarg(struct timespec *) rmtp;
351 } */
352 struct timespec rmt, rqt;
353 int error, error1;
354
355 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
356 if (error)
357 return (error);
358
359 error = nanosleep1(l, CLOCK_MONOTONIC, 0, &rqt,
360 SCARG(uap, rmtp) ? &rmt : NULL);
361 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
362 return error;
363
364 error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
365 return error1 ? error1 : error;
366 }
367
368 /* ARGSUSED */
369 int
370 sys_clock_nanosleep(struct lwp *l, const struct sys_clock_nanosleep_args *uap,
371 register_t *retval)
372 {
373 /* {
374 syscallarg(clockid_t) clock_id;
375 syscallarg(int) flags;
376 syscallarg(struct timespec *) rqtp;
377 syscallarg(struct timespec *) rmtp;
378 } */
379 struct timespec rmt, rqt;
380 int error, error1;
381
382 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
383 if (error)
384 goto out;
385
386 error = nanosleep1(l, SCARG(uap, clock_id), SCARG(uap, flags), &rqt,
387 SCARG(uap, rmtp) ? &rmt : NULL);
388 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
389 goto out;
390
391 if ((SCARG(uap, flags) & TIMER_ABSTIME) == 0 &&
392 (error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt))) != 0)
393 error = error1;
394 out:
395 *retval = error;
396 return 0;
397 }
398
399 int
400 nanosleep1(struct lwp *l, clockid_t clock_id, int flags, struct timespec *rqt,
401 struct timespec *rmt)
402 {
403 struct timespec rmtstart;
404 int error, timo;
405
406 if ((error = ts2timo(clock_id, flags, rqt, &timo, &rmtstart)) != 0) {
407 if (error == ETIMEDOUT) {
408 error = 0;
409 if (rmt != NULL)
410 rmt->tv_sec = rmt->tv_nsec = 0;
411 }
412 return error;
413 }
414
415 /*
416 * Avoid inadvertently sleeping forever
417 */
418 if (timo == 0)
419 timo = 1;
420 again:
421 error = kpause("nanoslp", true, timo, NULL);
422 if (error == EWOULDBLOCK)
423 error = 0;
424 if (rmt != NULL || error == 0) {
425 struct timespec rmtend;
426 struct timespec t0;
427 struct timespec *t;
428 int err;
429
430 err = clock_gettime1(clock_id, &rmtend);
431 if (err != 0)
432 return err;
433
434 t = (rmt != NULL) ? rmt : &t0;
435 if (flags & TIMER_ABSTIME) {
436 timespecsub(rqt, &rmtend, t);
437 } else {
438 timespecsub(&rmtend, &rmtstart, t);
439 timespecsub(rqt, t, t);
440 }
441 if (t->tv_sec < 0)
442 timespecclear(t);
443 if (error == 0) {
444 timo = tstohz(t);
445 if (timo > 0)
446 goto again;
447 }
448 }
449
450 if (error == ERESTART)
451 error = EINTR;
452
453 return error;
454 }
455
456 int
457 sys_clock_getcpuclockid2(struct lwp *l,
458 const struct sys_clock_getcpuclockid2_args *uap,
459 register_t *retval)
460 {
461 /* {
462 syscallarg(idtype_t idtype;
463 syscallarg(id_t id);
464 syscallarg(clockid_t *)clock_id;
465 } */
466 pid_t pid;
467 lwpid_t lid;
468 clockid_t clock_id;
469 id_t id = SCARG(uap, id);
470
471 switch (SCARG(uap, idtype)) {
472 case P_PID:
473 pid = id == 0 ? l->l_proc->p_pid : id;
474 clock_id = CLOCK_PROCESS_CPUTIME_ID | pid;
475 break;
476 case P_LWPID:
477 lid = id == 0 ? l->l_lid : id;
478 clock_id = CLOCK_THREAD_CPUTIME_ID | lid;
479 break;
480 default:
481 return EINVAL;
482 }
483 return copyout(&clock_id, SCARG(uap, clock_id), sizeof(clock_id));
484 }
485
486 /* ARGSUSED */
487 int
488 sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
489 register_t *retval)
490 {
491 /* {
492 syscallarg(struct timeval *) tp;
493 syscallarg(void *) tzp; really "struct timezone *";
494 } */
495 struct timeval atv;
496 int error = 0;
497 struct timezone tzfake;
498
499 if (SCARG(uap, tp)) {
500 memset(&atv, 0, sizeof(atv));
501 microtime(&atv);
502 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
503 if (error)
504 return (error);
505 }
506 if (SCARG(uap, tzp)) {
507 /*
508 * NetBSD has no kernel notion of time zone, so we just
509 * fake up a timezone struct and return it if demanded.
510 */
511 tzfake.tz_minuteswest = 0;
512 tzfake.tz_dsttime = 0;
513 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
514 }
515 return (error);
516 }
517
518 /* ARGSUSED */
519 int
520 sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
521 register_t *retval)
522 {
523 /* {
524 syscallarg(const struct timeval *) tv;
525 syscallarg(const void *) tzp; really "const struct timezone *";
526 } */
527
528 return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
529 }
530
531 int
532 settimeofday1(const struct timeval *utv, bool userspace,
533 const void *utzp, struct lwp *l, bool check_kauth)
534 {
535 struct timeval atv;
536 struct timespec ts;
537 int error;
538
539 /* Verify all parameters before changing time. */
540
541 /*
542 * NetBSD has no kernel notion of time zone, and only an
543 * obsolete program would try to set it, so we log a warning.
