Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.222
      1 /*	$NetBSD: kern_time.c,v 1.222 2024/12/19 23:36:49 riastradh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009, 2020
      5  *     The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Christopher G. Demetriou, by Andrew Doran, and by Jason R. Thorpe.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1982, 1986, 1989, 1993
     35  *	The Regents of the University of California.  All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. Neither the name of the University nor the names of its contributors
     46  *    may be used to endorse or promote products derived from this software
     47  *    without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     59  * SUCH DAMAGE.
     60  *
     61  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.222 2024/12/19 23:36:49 riastradh Exp $");
     66 
     67 #include <sys/param.h>
     68 #include <sys/resourcevar.h>
     69 #include <sys/kernel.h>
     70 #include <sys/systm.h>
     71 #include <sys/proc.h>
     72 #include <sys/vnode.h>
     73 #include <sys/signalvar.h>
     74 #include <sys/syslog.h>
     75 #include <sys/timetc.h>
     76 #include <sys/timevar.h>
     77 #include <sys/timex.h>
     78 #include <sys/kauth.h>
     79 #include <sys/mount.h>
     80 #include <sys/syscallargs.h>
     81 #include <sys/cpu.h>
     82 
     83 kmutex_t	itimer_mutex __cacheline_aligned;	/* XXX static */
     84 static struct itlist itimer_realtime_changed_notify;
     85 
     86 static void	itimer_callout(void *);
     87 static void	ptimer_intr(void *);
     88 static void	*ptimer_sih __read_mostly;
     89 static TAILQ_HEAD(, ptimer) ptimer_queue;
     90 
     91 #define	CLOCK_VIRTUAL_P(clockid)	\
     92 	((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)
     93 
     94 CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
     95 CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
     96 CTASSERT(ITIMER_PROF == CLOCK_PROF);
     97 CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC);
     98 
     99 #define	DELAYTIMER_MAX	32
    100 
    101 /*
    102  * Initialize timekeeping.
    103  */
    104 void
    105 time_init(void)
    106 {
    107 
    108 	mutex_init(&itimer_mutex, MUTEX_DEFAULT, IPL_SCHED);
    109 	LIST_INIT(&itimer_realtime_changed_notify);
    110 
    111 	TAILQ_INIT(&ptimer_queue);
    112 	ptimer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
    113 	    ptimer_intr, NULL);
    114 }
    115 
    116 /*
    117  * Check if the time will wrap if set to ts.
    118  *
    119  * ts - timespec describing the new time
    120  * delta - the delta between the current time and ts
    121  */
    122 bool
    123 time_wraps(struct timespec *ts, struct timespec *delta)
    124 {
    125 
    126 	/*
    127 	 * Don't allow the time to be set forward so far it
    128 	 * will wrap and become negative, thus allowing an
    129 	 * attacker to bypass the next check below.  The
    130 	 * cutoff is 1 year before rollover occurs, so even
    131 	 * if the attacker uses adjtime(2) to move the time
    132 	 * past the cutoff, it will take a very long time
    133 	 * to get to the wrap point.
    134 	 */
    135 	if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
    136 	    (delta->tv_sec < 0 || delta->tv_nsec < 0))
    137 		return true;
    138 
    139 	return false;
    140 }
    141 
    142 /*
    143  * itimer_lock:
    144  *
    145  *	Acquire the interval timer data lock.
    146  */
    147 void
    148 itimer_lock(void)
    149 {
    150 	mutex_spin_enter(&itimer_mutex);
    151 }
    152 
    153 /*
    154  * itimer_unlock:
    155  *
    156  *	Release the interval timer data lock.
    157  */
    158 void
    159 itimer_unlock(void)
    160 {
    161 	mutex_spin_exit(&itimer_mutex);
    162 }
    163 
    164 /*
    165  * itimer_lock_held:
    166  *
    167  *	Check that the interval timer lock is held for diagnostic
    168  *	assertions.
    169  */
    170 inline bool __diagused
    171 itimer_lock_held(void)
    172 {
    173 	return mutex_owned(&itimer_mutex);
    174 }
    175 
    176 /*
    177  * Time of day and interval timer support.
    178  *
    179  * These routines provide the kernel entry points to get and set
    180  * the time-of-day and per-process interval timers.  Subroutines
    181  * here provide support for adding and subtracting timeval structures
    182  * and decrementing interval timers, optionally reloading the interval
    183  * timers when they expire.
    184  */
    185 
    186 /* This function is used by clock_settime and settimeofday */
    187 static int
    188 settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
    189 {
    190 	struct timespec delta, now;
    191 
    192 	/*
    193 	 * The time being set to an unreasonable value will cause
    194 	 * unreasonable system behaviour.
    195 	 */
    196 	if (ts->tv_sec < 0 || ts->tv_sec > (1LL << 36))
    197 		return EINVAL;
    198 
    199 	nanotime(&now);
    200 	timespecsub(ts, &now, &delta);
    201 
    202 	if (check_kauth && kauth_authorize_system(kauth_cred_get(),
    203 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
    204 	    &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
    205 		return EPERM;
    206 	}
    207 
    208 #ifdef notyet
    209 	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
    210 		return EPERM;
    211 	}
    212 #endif
    213 
    214 	tc_setclock(ts);
    215 
    216 	resettodr();
    217 
    218 	/*
    219 	 * Notify pending CLOCK_REALTIME timers about the real time change.
    220 	 * There may be inactive timers on this list, but this happens
    221 	 * comparatively less often than timers firing, and so it's better
    222 	 * to put the extra checks here than to complicate the other code
    223 	 * path.
