Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.22
      1 /*	$NetBSD: kern_time.c,v 1.22 1996/11/15 22:44:26 jtc Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by the University of
     18  *	California, Berkeley and its contributors.
     19  * 4. Neither the name of the University nor the names of its contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  * SUCH DAMAGE.
     34  *
     35  *	@(#)kern_time.c	8.1 (Berkeley) 6/10/93
     36  */
     37 
     38 #include <sys/param.h>
     39 #include <sys/resourcevar.h>
     40 #include <sys/kernel.h>
     41 #include <sys/systm.h>
     42 #include <sys/proc.h>
     43 #include <sys/vnode.h>
     44 #include <sys/signalvar.h>
     45 
     46 #include <sys/mount.h>
     47 #include <sys/syscallargs.h>
     48 
     49 #if defined(NFSCLIENT) || defined(NFSSERVER)
     50 #include <nfs/rpcv2.h>
     51 #include <nfs/nfsproto.h>
     52 #include <nfs/nfs_var.h>
     53 #endif
     54 
     55 #include <machine/cpu.h>
     56 
     57 /*
     58  * Time of day and interval timer support.
     59  *
     60  * These routines provide the kernel entry points to get and set
     61  * the time-of-day and per-process interval timers.  Subroutines
     62  * here provide support for adding and subtracting timeval structures
     63  * and decrementing interval timers, optionally reloading the interval
     64  * timers when they expire.
     65  */
     66 
     67 
     68 /* This function is used by clock_settime and settimeofday */
     69 static void
     70 settime(tv)
     71 	struct timeval *tv;
     72 {
     73 	struct timeval delta;
     74 	int s;
     75 
     76 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
     77 	s = splclock();
     78 	timersub(tv, &time, &delta);
     79 	time = *tv;
     80 	(void) splsoftclock();
     81 	timeradd(&boottime, &delta, &boottime);
     82 	timeradd(&runtime, &delta, &runtime);
     83 #	if defined(NFSCLIENT) || defined(NFSSERVER)
     84 		nqnfs_lease_updatetime(delta.tv_sec);
     85 #	endif
     86 	splx(s);
     87 	resettodr();
     88 }
     89 
     90 /* ARGSUSED */
     91 int
     92 sys_clock_gettime(p, v, retval)
     93 	struct proc *p;
     94 	void *v;
     95 	register_t *retval;
     96 {
     97 	register struct sys_clock_gettime_args /* {
     98 		syscallarg(clockid_t) clock_id;
     99                 syscallarg(struct timespec *) tp;
    100         } */ *uap = v;
    101 	clockid_t clock_id;
    102 	struct timeval atv;
    103 	struct timespec ats;
    104 
    105 	clock_id = SCARG(uap, clock_id);
    106 	if (clock_id != CLOCK_REALTIME)
    107 		return (EINVAL);
    108 
    109 	microtime(&atv);
    110 	TIMEVAL_TO_TIMESPEC(&atv,&ats);
    111 
    112 	return copyout((caddr_t)&ats, SCARG(uap, tp), sizeof(ats));
    113 }
    114 
    115 /* ARGSUSED */
    116 int
    117 sys_clock_settime(p, v, retval)
    118 	struct proc *p;
    119 	void *v;
    120 	register_t *retval;
    121 {
    122 	register struct sys_clock_settime_args /* {
    123 		syscallarg(clockid_t) clock_id;
    124                 syscallarg(struct timespec *) tp;
    125         } */ *uap = v;
    126 	clockid_t clock_id;
    127 	struct timeval atv;
    128 	struct timespec ats;
    129 	int error;
    130 
    131 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    132 		return (error);
    133 
    134 	clock_id = SCARG(uap, clock_id);
    135 	if (clock_id != CLOCK_REALTIME)
    136 		return (EINVAL);
    137 
    138 	if (error = copyin((caddr_t)SCARG(uap, tp), (caddr_t)&ats, sizeof(ats)))
    139                 return (error);
    140 
    141 	TIMESPEC_TO_TIMEVAL(&atv,&ats);
    142 	settime(&atv);
    143 
    144 	return 0;
    145 }
    146 
    147 int
    148 sys_clock_getres(p, v, retval)
    149 	struct proc *p;
    150 	void *v;
    151 	register_t *retval;
    152 {
    153 	register struct sys_clock_getres_args /* {
    154 		syscallarg(clockid_t) clock_id;
    155                 syscallarg(struct timespec *) tp;