544 */
545 if (utzp)
546 log(LOG_WARNING, "pid %d attempted to set the "
547 "(obsolete) kernel time zone\n", l->l_proc->p_pid);
548
549 if (utv == NULL)
550 return 0;
551
552 if (userspace) {
553 if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
554 return error;
555 utv = &atv;
556 }
557
558 if (utv->tv_usec < 0 || utv->tv_usec >= 1000000)
559 return EINVAL;
560
561 TIMEVAL_TO_TIMESPEC(utv, &ts);
562 return settime1(l->l_proc, &ts, check_kauth);
563 }
564
565 int time_adjusted; /* set if an adjustment is made */
566
567 /* ARGSUSED */
568 int
569 sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
570 register_t *retval)
571 {
572 /* {
573 syscallarg(const struct timeval *) delta;
574 syscallarg(struct timeval *) olddelta;
575 } */
576 int error;
577 struct timeval atv, oldatv;
578
579 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
580 KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
581 return error;
582
583 if (SCARG(uap, delta)) {
584 error = copyin(SCARG(uap, delta), &atv,
585 sizeof(*SCARG(uap, delta)));
586 if (error)
587 return (error);
588 }
589 adjtime1(SCARG(uap, delta) ? &atv : NULL,
590 SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
591 if (SCARG(uap, olddelta))
592 error = copyout(&oldatv, SCARG(uap, olddelta),
593 sizeof(*SCARG(uap, olddelta)));
594 return error;
595 }
596
597 void
598 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
599 {
600 extern int64_t time_adjtime; /* in kern_ntptime.c */
601
602 if (olddelta) {
603 memset(olddelta, 0, sizeof(*olddelta));
604 mutex_spin_enter(&timecounter_lock);
605 olddelta->tv_sec = time_adjtime / 1000000;
606 olddelta->tv_usec = time_adjtime % 1000000;
607 if (olddelta->tv_usec < 0) {
608 olddelta->tv_usec += 1000000;
609 olddelta->tv_sec--;
610 }
611 mutex_spin_exit(&timecounter_lock);
612 }
613
614 if (delta) {
615 mutex_spin_enter(&timecounter_lock);
616 time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
617
618 if (time_adjtime) {
619 /* We need to save the system time during shutdown */
620 time_adjusted |= 1;
621 }
622 mutex_spin_exit(&timecounter_lock);
623 }
624 }
625
626 /*
627 * Interval timer support.
628 *
629 * The itimer_*() routines provide generic support for interval timers,
630 * both real (CLOCK_REALTIME, CLOCK_MONOTIME), and virtual (CLOCK_VIRTUAL,
631 * CLOCK_PROF).
632 *
633 * Real timers keep their deadline as an absolute time, and are fired
634 * by a callout. Virtual timers are kept as a linked-list of deltas,
635 * and are processed by hardclock().
636 *
637 * Because the real time timer callout may be delayed in real time due
638 * to interrupt processing on the system, it is possible for the real
639 * time timeout routine (itimer_callout()) run past after its deadline.
640 * It does not suffice, therefore, to reload the real timer .it_value
641 * from the timer's .it_interval. Rather, we compute the next deadline
642 * in absolute time based on the current time and the .it_interval value,
643 * and report any overruns.
644 *
645 * Note that while the virtual timers are supported in a generic fashion
646 * here, they only (currently) make sense as per-process timers, and thus
647 * only really work for that case.
648 */
649
650 /*
651 * itimer_init:
652 *
653 * Initialize the common data for an interval timer.
654 */
655 void
656 itimer_init(struct itimer * const it, const struct itimer_ops * const ops,
657 clockid_t const id, struct itlist * const itl)
658 {
659
660 KASSERT(itimer_lock_held());
661 KASSERT(ops != NULL);
662
663 timespecclear(&it->it_time.it_value);
664 it->it_ops = ops;
665 it->it_clockid = id;
666 it->it_overruns = 0;
667 it->it_dying = false;
668 if (!CLOCK_VIRTUAL_P(id)) {
669 KASSERT(itl == NULL);
670 callout_init(&it->it_ch, CALLOUT_MPSAFE);
671 if (id == CLOCK_REALTIME && ops->ito_realtime_changed != NULL) {
672 LIST_INSERT_HEAD(&itimer_realtime_changed_notify,
673 it, it_rtchgq);
674 }
675 } else {
676 KASSERT(itl != NULL);
677 it->it_vlist = itl;
678 it->it_active = false;
679 }
680 }
681
682 /*
683 * itimer_poison:
684 *
685 * Poison an interval timer, preventing it from being scheduled
686 * or processed, in preparation for freeing the timer.
687 */
688 void
689 itimer_poison(struct itimer * const it)
690 {
691
692 KASSERT(itimer_lock_held());
693
694 it->it_dying = true;
695
696 /*
697 * For non-virtual timers, stop the callout, or wait for it to
698 * run if it has already fired. It cannot restart again after
699 * this point: the callout won't restart itself when dying, no
700 * other users holding the lock can restart it, and any other
701 * users waiting for callout_halt concurrently (itimer_settime)
702 * will restart from the top.
703 */
704 if (!CLOCK_VIRTUAL_P(it->it_clockid)) {
705 callout_halt(&it->it_ch, &itimer_mutex);
706 if (it->it_clockid == CLOCK_REALTIME &&
707 it->it_ops->ito_realtime_changed != NULL) {
708 LIST_REMOVE(it, it_rtchgq);
709 }
710 }
711 }
712
713 /*
714 * itimer_fini:
715 *
716 * Release resources used by an interval timer.
717 *
718 * N.B. itimer_lock must be held on entry, and is released on exit.