    224 	 */
    225 	struct itimer *it;
    226 	itimer_lock();
    227 	LIST_FOREACH(it, &itimer_realtime_changed_notify, it_rtchgq) {
    228 		KASSERT(it->it_ops->ito_realtime_changed != NULL);
    229 		if (timespecisset(&it->it_time.it_value)) {
    230 			(*it->it_ops->ito_realtime_changed)(it);
    231 		}
    232 	}
    233 	itimer_unlock();
    234 
    235 	return 0;
    236 }
    237 
    238 int
    239 settime(struct proc *p, struct timespec *ts)
    240 {
    241 	return settime1(p, ts, true);
    242 }
    243 
    244 /* ARGSUSED */
    245 int
    246 sys___clock_gettime50(struct lwp *l,
    247     const struct sys___clock_gettime50_args *uap, register_t *retval)
    248 {
    249 	/* {
    250 		syscallarg(clockid_t) clock_id;
    251 		syscallarg(struct timespec *) tp;
    252 	} */
    253 	int error;
    254 	struct timespec ats;
    255 
    256 	error = clock_gettime1(SCARG(uap, clock_id), &ats);
    257 	if (error != 0)
    258 		return error;
    259 
    260 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    261 }
    262 
    263 /* ARGSUSED */
    264 int
    265 sys___clock_settime50(struct lwp *l,
    266     const struct sys___clock_settime50_args *uap, register_t *retval)
    267 {
    268 	/* {
    269 		syscallarg(clockid_t) clock_id;
    270 		syscallarg(const struct timespec *) tp;
    271 	} */
    272 	int error;
    273 	struct timespec ats;
    274 
    275 	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
    276 		return error;
    277 
    278 	return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
    279 }
    280 
    281 
    282 int
    283 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
    284     bool check_kauth)
    285 {
    286 	int error;
    287 
    288 	if (tp->tv_nsec < 0 || tp->tv_nsec >= 1000000000L)
    289 		return EINVAL;
    290 
    291 	switch (clock_id) {
    292 	case CLOCK_REALTIME:
    293 		if ((error = settime1(p, tp, check_kauth)) != 0)
    294 			return error;
    295 		break;
    296 	case CLOCK_MONOTONIC:
    297 		return EINVAL;	/* read-only clock */
    298 	default:
    299 		return EINVAL;
    300 	}
    301 
    302 	return 0;
    303 }
    304 
    305 int
    306 sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
    307     register_t *retval)
    308 {
    309 	/* {
    310 		syscallarg(clockid_t) clock_id;
    311 		syscallarg(struct timespec *) tp;
    312 	} */
    313 	struct timespec ts;
    314 	int error;
    315 
    316 	if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
    317 		return error;
    318 
    319 	if (SCARG(uap, tp))
    320 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    321 
    322 	return error;
    323 }
    324 
    325 int
    326 clock_getres1(clockid_t clock_id, struct timespec *ts)
    327 {
    328 
    329 	switch (clock_id) {
    330 	case CLOCK_REALTIME:
    331 	case CLOCK_MONOTONIC:
    332 		ts->tv_sec = 0;
    333 		if (tc_getfrequency() > 1000000000)
    334 			ts->tv_nsec = 1;
    335 		else
    336 			ts->tv_nsec = 1000000000 / tc_getfrequency();
    337 		break;
    338 	default:
    339 		return EINVAL;
    340 	}
    341 
    342 	return 0;
    343 }
    344 
    345 /* ARGSUSED */
    346 int
    347 sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
    348     register_t *retval)
    349 {
    350 	/* {
    351 		syscallarg(struct timespec *) rqtp;
    352 		syscallarg(struct timespec *) rmtp;
    353 	} */
    354 	struct timespec rmt, rqt;
    355 	int error, error1;
    356 
    357 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    358 	if (error)
    359 		return error;
    360 
    361 	error = nanosleep1(l, CLOCK_MONOTONIC, 0, &rqt,
    362 	    SCARG(uap, rmtp) ? &rmt : NULL);
    363 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
    364 		return error;
    365 
    366 	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
    367 	return error1 ? error1 : error;
    368 }
    369 
    370 /* ARGSUSED */
    371 int
    372 sys_clock_nanosleep(struct lwp *l, const struct sys_clock_nanosleep_args *uap,
    373     register_t *retval)
    374 {
    375 	/* {
    376 		syscallarg(clockid_t) clock_id;
    377 		syscallarg(int) flags;
    378 		syscallarg(struct timespec *) rqtp;
    379 		syscallarg(struct timespec *) rmtp;
    380 	} */
    381 	struct timespec rmt, rqt;
    382 	int error, error1;
    383 
    384 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    385 	if (error)
    386 		goto out;
    387 
    388 	error = nanosleep1(l, SCARG(uap, clock_id), SCARG(uap, flags), &rqt,
    389 	    SCARG(uap, rmtp) ? &rmt : NULL);
    390 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
    391 		goto out;
    392 
    393 	if ((SCARG(uap, flags) & TIMER_ABSTIME) == 0 &&
    394 	    (error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt))) != 0)
    395 		error = error1;
    396 out:
    397 	*retval = error;
    398 	return 0;
    399 }
    400 
    401 int
    402 nanosleep1(struct lwp *l, clockid_t clock_id, int flags, struct timespec *rqt,
    403     struct timespec *rmt)
    404 {
    405 	struct timespec rmtstart;
    406 	int error, timo;
    407 
    408 	if ((error = ts2timo(clock_id, flags, rqt, &timo, &rmtstart)) != 0) {
    409 		if (error == ETIMEDOUT) {
    410 			error = 0;
    411 			if (rmt != NULL)
    412 				rmt->tv_sec = rmt->tv_nsec = 0;
    413 		}
    414 		return error;
    415 	}
    416 
    417 	/*
    418 	 * Avoid inadvertently sleeping forever
    419 	 */
    420 	if (timo == 0)
    421 		timo = 1;
    422 again:
    423 	error = kpause("nanoslp", true, timo, NULL);
    424 	if (error == EWOULDBLOCK)
    425 		error = 0;
    426 	if (rmt != NULL || error == 0) {
    427 		struct timespec rmtend;
    428 		struct timespec t0;
    429 		struct timespec *t;
    430 		int err;
    431 