    156         } */ *uap = v;
    157 	clockid_t clock_id;
    158 	struct timespec ts;
    159 	int error = 0;
    160 
    161 	clock_id = SCARG(uap, clock_id);
    162 	if (clock_id != CLOCK_REALTIME)
    163 		return (EINVAL);
    164 
    165 	if (SCARG(uap, tp)) {
    166 		ts.tv_sec = 0;
    167 		ts.tv_nsec = 1000000000 / hz;
    168 
    169 		error = copyout((caddr_t)&ts, (caddr_t)SCARG(uap, tp),
    170 			sizeof (ts));
    171 	}
    172 
    173 	return error;
    174 }
    175 
    176 
    177 /* ARGSUSED */
    178 int
    179 sys_gettimeofday(p, v, retval)
    180 	struct proc *p;
    181 	void *v;
    182 	register_t *retval;
    183 {
    184 	register struct sys_gettimeofday_args /* {
    185 		syscallarg(struct timeval *) tp;
    186 		syscallarg(struct timezone *) tzp;
    187 	} */ *uap = v;
    188 	struct timeval atv;
    189 	int error = 0;
    190 
    191 	if (SCARG(uap, tp)) {
    192 		microtime(&atv);
    193 		error = copyout((caddr_t)&atv, (caddr_t)SCARG(uap, tp),
    194 				sizeof (atv));
    195 		if (error)
    196 			return (error);
    197 	}
    198 	if (SCARG(uap, tzp))
    199 		error = copyout((caddr_t)&tz, (caddr_t)SCARG(uap, tzp),
    200 		    sizeof (tz));
    201 	return (error);
    202 }
    203 
    204 /* ARGSUSED */
    205 int
    206 sys_settimeofday(p, v, retval)
    207 	struct proc *p;
    208 	void *v;
    209 	register_t *retval;
    210 {
    211 	struct sys_settimeofday_args /* {
    212 		syscallarg(struct timeval *) tv;
    213 		syscallarg(struct timezone *) tzp;
    214 	} */ *uap = v;
    215 	struct timeval atv;
    216 	struct timezone atz;
    217 	int error;
    218 
    219 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    220 		return (error);
    221 	/* Verify all parameters before changing time. */
    222 	if (SCARG(uap, tv) && (error = copyin((caddr_t)SCARG(uap, tv),
    223 	    (caddr_t)&atv, sizeof(atv))))
    224 		return (error);
    225 	if (SCARG(uap, tzp) && (error = copyin((caddr_t)SCARG(uap, tzp),
    226 	    (caddr_t)&atz, sizeof(atz))))
    227 		return (error);
    228 	if (SCARG(uap, tv))
    229 		settime(&atv);
    230 	if (SCARG(uap, tzp))
    231 		tz = atz;
    232 	return (0);
    233 }
    234 
    235 int	tickdelta;			/* current clock skew, us. per tick */
    236 long	timedelta;			/* unapplied time correction, us. */
    237 long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
    238 
    239 /* ARGSUSED */
    240 int
    241 sys_adjtime(p, v, retval)
    242 	struct proc *p;
    243 	void *v;
    244 	register_t *retval;
    245 {
    246 	register struct sys_adjtime_args /* {
    247 		syscallarg(struct timeval *) delta;
    248 		syscallarg(struct timeval *) olddelta;
    249 	} */ *uap = v;
    250 	struct timeval atv;
    251 	register long ndelta, ntickdelta, odelta;
    252 	int s, error;
    253 
    254 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    255 		return (error);
    256 
    257 	error = copyin((caddr_t)SCARG(uap, delta), (caddr_t)&atv,
    258 		       sizeof(struct timeval));
    259 	if (error)
    260 		return (error);
    261 
    262 	/*
    263 	 * Compute the total correction and the rate at which to apply it.
    264 	 * Round the adjustment down to a whole multiple of the per-tick
    265 	 * delta, so that after some number of incremental changes in
    266 	 * hardclock(), tickdelta will become zero, lest the correction
    267 	 * overshoot and start taking us away from the desired final time.
    268 	 */
    269 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
    270 	if (ndelta > bigadj)
    271 		ntickdelta = 10 * tickadj;
    272 	else
    273 		ntickdelta = tickadj;
    274 	if (ndelta % ntickdelta)
    275 		ndelta = ndelta / ntickdelta * ntickdelta;
    276 
    277 	/*
    278 	 * To make hardclock()'s job easier, make the per-tick delta negative
    279 	 * if we want time to run slower; then hardclock can simply compute
    280 	 * tick + tickdelta, and subtract tickdelta from timedelta.