719 */
720 void
721 itimer_fini(struct itimer * const it)
722 {
723
724 KASSERT(itimer_lock_held());
725
726 /* All done with the global state. */
727 itimer_unlock();
728
729 /* Destroy the callout, if needed. */
730 if (!CLOCK_VIRTUAL_P(it->it_clockid))
731 callout_destroy(&it->it_ch);
732 }
733
734 /*
735 * itimer_decr:
736 *
737 * Decrement an interval timer by a specified number of nanoseconds,
738 * which must be less than a second, i.e. < 1000000000. If the timer
739 * expires, then reload it. In this case, carry over (nsec - old value)
740 * to reduce the value reloaded into the timer so that the timer does
741 * not drift. This routine assumes that it is called in a context where
742 * the timers on which it is operating cannot change in value.
743 *
744 * Returns true if the timer has expired.
745 */
746 static bool
747 itimer_decr(struct itimer *it, int nsec)
748 {
749 struct itimerspec *itp;
750 int error __diagused;
751
752 KASSERT(itimer_lock_held());
753 KASSERT(CLOCK_VIRTUAL_P(it->it_clockid));
754
755 itp = &it->it_time;
756 if (itp->it_value.tv_nsec < nsec) {
757 if (itp->it_value.tv_sec == 0) {
758 /* expired, and already in next interval */
759 nsec -= itp->it_value.tv_nsec;
760 goto expire;
761 }
762 itp->it_value.tv_nsec += 1000000000;
763 itp->it_value.tv_sec--;
764 }
765 itp->it_value.tv_nsec -= nsec;
766 nsec = 0;
767 if (timespecisset(&itp->it_value))
768 return false;
769 /* expired, exactly at end of interval */
770 expire:
771 if (timespecisset(&itp->it_interval)) {
772 itp->it_value = itp->it_interval;
773 itp->it_value.tv_nsec -= nsec;
774 if (itp->it_value.tv_nsec < 0) {
775 itp->it_value.tv_nsec += 1000000000;
776 itp->it_value.tv_sec--;
777 }
778 error = itimer_settime(it);
779 KASSERT(error == 0); /* virtual, never fails */
780 } else
781 itp->it_value.tv_nsec = 0; /* sec is already 0 */
782 return true;
783 }
784
785 static void itimer_callout(void *);
786
787 /*
788 * itimer_arm_real:
789 *
790 * Arm a non-virtual timer.
791 */
792 static void
793 itimer_arm_real(struct itimer * const it)
794 {
795 /*
796 * Don't need to check tshzto() return value, here.
797 * callout_reset() does it for us.
798 */
799 callout_reset(&it->it_ch,
800 (it->it_clockid == CLOCK_MONOTONIC
801 ? tshztoup(&it->it_time.it_value)
802 : tshzto(&it->it_time.it_value)),
803 itimer_callout, it);
804 }
805
806 /*
807 * itimer_callout:
808 *
809 * Callout to expire a non-virtual timer. Queue it up for processing,
810 * and then reload, if it is configured to do so.
811 *
812 * N.B. A delay in processing this callout causes multiple
813 * SIGALRM calls to be compressed into one.
814 */
815 static void
816 itimer_callout(void *arg)
817 {
818 uint64_t last_val, next_val, interval, now_ns;
819 struct timespec now, next;
820 struct itimer * const it = arg;
821 int backwards;
822
823 itimer_lock();
824 (*it->it_ops->ito_fire)(it);
825
826 if (!timespecisset(&it->it_time.it_interval)) {
827 timespecclear(&it->it_time.it_value);
828 itimer_unlock();
829 return;
830 }
831
832 if (it->it_clockid == CLOCK_MONOTONIC) {
833 getnanouptime(&now);
834 } else {
835 getnanotime(&now);
836 }
837 backwards = (timespeccmp(&it->it_time.it_value, &now, >));
838 timespecadd(&it->it_time.it_value, &it->it_time.it_interval, &next);
839 /* Handle the easy case of non-overflown timers first. */
840 if (!backwards && timespeccmp(&next, &now, >)) {
841 it->it_time.it_value = next;
842 } else {
843 now_ns = timespec2ns(&now);
844 last_val = timespec2ns(&it->it_time.it_value);
845 interval = timespec2ns(&it->it_time.it_interval);
846
847 next_val = now_ns +
848 (now_ns - last_val + interval - 1) % interval;
849
850 if (backwards)
851 next_val += interval;
852 else
853 it->it_overruns += (now_ns - last_val) / interval;
854
855 it->it_time.it_value.tv_sec = next_val / 1000000000;
856 it->it_time.it_value.tv_nsec = next_val % 1000000000;
857 }
858
859 /*
860 * Reset the callout, if it's not going away.
861 */
862 if (!it->it_dying)
863 itimer_arm_real(it);
864 itimer_unlock();
865 }
866
867 /*
868 * itimer_settime:
869 *
870 * Set up the given interval timer. The value in it->it_time.it_value
871 * is taken to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC
872 * timers and a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
873 *
874 * If the callout had already fired but not yet run, fails with
875 * ERESTART -- caller must restart from the top to look up a timer.
876 */
877 int
878 itimer_settime(struct itimer *it)
879 {
880 struct itimer *itn, *pitn;
881 struct itlist *itl;
882
883 KASSERT(itimer_lock_held());
884
885 if (!CLOCK_VIRTUAL_P(it->it_clockid)) {
886 /*
887 * Try to stop the callout. However, if it had already
888 * fired, we have to drop the lock to wait for it, so
889 * the world may have changed and pt may not be there
890 * any more. In that case, tell the caller to start
891 * over from the top.