    432 		err = clock_gettime1(clock_id, &rmtend);
    433 		if (err != 0)
    434 			return err;
    435 
    436 		t = (rmt != NULL) ? rmt : &t0;
    437 		if (flags & TIMER_ABSTIME) {
    438 			timespecsub(rqt, &rmtend, t);
    439 		} else {
    440 			if (timespeccmp(&rmtend, &rmtstart, <))
    441 				timespecclear(t); /* clock wound back */
    442 			else
    443 				timespecsub(&rmtend, &rmtstart, t);
    444 			if (timespeccmp(rqt, t, <))
    445 				timespecclear(t);
    446 			else
    447 				timespecsub(rqt, t, t);
    448 		}
    449 		if (t->tv_sec < 0)
    450 			timespecclear(t);
    451 		if (error == 0) {
    452 			timo = tstohz(t);
    453 			if (timo > 0)
    454 				goto again;
    455 		}
    456 	}
    457 
    458 	if (error == ERESTART)
    459 		error = EINTR;
    460 
    461 	return error;
    462 }
    463 
    464 int
    465 sys_clock_getcpuclockid2(struct lwp *l,
    466     const struct sys_clock_getcpuclockid2_args *uap,
    467     register_t *retval)
    468 {
    469 	/* {
    470 		syscallarg(idtype_t idtype;
    471 		syscallarg(id_t id);
    472 		syscallarg(clockid_t *)clock_id;
    473 	} */
    474 	pid_t pid;
    475 	lwpid_t lid;
    476 	clockid_t clock_id;
    477 	id_t id = SCARG(uap, id);
    478 
    479 	switch (SCARG(uap, idtype)) {
    480 	case P_PID:
    481 		pid = id == 0 ? l->l_proc->p_pid : id;
    482 		clock_id = CLOCK_PROCESS_CPUTIME_ID | pid;
    483 		break;
    484 	case P_LWPID:
    485 		lid = id == 0 ? l->l_lid : id;
    486 		clock_id = CLOCK_THREAD_CPUTIME_ID | lid;
    487 		break;
    488 	default:
    489 		return EINVAL;
    490 	}
    491 	return copyout(&clock_id, SCARG(uap, clock_id), sizeof(clock_id));
    492 }
    493 
    494 /* ARGSUSED */
    495 int
    496 sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
    497     register_t *retval)
    498 {
    499 	/* {
    500 		syscallarg(struct timeval *) tp;
    501 		syscallarg(void *) tzp;		really "struct timezone *";
    502 	} */
    503 	struct timeval atv;
    504 	int error = 0;
    505 	struct timezone tzfake;
    506 
    507 	if (SCARG(uap, tp)) {
    508 		memset(&atv, 0, sizeof(atv));
    509 		microtime(&atv);
    510 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    511 		if (error)
    512 			return error;
    513 	}
    514 	if (SCARG(uap, tzp)) {
    515 		/*
    516 		 * NetBSD has no kernel notion of time zone, so we just
    517 		 * fake up a timezone struct and return it if demanded.
    518 		 */
    519 		tzfake.tz_minuteswest = 0;
    520 		tzfake.tz_dsttime = 0;
    521 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    522 	}
    523 	return error;
    524 }
    525 
    526 /* ARGSUSED */
    527 int
    528 sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
    529     register_t *retval)
    530 {
    531 	/* {
    532 		syscallarg(const struct timeval *) tv;
    533 		syscallarg(const void *) tzp; really "const struct timezone *";
    534 	} */
    535 
    536 	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
    537 }
    538 
    539 int
    540 settimeofday1(const struct timeval *utv, bool userspace,
    541     const void *utzp, struct lwp *l, bool check_kauth)
    542 {
    543 	struct timeval atv;
    544 	struct timespec ts;
    545 	int error;
    546 
    547 	/* Verify all parameters before changing time. */
    548 
    549 	/*
    550 	 * NetBSD has no kernel notion of time zone, and only an
    551 	 * obsolete program would try to set it, so we log a warning.
    552 	 */
    553 	if (utzp)
    554 		log(LOG_WARNING, "pid %d attempted to set the "
    555 		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
    556 
    557 	if (utv == NULL)
    558 		return 0;
    559 
    560 	if (userspace) {
    561 		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
    562 			return error;
    563 		utv = &atv;
    564 	}
    565 
    566 	if (utv->tv_usec < 0 || utv->tv_usec >= 1000000)
    567 		return EINVAL;
    568 
    569 	TIMEVAL_TO_TIMESPEC(utv, &ts);
    570 	return settime1(l->l_proc, &ts, check_kauth);
    571 }
    572 
    573 int	time_adjusted;			/* set if an adjustment is made */
    574 
    575 /* ARGSUSED */
    576 int
    577 sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
    578     register_t *retval)
    579 {
    580 	/* {
    581 		syscallarg(const struct timeval *) delta;
    582 		syscallarg(struct timeval *) olddelta;
    583 	} */
    584 	int error;
    585 	struct timeval atv, oldatv;
    586 
    587 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
    588 	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
    589 		return error;
    590 
    591 	if (SCARG(uap, delta)) {
    592 		error = copyin(SCARG(uap, delta), &atv,
    593 		    sizeof(*SCARG(uap, delta)));
    594 		if (error)
    595 			return error;
    596 	}
    597 	adjtime1(SCARG(uap, delta) ? &atv : NULL,
    598 	    SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
    599 	if (SCARG(uap, olddelta))
    600 		error = copyout(&oldatv, SCARG(uap, olddelta),
    601 		    sizeof(*SCARG(uap, olddelta)));
    602 	return error;
    603 }
    604 
    605 void
    606 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
    607 {
    608 
    609 	if (olddelta) {
    610 		memset(olddelta, 0, sizeof(*olddelta));
    611 		mutex_spin_enter(&timecounter_lock);
    612 		olddelta->tv_sec = time_adjtime / 1000000;
    613 		olddelta->tv_usec = time_adjtime % 1000000;
    614 		if (olddelta->tv_usec < 0) {
    615 			olddelta->tv_usec += 1000000;
    616 			olddelta->tv_sec--;
    617 		}
    618 		mutex_spin_exit(&timecounter_lock);
    619 	}
    620 
    621 	if (delta) {
    622 		mutex_spin_enter(&timecounter_lock);
    623 		/*
    624 		 * XXX This should maybe just report failure to
    625 		 * userland for nonsense deltas.