    281 	 */
    282 	if (ndelta < 0)
    283 		ntickdelta = -ntickdelta;
    284 	s = splclock();
    285 	odelta = timedelta;
    286 	timedelta = ndelta;
    287 	tickdelta = ntickdelta;
    288 	splx(s);
    289 
    290 	if (SCARG(uap, olddelta)) {
    291 		atv.tv_sec = odelta / 1000000;
    292 		atv.tv_usec = odelta % 1000000;
    293 		(void) copyout((caddr_t)&atv, (caddr_t)SCARG(uap, olddelta),
    294 		    sizeof(struct timeval));
    295 	}
    296 	return (0);
    297 }
    298 
    299 /*
    300  * Get value of an interval timer.  The process virtual and
    301  * profiling virtual time timers are kept in the p_stats area, since
    302  * they can be swapped out.  These are kept internally in the
    303  * way they are specified externally: in time until they expire.
    304  *
    305  * The real time interval timer is kept in the process table slot
    306  * for the process, and its value (it_value) is kept as an
    307  * absolute time rather than as a delta, so that it is easy to keep
    308  * periodic real-time signals from drifting.
    309  *
    310  * Virtual time timers are processed in the hardclock() routine of
    311  * kern_clock.c.  The real time timer is processed by a timeout
    312  * routine, called from the softclock() routine.  Since a callout
    313  * may be delayed in real time due to interrupt processing in the system,
    314  * it is possible for the real time timeout routine (realitexpire, given below),
    315  * to be delayed in real time past when it is supposed to occur.  It
    316  * does not suffice, therefore, to reload the real timer .it_value from the
    317  * real time timers .it_interval.  Rather, we compute the next time in
    318  * absolute time the timer should go off.
    319  */
    320 /* ARGSUSED */
    321 int
    322 sys_getitimer(p, v, retval)
    323 	struct proc *p;
    324 	void *v;
    325 	register_t *retval;
    326 {
    327 	register struct sys_getitimer_args /* {
    328 		syscallarg(u_int) which;
    329 		syscallarg(struct itimerval *) itv;
    330 	} */ *uap = v;
    331 	struct itimerval aitv;
    332 	int s;
    333 
    334 	if (SCARG(uap, which) > ITIMER_PROF)
    335 		return (EINVAL);
    336 	s = splclock();
    337 	if (SCARG(uap, which) == ITIMER_REAL) {
    338 		/*
    339 		 * Convert from absolute to relative time in .it_value
    340 		 * part of real time timer.  If time for real time timer
    341 		 * has passed return 0, else return difference between
    342 		 * current time and time for the timer to go off.
    343 		 */
    344 		aitv = p->p_realtimer;
    345 		if (timerisset(&aitv.it_value))
    346 			if (timercmp(&aitv.it_value, &time, <))
    347 				timerclear(&aitv.it_value);
    348 			else
    349 				timersub(&aitv.it_value, &time, &aitv.it_value);
    350 	} else
    351 		aitv = p->p_stats->p_timer[SCARG(uap, which)];
    352 	splx(s);
    353 	return (copyout((caddr_t)&aitv, (caddr_t)SCARG(uap, itv),
    354 	    sizeof (struct itimerval)));
    355 }
    356 
    357 /* ARGSUSED */
    358 int
    359 sys_setitimer(p, v, retval)
    360 	struct proc *p;
    361 	register void *v;
    362 	register_t *retval;
    363 {
    364 	register struct sys_setitimer_args /* {
    365 		syscallarg(u_int) which;
    366 		syscallarg(struct itimerval *) itv;
    367 		syscallarg(struct itimerval *) oitv;
    368 	} */ *uap = v;
    369 	struct sys_getitimer_args getargs;
    370 	struct itimerval aitv;
    371 	register struct itimerval *itvp;
    372 	int s, error;
    373 
    374 	if (SCARG(uap, which) > ITIMER_PROF)
    375 		return (EINVAL);
    376 	itvp = SCARG(uap, itv);
    377 	if (itvp && (error = copyin((caddr_t)itvp, (caddr_t)&aitv,
    378 	    sizeof(struct itimerval))))
    379 		return (error);
    380 	if (SCARG(uap, oitv) != NULL) {
    381 		SCARG(&getargs, which) = SCARG(uap, which);
    382 		SCARG(&getargs, itv) = SCARG(uap, oitv);
    383 	    	if ((error = sys_getitimer(p, &getargs, retval)) != 0)
    384 			return (error);
    385 	}
    386 	if (itvp == 0)
    387 		return (0);
    388 	if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
    389 		return (EINVAL);
    390 	s = splclock();
    391 	if (SCARG(uap, which) == ITIMER_REAL) {
    392 		untimeout(realitexpire, p);
    393 		if (timerisset(&aitv.it_value)) {
    394 			timeradd(&aitv.it_value, &time, &aitv.it_value);
    395 			timeout(realitexpire, p, hzto(&aitv.it_value));
    396 		}
    397 		p->p_realtimer = aitv;
    398 	} else
    399 		p->p_stats->p_timer[SCARG(uap, which)] = aitv;
    400 	splx(s);
    401 	return (0);
    402 }
    403 
    404 /*
    405  * Real interval timer expired:
    406  * send process whose timer expired an alarm signal.