892 */
893 if (callout_halt(&it->it_ch, &itimer_mutex))
894 return ERESTART;
895
896 /* Now we can touch it and start it up again. */
897 if (timespecisset(&it->it_time.it_value))
898 itimer_arm_real(it);
899 } else {
900 if (it->it_active) {
901 itn = LIST_NEXT(it, it_list);
902 LIST_REMOVE(it, it_list);
903 for ( ; itn; itn = LIST_NEXT(itn, it_list))
904 timespecadd(&it->it_time.it_value,
905 &itn->it_time.it_value,
906 &itn->it_time.it_value);
907 }
908 if (timespecisset(&it->it_time.it_value)) {
909 itl = it->it_vlist;
910 for (itn = LIST_FIRST(itl), pitn = NULL;
911 itn && timespeccmp(&it->it_time.it_value,
912 &itn->it_time.it_value, >);
913 pitn = itn, itn = LIST_NEXT(itn, it_list))
914 timespecsub(&it->it_time.it_value,
915 &itn->it_time.it_value,
916 &it->it_time.it_value);
917
918 if (pitn)
919 LIST_INSERT_AFTER(pitn, it, it_list);
920 else
921 LIST_INSERT_HEAD(itl, it, it_list);
922
923 for ( ; itn ; itn = LIST_NEXT(itn, it_list))
924 timespecsub(&itn->it_time.it_value,
925 &it->it_time.it_value,
926 &itn->it_time.it_value);
927
928 it->it_active = true;
929 } else {
930 it->it_active = false;
931 }
932 }
933
934 /* Success! */
935 return 0;
936 }
937
938 /*
939 * itimer_gettime:
940 *
941 * Return the remaining time of an interval timer.
942 */
943 void
944 itimer_gettime(const struct itimer *it, struct itimerspec *aits)
945 {
946 struct timespec now;
947 struct itimer *itn;
948
949 KASSERT(itimer_lock_held());
950
951 *aits = it->it_time;
952 if (!CLOCK_VIRTUAL_P(it->it_clockid)) {
953 /*
954 * Convert from absolute to relative time in .it_value
955 * part of real time timer. If time for real time
956 * timer has passed return 0, else return difference
957 * between current time and time for the timer to go
958 * off.
959 */
960 if (timespecisset(&aits->it_value)) {
961 if (it->it_clockid == CLOCK_REALTIME) {
962 getnanotime(&now);
963 } else { /* CLOCK_MONOTONIC */
964 getnanouptime(&now);
965 }
966 if (timespeccmp(&aits->it_value, &now, <))
967 timespecclear(&aits->it_value);
968 else
969 timespecsub(&aits->it_value, &now,
970 &aits->it_value);
971 }
972 } else if (it->it_active) {
973 for (itn = LIST_FIRST(it->it_vlist); itn && itn != it;
974 itn = LIST_NEXT(itn, it_list))
975 timespecadd(&aits->it_value,
976 &itn->it_time.it_value, &aits->it_value);
977 KASSERT(itn != NULL); /* it should be findable on the list */
978 } else
979 timespecclear(&aits->it_value);
980 }
981
982 /*
983 * Per-process timer support.
984 *
985 * Both the BSD getitimer() family and the POSIX timer_*() family of
986 * routines are supported.
987 *
988 * All timers are kept in an array pointed to by p_timers, which is
989 * allocated on demand - many processes don't use timers at all. The
990 * first four elements in this array are reserved for the BSD timers:
991 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element
992 * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be
993 * allocated by the timer_create() syscall.
994 *
995 * These timers are a "sub-class" of interval timer.
996 */
997
998 /*
999 * ptimer_free:
1000 *
1001 * Free the per-process timer at the specified index.
1002 */
1003 static void
1004 ptimer_free(struct ptimers *pts, int index)
1005 {
1006 struct itimer *it;
1007 struct ptimer *pt;
1008
1009 KASSERT(itimer_lock_held());
1010
1011 it = pts->pts_timers[index];
1012 pt = container_of(it, struct ptimer, pt_itimer);
1013 pts->pts_timers[index] = NULL;
1014 itimer_poison(it);
1015
1016 /*
1017 * Remove it from the queue to be signalled. Must be done
1018 * after itimer is poisoned, because we may have had to wait
1019 * for the callout to complete.
1020 */
1021 if (pt->pt_queued) {
1022 TAILQ_REMOVE(&ptimer_queue, pt, pt_chain);
1023 pt->pt_queued = false;
1024 }
1025
1026 itimer_fini(it); /* releases itimer_lock */
1027 kmem_free(pt, sizeof(*pt));
1028 }
1029
1030 /*
1031 * ptimers_alloc:
1032 *
1033 * Allocate a ptimers for the specified process.
1034 */
1035 static struct ptimers *
1036 ptimers_alloc(struct proc *p)
1037 {
1038 struct ptimers *pts;
1039 int i;
1040
1041 pts = kmem_alloc(sizeof(*pts), KM_SLEEP);
1042 LIST_INIT(&pts->pts_virtual);
1043 LIST_INIT(&pts->pts_prof);
1044 for (i = 0; i < TIMER_MAX; i++)
1045 pts->pts_timers[i] = NULL;
1046 itimer_lock();
1047 if (p->p_timers == NULL) {
1048 p->p_timers = pts;
1049 itimer_unlock();
1050 return pts;
1051 }
1052 itimer_unlock();
1053 kmem_free(pts, sizeof(*pts));
1054 return p->p_timers;
1055 }
1056
1057 /*
1058 * ptimers_free:
1059 *
1060 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1061 * then clean up all timers and free all the data structures. If
1062 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1063 * by timer_create(), not the BSD setitimer() timers, and only free the
1064 * structure if none of those remain.
1065 *
1066 * This function is exported because it is needed in the exec and
1067 * exit code paths.