    626 		 */
    627 		if (delta->tv_sec > INT64_MAX/1000000 - 1) {
    628 			time_adjtime = INT64_MAX;
    629 		} else if (delta->tv_sec < INT64_MIN/1000000 + 1) {
    630 			time_adjtime = INT64_MIN;
    631 		} else {
    632 			time_adjtime = delta->tv_sec * 1000000
    633 			    + MAX(-999999, MIN(999999, delta->tv_usec));
    634 		}
    635 
    636 		if (time_adjtime) {
    637 			/* We need to save the system time during shutdown */
    638 			time_adjusted |= 1;
    639 		}
    640 		mutex_spin_exit(&timecounter_lock);
    641 	}
    642 }
    643 
    644 /*
    645  * Interval timer support.
    646  *
    647  * The itimer_*() routines provide generic support for interval timers,
    648  * both real (CLOCK_REALTIME, CLOCK_MONOTIME), and virtual (CLOCK_VIRTUAL,
    649  * CLOCK_PROF).
    650  *
    651  * Real timers keep their deadline as an absolute time, and are fired
    652  * by a callout.  Virtual timers are kept as a linked-list of deltas,
    653  * and are processed by hardclock().
    654  *
    655  * Because the real time timer callout may be delayed in real time due
    656  * to interrupt processing on the system, it is possible for the real
    657  * time timeout routine (itimer_callout()) run past after its deadline.
    658  * It does not suffice, therefore, to reload the real timer .it_value
    659  * from the timer's .it_interval.  Rather, we compute the next deadline
    660  * in absolute time based on the current time and the .it_interval value,
    661  * and report any overruns.
    662  *
    663  * Note that while the virtual timers are supported in a generic fashion
    664  * here, they only (currently) make sense as per-process timers, and thus
    665  * only really work for that case.
    666  */
    667 
    668 /*
    669  * itimer_init:
    670  *
    671  *	Initialize the common data for an interval timer.
    672  */
    673 void
    674 itimer_init(struct itimer * const it, const struct itimer_ops * const ops,
    675     clockid_t const id, struct itlist * const itl)
    676 {
    677 
    678 	KASSERT(itimer_lock_held());
    679 	KASSERT(ops != NULL);
    680 
    681 	timespecclear(&it->it_time.it_value);
    682 	it->it_ops = ops;
    683 	it->it_clockid = id;
    684 	it->it_overruns = 0;
    685 	it->it_dying = false;
    686 	if (!CLOCK_VIRTUAL_P(id)) {
    687 		KASSERT(itl == NULL);
    688 		callout_init(&it->it_ch, CALLOUT_MPSAFE);
    689 		callout_setfunc(&it->it_ch, itimer_callout, it);
    690 		if (id == CLOCK_REALTIME && ops->ito_realtime_changed != NULL) {
    691 			LIST_INSERT_HEAD(&itimer_realtime_changed_notify,
    692 			    it, it_rtchgq);
    693 		}
    694 	} else {
    695 		KASSERT(itl != NULL);
    696 		it->it_vlist = itl;
    697 		it->it_active = false;
    698 	}
    699 }
    700 
    701 /*
    702  * itimer_poison:
    703  *
    704  *	Poison an interval timer, preventing it from being scheduled
    705  *	or processed, in preparation for freeing the timer.
    706  */
    707 void
    708 itimer_poison(struct itimer * const it)
    709 {
    710 
    711 	KASSERT(itimer_lock_held());
    712 
    713 	it->it_dying = true;
    714 
    715 	/*
    716 	 * For non-virtual timers, stop the callout, or wait for it to
    717 	 * run if it has already fired.  It cannot restart again after
    718 	 * this point: the callout won't restart itself when dying, no
    719 	 * other users holding the lock can restart it, and any other
    720 	 * users waiting for callout_halt concurrently (itimer_settime)
    721 	 * will restart from the top.
    722 	 */
    723 	if (!CLOCK_VIRTUAL_P(it->it_clockid)) {
    724 		callout_halt(&it->it_ch, &itimer_mutex);
    725 		if (it->it_clockid == CLOCK_REALTIME &&
    726 		    it->it_ops->ito_realtime_changed != NULL) {
    727 			LIST_REMOVE(it, it_rtchgq);
    728 		}
    729 	}
    730 }
    731 
    732 /*
    733  * itimer_fini:
    734  *
    735  *	Release resources used by an interval timer.
    736  *
    737  *	N.B. itimer_lock must be held on entry, and is released on exit.
    738  */
    739 void
    740 itimer_fini(struct itimer * const it)
    741 {
    742 
    743 	KASSERT(itimer_lock_held());
    744 
    745 	/* All done with the global state. */
    746 	itimer_unlock();
    747 
    748 	/* Destroy the callout, if needed. */
    749 	if (!CLOCK_VIRTUAL_P(it->it_clockid))
    750 		callout_destroy(&it->it_ch);
    751 }
    752 
    753 /*
    754  * itimer_decr:
    755  *
    756  *	Decrement an interval timer by a specified number of nanoseconds,
    757  *	which must be less than a second, i.e. < 1000000000.  If the timer
    758  *	expires, then reload it.  In this case, carry over (nsec - old value)
    759  *	to reduce the value reloaded into the timer so that the timer does
    760  *	not drift.  This routine assumes that it is called in a context where
    761  *	the timers on which it is operating cannot change in value.
    762  *
    763  *	Returns true if the timer has expired.