    407  * If time is not set up to reload, then just return.
    408  * Else compute next time timer should go off which is > current time.
    409  * This is where delay in processing this timeout causes multiple
    410  * SIGALRM calls to be compressed into one.
    411  */
    412 void
    413 realitexpire(arg)
    414 	void *arg;
    415 {
    416 	register struct proc *p;
    417 	int s;
    418 
    419 	p = (struct proc *)arg;
    420 	psignal(p, SIGALRM);
    421 	if (!timerisset(&p->p_realtimer.it_interval)) {
    422 		timerclear(&p->p_realtimer.it_value);
    423 		return;
    424 	}
    425 	for (;;) {
    426 		s = splclock();
    427 		timeradd(&p->p_realtimer.it_value,
    428 		    &p->p_realtimer.it_interval, &p->p_realtimer.it_value);
    429 		if (timercmp(&p->p_realtimer.it_value, &time, >)) {
    430 			timeout(realitexpire, p,
    431 			    hzto(&p->p_realtimer.it_value));
    432 			splx(s);
    433 			return;
    434 		}
    435 		splx(s);
    436 	}
    437 }
    438 
    439 /*
    440  * Check that a proposed value to load into the .it_value or
    441  * .it_interval part of an interval timer is acceptable, and
    442  * fix it to have at least minimal value (i.e. if it is less
    443  * than the resolution of the clock, round it up.)
    444  */
    445 int
    446 itimerfix(tv)
    447 	struct timeval *tv;
    448 {
    449 
    450 	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
    451 	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
    452 		return (EINVAL);
    453 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
    454 		tv->tv_usec = tick;
    455 	return (0);
    456 }
    457 
    458 /*
    459  * Decrement an interval timer by a specified number
    460  * of microseconds, which must be less than a second,
    461  * i.e. < 1000000.  If the timer expires, then reload
    462  * it.  In this case, carry over (usec - old value) to
    463  * reduce the value reloaded into the timer so that
    464  * the timer does not drift.  This routine assumes
    465  * that it is called in a context where the timers
    466  * on which it is operating cannot change in value.
    467  */
    468 int
    469 itimerdecr(itp, usec)
    470 	register struct itimerval *itp;
    471 	int usec;
    472 {
    473 
    474 	if (itp->it_value.tv_usec < usec) {
    475 		if (itp->it_value.tv_sec == 0) {
    476 			/* expired, and already in next interval */
    477 			usec -= itp->it_value.tv_usec;
    478 			goto expire;
    479 		}
    480 		itp->it_value.tv_usec += 1000000;
    481 		itp->it_value.tv_sec--;
    482 	}
    483 	itp->it_value.tv_usec -= usec;
    484 	usec = 0;
    485 	if (timerisset(&itp->it_value))
    486 		return (1);
    487 	/* expired, exactly at end of interval */
    488 expire:
    489 	if (timerisset(&itp->it_interval)) {
    490 		itp->it_value = itp->it_interval;
    491 		itp->it_value.tv_usec -= usec;
    492 		if (itp->it_value.tv_usec < 0) {
    493 			itp->it_value.tv_usec += 1000000;
    494 			itp->it_value.tv_sec--;
    495 		}
    496 	} else
    497 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
    498 	return (0);
    499 }
    500