1068 */
1069 void
1070 ptimers_free(struct proc *p, int which)
1071 {
1072 struct ptimers *pts;
1073 struct itimer *itn;
1074 struct timespec ts;
1075 int i;
1076
1077 if (p->p_timers == NULL)
1078 return;
1079
1080 pts = p->p_timers;
1081 itimer_lock();
1082 if (which == TIMERS_ALL) {
1083 p->p_timers = NULL;
1084 i = 0;
1085 } else {
1086 timespecclear(&ts);
1087 for (itn = LIST_FIRST(&pts->pts_virtual);
1088 itn && itn != pts->pts_timers[ITIMER_VIRTUAL];
1089 itn = LIST_NEXT(itn, it_list)) {
1090 KASSERT(itn->it_clockid == CLOCK_VIRTUAL);
1091 timespecadd(&ts, &itn->it_time.it_value, &ts);
1092 }
1093 LIST_FIRST(&pts->pts_virtual) = NULL;
1094 if (itn) {
1095 KASSERT(itn->it_clockid == CLOCK_VIRTUAL);
1096 timespecadd(&ts, &itn->it_time.it_value,
1097 &itn->it_time.it_value);
1098 LIST_INSERT_HEAD(&pts->pts_virtual, itn, it_list);
1099 }
1100 timespecclear(&ts);
1101 for (itn = LIST_FIRST(&pts->pts_prof);
1102 itn && itn != pts->pts_timers[ITIMER_PROF];
1103 itn = LIST_NEXT(itn, it_list)) {
1104 KASSERT(itn->it_clockid == CLOCK_PROF);
1105 timespecadd(&ts, &itn->it_time.it_value, &ts);
1106 }
1107 LIST_FIRST(&pts->pts_prof) = NULL;
1108 if (itn) {
1109 KASSERT(itn->it_clockid == CLOCK_PROF);
1110 timespecadd(&ts, &itn->it_time.it_value,
1111 &itn->it_time.it_value);
1112 LIST_INSERT_HEAD(&pts->pts_prof, itn, it_list);
1113 }
1114 i = TIMER_MIN;
1115 }
1116 for ( ; i < TIMER_MAX; i++) {
1117 if (pts->pts_timers[i] != NULL) {
1118 /* Free the timer and release the lock. */
1119 ptimer_free(pts, i);
1120 /* Reacquire the lock for the next one. */
1121 itimer_lock();
1122 }
1123 }
1124 if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
1125 pts->pts_timers[2] == NULL && pts->pts_timers[3] == NULL) {
1126 p->p_timers = NULL;
1127 itimer_unlock();
1128 kmem_free(pts, sizeof(*pts));
1129 } else
1130 itimer_unlock();
1131 }
1132
1133 /*
1134 * ptimer_fire:
1135 *
1136 * Fire a per-process timer.
1137 */
1138 static void
1139 ptimer_fire(struct itimer *it)
1140 {
1141 struct ptimer *pt = container_of(it, struct ptimer, pt_itimer);
1142
1143 KASSERT(itimer_lock_held());
1144
1145 /*
1146 * XXX Can overrun, but we don't do signal queueing yet, anyway.
1147 * XXX Relying on the clock interrupt is stupid.
1148 */
1149 if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
1150 return;
1151 }
1152
1153 if (!pt->pt_queued) {
1154 TAILQ_INSERT_TAIL(&ptimer_queue, pt, pt_chain);
1155 pt->pt_queued = true;
1156 softint_schedule(ptimer_sih);
1157 }
1158 }
1159
1160 /*
1161 * Operations vector for per-process timers (BSD and POSIX).
1162 */
1163 static const struct itimer_ops ptimer_itimer_ops = {
1164 .ito_fire = ptimer_fire,
1165 };
1166
1167 /*
1168 * sys_timer_create:
1169 *
1170 * System call to create a POSIX timer.
1171 */
1172 int
1173 sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
1174 register_t *retval)
1175 {
1176 /* {
1177 syscallarg(clockid_t) clock_id;
1178 syscallarg(struct sigevent *) evp;
1179 syscallarg(timer_t *) timerid;
1180 } */
1181
1182 return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
1183 SCARG(uap, evp), copyin, l);
1184 }
1185
1186 int
1187 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
1188 copyin_t fetch_event, struct lwp *l)
1189 {
1190 int error;
1191 timer_t timerid;
1192 struct itlist *itl;
1193 struct ptimers *pts;
1194 struct ptimer *pt;
1195 struct proc *p;
1196
1197 p = l->l_proc;
1198
1199 if ((u_int)id > CLOCK_MONOTONIC)
1200 return (EINVAL);
1201
1202 if ((pts = p->p_timers) == NULL)
1203 pts = ptimers_alloc(p);
1204
1205 pt = kmem_zalloc(sizeof(*pt), KM_SLEEP);
1206 if (evp != NULL) {
1207 if (((error =
1208 (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
1209 ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
1210 (pt->pt_ev.sigev_notify > SIGEV_SA)) ||
1211 (pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
1212 (pt->pt_ev.sigev_signo <= 0 ||
1213 pt->pt_ev.sigev_signo >= NSIG))) {
1214 kmem_free(pt, sizeof(*pt));
1215 return (error ? error : EINVAL);
1216 }
1217 }
1218
1219 /* Find a free timer slot, skipping those reserved for setitimer(). */
1220 itimer_lock();
1221 for (timerid = TIMER_MIN; timerid < TIMER_MAX; timerid++)
1222 if (pts->pts_timers[timerid] == NULL)
1223 break;
1224 if (timerid == TIMER_MAX) {
1225 itimer_unlock();
1226 kmem_free(pt, sizeof(*pt));
1227 return EAGAIN;
1228 }
1229 if (evp == NULL) {
1230 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1231 switch (id) {
1232 case CLOCK_REALTIME:
1233 case CLOCK_MONOTONIC:
1234 pt->pt_ev.sigev_signo = SIGALRM;
1235 break;
1236 case CLOCK_VIRTUAL:
1237 pt->pt_ev.sigev_signo = SIGVTALRM;
1238 break;
1239 case CLOCK_PROF:
1240 pt->pt_ev.sigev_signo = SIGPROF;
1241 break;
1242 }
1243 pt->pt_ev.sigev_value.sival_int = timerid;
1244 }
1245
1246 switch (id) {
1247 case CLOCK_VIRTUAL:
1248 itl = &pts->pts_virtual;
1249 break;
1250 case CLOCK_PROF:
1251 itl = &pts->pts_prof;
1252 break;
1253 default:
1254 itl = NULL;
1255 }
1256
1257 itimer_init(&pt->pt_itimer, &ptimer_itimer_ops, id, itl);
1258 pt->pt_proc = p;
1259 pt->pt_poverruns = 0;
1260 pt->pt_entry = timerid;
1261 pt->pt_queued = false;
1262
1263 pts->pts_timers[timerid] = &pt->pt_itimer;
1264 itimer_unlock();
1265
1266 return copyout(&timerid, tid, sizeof(timerid));
1267 }
1268
1269 /*
1270 * sys_timer_delete:
1271 *
1272 * System call to delete a POSIX timer.