    764  */
    765 static bool
    766 itimer_decr(struct itimer *it, int nsec)
    767 {
    768 	struct itimerspec *itp;
    769 	int error __diagused;
    770 
    771 	KASSERT(itimer_lock_held());
    772 	KASSERT(CLOCK_VIRTUAL_P(it->it_clockid));
    773 
    774 	itp = &it->it_time;
    775 	if (itp->it_value.tv_nsec < nsec) {
    776 		if (itp->it_value.tv_sec == 0) {
    777 			/* expired, and already in next interval */
    778 			nsec -= itp->it_value.tv_nsec;
    779 			goto expire;
    780 		}
    781 		itp->it_value.tv_nsec += 1000000000;
    782 		itp->it_value.tv_sec--;
    783 	}
    784 	itp->it_value.tv_nsec -= nsec;
    785 	nsec = 0;
    786 	if (timespecisset(&itp->it_value))
    787 		return false;
    788 	/* expired, exactly at end of interval */
    789  expire:
    790 	if (timespecisset(&itp->it_interval)) {
    791 		itp->it_value = itp->it_interval;
    792 		itp->it_value.tv_nsec -= nsec;
    793 		if (itp->it_value.tv_nsec < 0) {
    794 			itp->it_value.tv_nsec += 1000000000;
    795 			itp->it_value.tv_sec--;
    796 		}
    797 		error = itimer_settime(it);
    798 		KASSERT(error == 0); /* virtual, never fails */
    799 	} else
    800 		itp->it_value.tv_nsec = 0;		/* sec is already 0 */
    801 	return true;
    802 }
    803 
    804 /*
    805  * itimer_arm_real:
    806  *
    807  *	Arm a non-virtual timer.
    808  */
    809 static void
    810 itimer_arm_real(struct itimer * const it)
    811 {
    812 
    813 	KASSERT(!it->it_dying);
    814 	KASSERT(!CLOCK_VIRTUAL_P(it->it_clockid));
    815 	KASSERT(!callout_pending(&it->it_ch));
    816 
    817 	/*
    818 	 * Don't need to check tshzto() return value, here.
    819 	 * callout_schedule() does it for us.
    820 	 */
    821 	callout_schedule(&it->it_ch,
    822 	    (it->it_clockid == CLOCK_MONOTONIC
    823 		? tshztoup(&it->it_time.it_value)
    824 		: tshzto(&it->it_time.it_value)));
    825 }
    826 
    827 /*
    828  * itimer_callout:
    829  *
    830  *	Callout to expire a non-virtual timer.  Queue it up for processing,
    831  *	and then reload, if it is configured to do so.
    832  *
    833  *	N.B. A delay in processing this callout causes multiple
    834  *	SIGALRM calls to be compressed into one.
    835  */
    836 static void
    837 itimer_callout(void *arg)
    838 {
    839 	uint64_t last_val, next_val, interval, now_ns;
    840 	struct timespec now, next;
    841 	struct itimer * const it = arg;
    842 	int backwards;
    843 
    844 	itimer_lock();
    845 	(*it->it_ops->ito_fire)(it);
    846 
    847 	if (!timespecisset(&it->it_time.it_interval)) {
    848 		timespecclear(&it->it_time.it_value);
    849 		itimer_unlock();
    850 		return;
    851 	}
    852 
    853 	if (it->it_clockid == CLOCK_MONOTONIC) {
    854 		getnanouptime(&now);
    855 	} else {
    856 		getnanotime(&now);
    857 	}
    858 
    859 	backwards = (timespeccmp(&it->it_time.it_value, &now, >));
    860 
    861 	/* Nonnegative interval guaranteed by itimerfix.  */
    862 	KASSERT(it->it_time.it_interval.tv_sec >= 0);
    863 	KASSERT(it->it_time.it_interval.tv_nsec >= 0);
    864 
    865 	/* Handle the easy case of non-overflown timers first. */
    866 	if (!backwards &&
    867 	    timespecaddok(&it->it_time.it_value, &it->it_time.it_interval)) {
    868 		timespecadd(&it->it_time.it_value, &it->it_time.it_interval,
    869 		    &next);
    870 		it->it_time.it_value = next;
    871 	} else {
    872 		now_ns = timespec2ns(&now);
    873 		last_val = timespec2ns(&it->it_time.it_value);
    874 		interval = timespec2ns(&it->it_time.it_interval);
    875 
    876 		next_val = now_ns +
    877 		    (now_ns - last_val + interval - 1) % interval;
    878 
    879 		if (backwards)
    880 			next_val += interval;
    881 		else
    882 			it->it_overruns += (now_ns - last_val) / interval;
    883 
    884 		it->it_time.it_value.tv_sec = next_val / 1000000000;
    885 		it->it_time.it_value.tv_nsec = next_val % 1000000000;
    886 	}
    887 
    888 	/*
    889 	 * Reset the callout, if it's not going away.
    890 	 */
    891 	if (!it->it_dying)
    892 		itimer_arm_real(it);
    893 	itimer_unlock();
    894 }
    895 
    896 /*
    897  * itimer_settime:
    898  *
    899  *	Set up the given interval timer. The value in it->it_time.it_value
    900  *	is taken to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC
    901  *	timers and a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
    902  *
    903  *	If the callout had already fired but not yet run, fails with
    904  *	ERESTART -- caller must restart from the top to look up a timer.
    905  */
    906 int
    907 itimer_settime(struct itimer *it)
    908 {
    909 	struct itimer *itn, *pitn;
    910 	struct itlist *itl;
    911 
    912 	KASSERT(itimer_lock_held());
    913 	KASSERT(!it->it_dying);
    914 
    915 	if (!CLOCK_VIRTUAL_P(it->it_clockid)) {
    916 		/*
    917 		 * Try to stop the callout.  However, if it had already
    918 		 * fired, we have to drop the lock to wait for it, so
    919 		 * the world may have changed and pt may not be there
    920 		 * any more.  In that case, tell the caller to start
    921 		 * over from the top.