1273 */
1274 int
1275 sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
1276 register_t *retval)
1277 {
1278 /* {
1279 syscallarg(timer_t) timerid;
1280 } */
1281 struct proc *p = l->l_proc;
1282 timer_t timerid;
1283 struct ptimers *pts;
1284 struct itimer *it, *itn;
1285
1286 timerid = SCARG(uap, timerid);
1287 pts = p->p_timers;
1288
1289 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
1290 return (EINVAL);
1291
1292 itimer_lock();
1293 if ((it = pts->pts_timers[timerid]) == NULL) {
1294 itimer_unlock();
1295 return (EINVAL);
1296 }
1297
1298 if (CLOCK_VIRTUAL_P(it->it_clockid)) {
1299 if (it->it_active) {
1300 itn = LIST_NEXT(it, it_list);
1301 LIST_REMOVE(it, it_list);
1302 for ( ; itn; itn = LIST_NEXT(itn, it_list))
1303 timespecadd(&it->it_time.it_value,
1304 &itn->it_time.it_value,
1305 &itn->it_time.it_value);
1306 it->it_active = false;
1307 }
1308 }
1309
1310 /* Free the timer and release the lock. */
1311 ptimer_free(pts, timerid);
1312
1313 return (0);
1314 }
1315
1316 /*
1317 * sys___timer_settime50:
1318 *
1319 * System call to set/arm a POSIX timer.
1320 */
1321 int
1322 sys___timer_settime50(struct lwp *l,
1323 const struct sys___timer_settime50_args *uap,
1324 register_t *retval)
1325 {
1326 /* {
1327 syscallarg(timer_t) timerid;
1328 syscallarg(int) flags;
1329 syscallarg(const struct itimerspec *) value;
1330 syscallarg(struct itimerspec *) ovalue;
1331 } */
1332 int error;
1333 struct itimerspec value, ovalue, *ovp = NULL;
1334
1335 if ((error = copyin(SCARG(uap, value), &value,
1336 sizeof(struct itimerspec))) != 0)
1337 return (error);
1338
1339 if (SCARG(uap, ovalue))
1340 ovp = &ovalue;
1341
1342 if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
1343 SCARG(uap, flags), l->l_proc)) != 0)
1344 return error;
1345
1346 if (ovp)
1347 return copyout(&ovalue, SCARG(uap, ovalue),
1348 sizeof(struct itimerspec));
1349 return 0;
1350 }
1351
1352 int
1353 dotimer_settime(int timerid, struct itimerspec *value,
1354 struct itimerspec *ovalue, int flags, struct proc *p)
1355 {
1356 struct timespec now;
1357 struct itimerspec val, oval;
1358 struct ptimers *pts;
1359 struct itimer *it;
1360 int error;
1361
1362 pts = p->p_timers;
1363
1364 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
1365 return EINVAL;
1366 val = *value;
1367 if ((error = itimespecfix(&val.it_value)) != 0 ||
1368 (error = itimespecfix(&val.it_interval)) != 0)
1369 return error;
1370
1371 itimer_lock();
1372 restart:
1373 if ((it = pts->pts_timers[timerid]) == NULL) {
1374 itimer_unlock();
1375 return EINVAL;
1376 }
1377
1378 oval = it->it_time;
1379 it->it_time = val;
1380
1381 /*
1382 * If we've been passed a relative time for a realtime timer,
1383 * convert it to absolute; if an absolute time for a virtual
1384 * timer, convert it to relative and make sure we don't set it
1385 * to zero, which would cancel the timer, or let it go
1386 * negative, which would confuse the comparison tests.
1387 */
1388 if (timespecisset(&it->it_time.it_value)) {
1389 if (!CLOCK_VIRTUAL_P(it->it_clockid)) {
1390 if ((flags & TIMER_ABSTIME) == 0) {
1391 if (it->it_clockid == CLOCK_REALTIME) {
1392 getnanotime(&now);
1393 } else { /* CLOCK_MONOTONIC */
1394 getnanouptime(&now);
1395 }
1396 timespecadd(&it->it_time.it_value, &now,
1397 &it->it_time.it_value);
1398 }
1399 } else {
1400 if ((flags & TIMER_ABSTIME) != 0) {
1401 getnanotime(&now);
1402 timespecsub(&it->it_time.it_value, &now,
1403 &it->it_time.it_value);
1404 if (!timespecisset(&it->it_time.it_value) ||
1405 it->it_time.it_value.tv_sec < 0) {
1406 it->it_time.it_value.tv_sec = 0;
1407 it->it_time.it_value.tv_nsec = 1;
1408 }
1409 }
1410 }
1411 }
1412
1413 error = itimer_settime(it);
1414 if (error == ERESTART) {
1415 KASSERT(!CLOCK_VIRTUAL_P(it->it_clockid));
1416 goto restart;
1417 }
1418 KASSERT(error == 0);
1419 itimer_unlock();
1420
1421 if (ovalue)
1422 *ovalue = oval;
1423
1424 return (0);
1425 }
1426
1427 /*
1428 * sys___timer_gettime50:
1429 *
1430 * System call to return the time remaining until a POSIX timer fires.