    922 		 */
    923 		if (callout_halt(&it->it_ch, &itimer_mutex))
    924 			return ERESTART;
    925 		KASSERT(!it->it_dying);
    926 
    927 		/* Now we can touch it and start it up again. */
    928 		if (timespecisset(&it->it_time.it_value))
    929 			itimer_arm_real(it);
    930 	} else {
    931 		if (it->it_active) {
    932 			itn = LIST_NEXT(it, it_list);
    933 			LIST_REMOVE(it, it_list);
    934 			for ( ; itn; itn = LIST_NEXT(itn, it_list))
    935 				timespecadd(&it->it_time.it_value,
    936 				    &itn->it_time.it_value,
    937 				    &itn->it_time.it_value);
    938 		}
    939 		if (timespecisset(&it->it_time.it_value)) {
    940 			itl = it->it_vlist;
    941 			for (itn = LIST_FIRST(itl), pitn = NULL;
    942 			     itn && timespeccmp(&it->it_time.it_value,
    943 				 &itn->it_time.it_value, >);
    944 			     pitn = itn, itn = LIST_NEXT(itn, it_list))
    945 				timespecsub(&it->it_time.it_value,
    946 				    &itn->it_time.it_value,
    947 				    &it->it_time.it_value);
    948 
    949 			if (pitn)
    950 				LIST_INSERT_AFTER(pitn, it, it_list);
    951 			else
    952 				LIST_INSERT_HEAD(itl, it, it_list);
    953 
    954 			for ( ; itn ; itn = LIST_NEXT(itn, it_list))
    955 				timespecsub(&itn->it_time.it_value,
    956 				    &it->it_time.it_value,
    957 				    &itn->it_time.it_value);
    958 
    959 			it->it_active = true;
    960 		} else {
    961 			it->it_active = false;
    962 		}
    963 	}
    964 
    965 	/* Success!  */
    966 	return 0;
    967 }
    968 
    969 /*
    970  * itimer_gettime:
    971  *
    972  *	Return the remaining time of an interval timer.
    973  */
    974 void
    975 itimer_gettime(const struct itimer *it, struct itimerspec *aits)
    976 {
    977 	struct timespec now;
    978 	struct itimer *itn;
    979 
    980 	KASSERT(itimer_lock_held());
    981 	KASSERT(!it->it_dying);
    982 
    983 	*aits = it->it_time;
    984 	if (!CLOCK_VIRTUAL_P(it->it_clockid)) {
    985 		/*
    986 		 * Convert from absolute to relative time in .it_value
    987 		 * part of real time timer.  If time for real time
    988 		 * timer has passed return 0, else return difference
    989 		 * between current time and time for the timer to go
    990 		 * off.
    991 		 */
    992 		if (timespecisset(&aits->it_value)) {
    993 			if (it->it_clockid == CLOCK_REALTIME) {
    994 				getnanotime(&now);
    995 			} else { /* CLOCK_MONOTONIC */
    996 				getnanouptime(&now);
    997 			}
    998 			if (timespeccmp(&aits->it_value, &now, <))
    999 				timespecclear(&aits->it_value);
   1000 			else
   1001 				timespecsub(&aits->it_value, &now,
   1002 				    &aits->it_value);
   1003 		}
   1004 	} else if (it->it_active) {
   1005 		for (itn = LIST_FIRST(it->it_vlist); itn && itn != it;
   1006 		     itn = LIST_NEXT(itn, it_list))
   1007 			timespecadd(&aits->it_value,
   1008 			    &itn->it_time.it_value, &aits->it_value);
   1009 		KASSERT(itn != NULL); /* it should be findable on the list */
   1010 	} else
   1011 		timespecclear(&aits->it_value);
   1012 }
   1013 
   1014 /*
   1015  * Per-process timer support.
   1016  *
   1017  * Both the BSD getitimer() family and the POSIX timer_*() family of
   1018  * routines are supported.
   1019  *
   1020  * All timers are kept in an array pointed to by p_timers, which is
   1021  * allocated on demand - many processes don't use timers at all. The
   1022  * first four elements in this array are reserved for the BSD timers:
   1023  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element
   1024  * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be
   1025  * allocated by the timer_create() syscall.
   1026  *
   1027  * These timers are a "sub-class" of interval timer.
   1028  */
   1029 
   1030 /*
   1031  * ptimer_free:
   1032  *
   1033  *	Free the per-process timer at the specified index.
   1034  */
   1035 static void
   1036 ptimer_free(struct ptimers *pts, int index)
   1037 {
   1038 	struct itimer *it;
   1039 	struct ptimer *pt;
   1040 
   1041 	KASSERT(itimer_lock_held());
   1042 
   1043 	it = pts->pts_timers[index];
   1044 	pt = container_of(it, struct ptimer, pt_itimer);
   1045 	pts->pts_timers[index] = NULL;
   1046 	itimer_poison(it);
   1047 
   1048 	/*
   1049 	 * Remove it from the queue to be signalled.  Must be done
   1050 	 * after itimer is poisoned, because we may have had to wait
   1051 	 * for the callout to complete.
   1052 	 */
   1053 	if (pt->pt_queued) {
   1054 		TAILQ_REMOVE(&ptimer_queue, pt, pt_chain);
   1055 		pt->pt_queued = false;
   1056 	}
   1057 
   1058 	itimer_fini(it);	/* releases itimer_lock */
   1059 	kmem_free(pt, sizeof(*pt));
   1060 }
   1061 
   1062 /*
   1063  * ptimers_alloc:
   1064  *
   1065  *	Allocate a ptimers for the specified process.
   1066  */
   1067 static struct ptimers *
   1068 ptimers_alloc(struct proc *p)
   1069 {
   1070 	struct ptimers *pts;
   1071 	int i;
   1072 
   1073 	pts = kmem_alloc(sizeof(*pts), KM_SLEEP);
   1074 	LIST_INIT(&pts->pts_virtual);
   1075 	LIST_INIT(&pts->pts_prof);
   1076 	for (i = 0; i < TIMER_MAX; i++)
   1077 		pts->pts_timers[i] = NULL;
   1078 	itimer_lock();
   1079 	if (p->p_timers == NULL) {
   1080 		p->p_timers = pts;
   1081 		itimer_unlock();
   1082 		return pts;
   1083 	}
   1084 	itimer_unlock();
   1085 	kmem_free(pts, sizeof(*pts));
   1086 	return p->p_timers;
   1087 }
   1088 
   1089 /*
   1090  * ptimers_free:
   1091  *
   1092  *	Clean up the per-process timers. If "which" is set to TIMERS_ALL,
   1093  *	then clean up all timers and free all the data structures. If
   1094  *	"which" is set to TIMERS_POSIX, only clean up the timers allocated
   1095  *	by timer_create(), not the BSD setitimer() timers, and only free the
   1096  *	structure if none of those remain.