1431 */
1432 int
1433 sys___timer_gettime50(struct lwp *l,
1434 const struct sys___timer_gettime50_args *uap, register_t *retval)
1435 {
1436 /* {
1437 syscallarg(timer_t) timerid;
1438 syscallarg(struct itimerspec *) value;
1439 } */
1440 struct itimerspec its;
1441 int error;
1442
1443 if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
1444 &its)) != 0)
1445 return error;
1446
1447 return copyout(&its, SCARG(uap, value), sizeof(its));
1448 }
1449
1450 int
1451 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
1452 {
1453 struct itimer *it;
1454 struct ptimers *pts;
1455
1456 pts = p->p_timers;
1457 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
1458 return (EINVAL);
1459 itimer_lock();
1460 if ((it = pts->pts_timers[timerid]) == NULL) {
1461 itimer_unlock();
1462 return (EINVAL);
1463 }
1464 itimer_gettime(it, its);
1465 itimer_unlock();
1466
1467 return 0;
1468 }
1469
1470 /*
1471 * sys_timer_getoverrun:
1472 *
1473 * System call to return the number of times a POSIX timer has
1474 * expired while a notification was already pending. The counter
1475 * is reset when a timer expires and a notification can be posted.
1476 */
1477 int
1478 sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
1479 register_t *retval)
1480 {
1481 /* {
1482 syscallarg(timer_t) timerid;
1483 } */
1484 struct proc *p = l->l_proc;
1485 struct ptimers *pts;
1486 int timerid;
1487 struct itimer *it;
1488 struct ptimer *pt;
1489
1490 timerid = SCARG(uap, timerid);
1491
1492 pts = p->p_timers;
1493 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
1494 return (EINVAL);
1495 itimer_lock();
1496 if ((it = pts->pts_timers[timerid]) == NULL) {
1497 itimer_unlock();
1498 return (EINVAL);
1499 }
1500 pt = container_of(it, struct ptimer, pt_itimer);
1501 *retval = pt->pt_poverruns;
1502 if (*retval >= DELAYTIMER_MAX)
1503 *retval = DELAYTIMER_MAX;
1504 itimer_unlock();
1505
1506 return (0);
1507 }
1508
1509 /*
1510 * sys___getitimer50:
1511 *
1512 * System call to get the time remaining before a BSD timer fires.
1513 */
1514 int
1515 sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
1516 register_t *retval)
1517 {
1518 /* {
1519 syscallarg(int) which;
1520 syscallarg(struct itimerval *) itv;
1521 } */
1522 struct proc *p = l->l_proc;
1523 struct itimerval aitv;
1524 int error;
1525
1526 memset(&aitv, 0, sizeof(aitv));
1527 error = dogetitimer(p, SCARG(uap, which), &aitv);
1528 if (error)
1529 return error;
1530 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1531 }
1532
1533 int
1534 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1535 {
1536 struct ptimers *pts;
1537 struct itimer *it;
1538 struct itimerspec its;
1539
1540 if ((u_int)which > ITIMER_MONOTONIC)
1541 return (EINVAL);
1542
1543 itimer_lock();
1544 pts = p->p_timers;
1545 if (pts == NULL || (it = pts->pts_timers[which]) == NULL) {
1546 timerclear(&itvp->it_value);
1547 timerclear(&itvp->it_interval);
1548 } else {
1549 itimer_gettime(it, &its);
1550 TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
1551 TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
1552 }
1553 itimer_unlock();
1554
1555 return 0;
1556 }
1557
1558 /*
1559 * sys___setitimer50:
1560 *
1561 * System call to set/arm a BSD timer.
1562 */
1563 int
1564 sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
1565 register_t *retval)
1566 {
1567 /* {
1568 syscallarg(int) which;
1569 syscallarg(const struct itimerval *) itv;
1570 syscallarg(struct itimerval *) oitv;
1571 } */
1572 struct proc *p = l->l_proc;
1573 int which = SCARG(uap, which);
1574 struct sys___getitimer50_args getargs;
1575 const struct itimerval *itvp;
1576 struct itimerval aitv;
1577 int error;
1578
1579 itvp = SCARG(uap, itv);
1580 if (itvp &&
1581 (error = copyin(itvp, &aitv, sizeof(struct itimerval))) != 0)
1582 return (error);
1583 if (SCARG(uap, oitv) != NULL) {
1584 SCARG(&getargs, which) = which;
1585 SCARG(&getargs, itv) = SCARG(uap, oitv);
1586 if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
1587 return (error);
1588 }
1589 if (itvp == 0)
1590 return (0);
1591
1592 return dosetitimer(p, which, &aitv);
1593 }
1594
1595 int
1596 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1597 {
1598 struct timespec now;
1599 struct ptimers *pts;
1600 struct ptimer *spare;
1601 struct itimer *it;
1602 struct itlist *itl;
1603 int error;
1604
1605 if ((u_int)which > ITIMER_MONOTONIC)
1606 return (EINVAL);
1607 if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1608 return (EINVAL);
1609
1610 /*
1611 * Don't bother allocating data structures if the process just
1612 * wants to clear the timer.
1613 */
1614 spare = NULL;
1615 pts = p->p_timers;
1616 retry:
1617 if (!timerisset(&itvp->it_value) && (pts == NULL ||
1618 pts->pts_timers[which] == NULL))
1619 return (0);
1620 if (pts == NULL)
1621 pts = ptimers_alloc(p);
1622 itimer_lock();
1623 restart:
1624 it = pts->pts_timers[which];
1625 if (it == NULL) {
1626 struct ptimer *pt;
1627
1628 if (spare == NULL) {
1629 itimer_unlock();
1630 spare = kmem_zalloc(sizeof(*spare), KM_SLEEP);
1631 goto retry;
1632 }
1633 pt = spare;
1634 spare = NULL;
1635
1636 it = &pt->pt_itimer;
1637 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1638 pt->pt_ev.sigev_value.sival_int = which;
1639
1640 switch (which) {
1641 case ITIMER_REAL:
1642 case ITIMER_MONOTONIC:
1643 itl = NULL;
1644 pt->pt_ev.sigev_signo = SIGALRM;
1645 break;
1646 case ITIMER_VIRTUAL:
1647 itl = &pts->pts_virtual;
1648 pt->pt_ev.sigev_signo = SIGVTALRM;
1649 break;
1650 case ITIMER_PROF:
1651 itl = &pts->pts_prof;
1652 pt->pt_ev.sigev_signo = SIGPROF;
1653 break;
1654 default:
1655 panic("%s: can't happen %d", __func__, which);
1656 }
1657 itimer_init(it, &ptimer_itimer_ops, which, itl);
1658 pt->pt_proc = p;
1659 pt->pt_entry = which;
1660
1661 pts->pts_timers[which] = it;
1662 }
1663
1664 TIMEVAL_TO_TIMESPEC(&itvp->it_value, &it->it_time.it_value);
1665 TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &it->it_time.it_interval);
1666
1667 if (timespecisset(&it->it_time.it_value)) {
1668 /* Convert to absolute time */
1669 /* XXX need to wrap in splclock for timecounters case? */
1670 switch (which) {
1671 case ITIMER_REAL:
1672 getnanotime(&now);
1673 timespecadd(&it->it_time.it_value, &now,
1674 &it->it_time.it_value);
1675 break;
1676 case ITIMER_MONOTONIC:
1677 getnanouptime(&now);
1678 timespecadd(&it->it_time.it_value, &now,
1679 &it->it_time.it_value);
1680 break;
1681 default:
1682 break;
1683 }
1684 }
1685 error = itimer_settime(it);
1686 if (error == ERESTART) {
1687 KASSERT(!CLOCK_VIRTUAL_P(it->it_clockid));
1688 goto restart;
1689 }
1690 KASSERT(error == 0);
1691 itimer_unlock();
1692 if (spare != NULL)
1693 kmem_free(spare, sizeof(*spare));
1694
1695 return (0);
1696 }
1697
1698 /*
1699 * ptimer_tick:
1700 *
1701 * Called from hardclock() to decrement per-process virtual timers.
1702 */
1703 void
1704 ptimer_tick(lwp_t *l, bool user)
1705 {
1706 struct ptimers *pts;
1707 struct itimer *it;
1708 proc_t *p;
1709
1710 p = l->l_proc;
1711 if (p->p_timers == NULL)
1712 return;
1713
1714 itimer_lock();
1715 if ((pts = l->l_proc->p_timers) != NULL) {
1716 /*
1717 * Run current process's virtual and profile time, as needed.
1718 */
1719 if (user && (it = LIST_FIRST(&pts->pts_virtual)) != NULL)
1720 if (itimer_decr(it, tick * 1000))
1721 (*it->it_ops->ito_fire)(it);
1722 if ((it = LIST_FIRST(&pts->pts_prof)) != NULL)
1723 if (itimer_decr(it, tick * 1000))
1724 (*it->it_ops->ito_fire)(it);
1725 }
1726 itimer_unlock();
1727 }
1728
1729 /*
1730 * ptimer_intr:
1731 *
1732 * Software interrupt handler for processing per-process
1733 * timer expiration.
1734 */
1735 static void
1736 ptimer_intr(void *cookie)
1737 {
1738 ksiginfo_t ksi;
1739 struct itimer *it;
1740 struct ptimer *pt;
1741 proc_t *p;
1742
1743 mutex_enter(&proc_lock);
1744 itimer_lock();
1745 while ((pt = TAILQ_FIRST(&ptimer_queue)) != NULL) {
1746 it = &pt->pt_itimer;
1747
1748 TAILQ_REMOVE(&ptimer_queue, pt, pt_chain);
1749 KASSERT(pt->pt_queued);
1750 pt->pt_queued = false;
1751
1752 p = pt->pt_proc;
1753 if (p->p_timers == NULL) {
1754 /* Process is dying. */
1755 continue;
1756 }
1757 if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
1758 continue;
1759 }
1760 if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
1761 it->it_overruns++;
1762 continue;
1763 }
1764
1765 KSI_INIT(&ksi);
1766 ksi.ksi_signo = pt->pt_ev.sigev_signo;
1767 ksi.ksi_code = SI_TIMER;
1768 ksi.ksi_value = pt->pt_ev.sigev_value;
1769 pt->pt_poverruns = it->it_overruns;
1770 it->it_overruns = 0;
1771 itimer_unlock();
1772 kpsignal(p, &ksi, NULL);
1773 itimer_lock();
1774 }
1775 itimer_unlock();
1776 mutex_exit(&proc_lock);
1777 }
1778