   1097  *
   1098  *	This function is exported because it is needed in the exec and
   1099  *	exit code paths.
   1100  */
   1101 void
   1102 ptimers_free(struct proc *p, int which)
   1103 {
   1104 	struct ptimers *pts;
   1105 	struct itimer *itn;
   1106 	struct timespec ts;
   1107 	int i;
   1108 
   1109 	if (p->p_timers == NULL)
   1110 		return;
   1111 
   1112 	pts = p->p_timers;
   1113 	itimer_lock();
   1114 	if (which == TIMERS_ALL) {
   1115 		p->p_timers = NULL;
   1116 		i = 0;
   1117 	} else {
   1118 		timespecclear(&ts);
   1119 		for (itn = LIST_FIRST(&pts->pts_virtual);
   1120 		     itn && itn != pts->pts_timers[ITIMER_VIRTUAL];
   1121 		     itn = LIST_NEXT(itn, it_list)) {
   1122 			KASSERT(itn->it_clockid == CLOCK_VIRTUAL);
   1123 			timespecadd(&ts, &itn->it_time.it_value, &ts);
   1124 		}
   1125 		LIST_FIRST(&pts->pts_virtual) = NULL;
   1126 		if (itn) {
   1127 			KASSERT(itn->it_clockid == CLOCK_VIRTUAL);
   1128 			timespecadd(&ts, &itn->it_time.it_value,
   1129 			    &itn->it_time.it_value);
   1130 			LIST_INSERT_HEAD(&pts->pts_virtual, itn, it_list);
   1131 		}
   1132 		timespecclear(&ts);
   1133 		for (itn = LIST_FIRST(&pts->pts_prof);
   1134 		     itn && itn != pts->pts_timers[ITIMER_PROF];
   1135 		     itn = LIST_NEXT(itn, it_list)) {
   1136 			KASSERT(itn->it_clockid == CLOCK_PROF);
   1137 			timespecadd(&ts, &itn->it_time.it_value, &ts);
   1138 		}
   1139 		LIST_FIRST(&pts->pts_prof) = NULL;
   1140 		if (itn) {
   1141 			KASSERT(itn->it_clockid == CLOCK_PROF);
   1142 			timespecadd(&ts, &itn->it_time.it_value,
   1143 			    &itn->it_time.it_value);
   1144 			LIST_INSERT_HEAD(&pts->pts_prof, itn, it_list);
   1145 		}
   1146 		i = TIMER_MIN;
   1147 	}
   1148 	for ( ; i < TIMER_MAX; i++) {
   1149 		if (pts->pts_timers[i] != NULL) {
   1150 			/* Free the timer and release the lock.  */
   1151 			ptimer_free(pts, i);
   1152 			/* Reacquire the lock for the next one.  */
   1153 			itimer_lock();
   1154 		}
   1155 	}
   1156 	if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
   1157 	    pts->pts_timers[2] == NULL && pts->pts_timers[3] == NULL) {
   1158 		p->p_timers = NULL;
   1159 		itimer_unlock();
   1160 		kmem_free(pts, sizeof(*pts));
   1161 	} else
   1162 		itimer_unlock();
   1163 }
   1164 
   1165 /*
   1166  * ptimer_fire:
   1167  *
   1168  *	Fire a per-process timer.
   1169  */
   1170 static void
   1171 ptimer_fire(struct itimer *it)
   1172 {
   1173 	struct ptimer *pt = container_of(it, struct ptimer, pt_itimer);
   1174 
   1175 	KASSERT(itimer_lock_held());
   1176 
   1177 	/*
   1178 	 * XXX Can overrun, but we don't do signal queueing yet, anyway.
   1179 	 * XXX Relying on the clock interrupt is stupid.
   1180 	 */
   1181 	if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
   1182 		return;
   1183 	}
   1184 
   1185 	if (!pt->pt_queued) {
   1186 		TAILQ_INSERT_TAIL(&ptimer_queue, pt, pt_chain);
   1187 		pt->pt_queued = true;
   1188 		softint_schedule(ptimer_sih);
   1189 	}
   1190 }
   1191 
   1192 /*
   1193  * Operations vector for per-process timers (BSD and POSIX).
   1194  */
   1195 static const struct itimer_ops ptimer_itimer_ops = {
   1196 	.ito_fire = ptimer_fire,
   1197 };
   1198 
   1199 /*
   1200  * sys_timer_create:
   1201  *
   1202  *	System call to create a POSIX timer.
   1203  */
   1204 int
   1205 sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
   1206     register_t *retval)
   1207 {
   1208 	/* {
   1209 		syscallarg(clockid_t) clock_id;
   1210 		syscallarg(struct sigevent *) evp;
   1211 		syscallarg(timer_t *) timerid;
   1212 	} */
   1213 
   1214 	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
   1215 	    SCARG(uap, evp), copyin, l);
   1216 }
   1217 
   1218 int
   1219 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
   1220     copyin_t fetch_event, struct lwp *l)
   1221 {
   1222 	int error;
   1223 	timer_t timerid;
   1224 	struct itlist *itl;
   1225 	struct ptimers *pts;
   1226 	struct ptimer *pt;
   1227 	struct proc *p;
   1228 
   1229 	p = l->l_proc;
   1230 
   1231 	if ((u_int)id > CLOCK_MONOTONIC)
   1232 		return EINVAL;
   1233 
   1234 	if ((pts = p->p_timers) == NULL)
   1235 		pts = ptimers_alloc(p);
   1236 
   1237 	pt = kmem_zalloc(sizeof(*pt), KM_SLEEP);
   1238 	if (evp != NULL) {
   1239 		if (((error =
   1240 		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
   1241 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
   1242 			(pt->pt_ev.sigev_notify > SIGEV_SA)) ||
   1243 			(pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
   1244 			 (pt->pt_ev.sigev_signo <= 0 ||
   1245 			  pt->pt_ev.sigev_signo >= NSIG))) {
   1246 			kmem_free(pt, sizeof(*pt));
   1247 			return (error ? error : EINVAL);
   1248 		}
   1249 	}
   1250 
   1251 	/* Find a free timer slot, skipping those reserved for setitimer(). */
   1252 	itimer_lock();
   1253 	for (timerid = TIMER_MIN; timerid < TIMER_MAX; timerid++)
   1254 		if (pts->pts_timers[timerid] == NULL)
   1255 			break;
   1256 	if (timerid == TIMER_MAX) {
   1257 		itimer_unlock();
   1258 		kmem_free(pt, sizeof(*pt));
   1259 		return EAGAIN;
   1260 	}
   1261 	if (evp == NULL) {
   1262 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
   1263 		switch (id) {
   1264 		case CLOCK_REALTIME:
   1265 		case CLOCK_MONOTONIC:
   1266 			pt->pt_ev.sigev_signo = SIGALRM;
   1267 			break;
   1268 		case CLOCK_VIRTUAL:
   1269 			pt->pt_ev.sigev_signo = SIGVTALRM;
   1270 			break;
   1271 		case CLOCK_PROF:
   1272 			pt->pt_ev.sigev_signo = SIGPROF;
   1273 			break;
   1274 		}
   1275 		pt->pt_ev.sigev_value.sival_int = timerid;
   1276 	}
   1277 
   1278 	switch (id) {
   1279 	case CLOCK_VIRTUAL:
   1280 		itl = &pts->pts_virtual;
   1281 		break;
   1282 	case CLOCK_PROF:
   1283 		itl = &pts->pts_prof;
   1284 		break;
   1285 	default:
   1286 		itl = NULL;
   1287 	}
   1288 
   1289 	itimer_init(&pt->pt_itimer, &ptimer_itimer_ops, id, itl);
   1290 	pt->pt_proc = p;
   1291 	pt->pt_poverruns = 0;
   1292 	pt->pt_entry = timerid;
   1293 	pt->pt_queued = false;
   1294 
   1295 	pts->pts_timers[timerid] = &pt->pt_itimer;
   1296 	itimer_unlock();
   1297 
   1298 	return copyout(&timerid, tid, sizeof(timerid));
   1299 }
   1300 
   1301 /*
   1302  * sys_timer_delete:
   1303  *
   1304  *	System call to delete a POSIX timer.
   1305  */
   1306 int
   1307 sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
   1308     register_t *retval)
   1309 {
   1310 	/* {
   1311 		syscallarg(timer_t) timerid;
   1312 	} */
   1313 	struct proc *p = l->l_proc;
   1314 	timer_t timerid;
   1315 	struct ptimers *pts;
   1316 	struct itimer *it, *itn;
   1317 
   1318 	timerid = SCARG(uap, timerid);
   1319 	pts = p->p_timers;
   1320 
   1321 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
   1322 		return EINVAL;
   1323 
   1324 	itimer_lock();
   1325 	if ((it = pts->pts_timers[timerid]) == NULL) {
   1326 		itimer_unlock();
   1327 		return EINVAL;
   1328 	}
   1329 
   1330 	if (CLOCK_VIRTUAL_P(it->it_clockid)) {
   1331 		if (it->it_active) {
   1332 			itn = LIST_NEXT(it, it_list);
   1333 			LIST_REMOVE(it, it_list);
   1334 			for ( ; itn; itn = LIST_NEXT(itn, it_list))
   1335 				timespecadd(&it->it_time.it_value,
   1336 				    &itn->it_time.it_value,
   1337 				    &itn->it_time.it_value);
   1338 			it->it_active = false;
   1339 		}
   1340 	}
   1341 
   1342 	/* Free the timer and release the lock.  */
   1343 	ptimer_free(pts, timerid);
   1344 
   1345 	return 0;
   1346 }
   1347 
   1348 /*
   1349  * sys___timer_settime50:
   1350  *
   1351  *	System call to set/arm a POSIX timer.
   1352  */
   1353 int
   1354 sys___timer_settime50(struct lwp *l,
   1355     const struct sys___timer_settime50_args *uap,
   1356     register_t *retval)
   1357 {
   1358 	/* {
   1359 		syscallarg(timer_t) timerid;
   1360 		syscallarg(int) flags;
   1361 		syscallarg(const struct itimerspec *) value;
   1362 		syscallarg(struct itimerspec *) ovalue;
   1363 	} */
   1364 	int error;
   1365 	struct itimerspec value, ovalue, *ovp = NULL;
   1366 
   1367 	if ((error = copyin(SCARG(uap, value), &value,
   1368 	    sizeof(struct itimerspec))) != 0)
   1369 		return error;
   1370 
   1371 	if (SCARG(uap, ovalue))
   1372 		ovp = &ovalue;
   1373 
   1374 	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
   1375 	    SCARG(uap, flags), l->l_proc)) != 0)
   1376 		return error;
   1377 
   1378 	if (ovp)
   1379 		return copyout(&ovalue, SCARG(uap, ovalue),
   1380 		    sizeof(struct itimerspec));
   1381 	return 0;
   1382 }
   1383 
   1384 int
   1385 dotimer_settime(int timerid, struct itimerspec *value,
   1386     struct itimerspec *ovalue, int flags, struct proc *p)
   1387 {
   1388 	struct timespec now;
   1389 	struct itimerspec val, oval;
   1390 	struct ptimers *pts;
   1391 	struct itimer *it;
   1392 	int error;
   1393 
   1394 	pts = p->p_timers;
   1395 
   1396 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
   1397 		return EINVAL;
   1398 	val = *value;
   1399 	if (itimespecfix(&val.it_value) != 0 ||
   1400 	    itimespecfix(&val.it_interval) != 0)
   1401 		return EINVAL;
   1402 
   1403 	itimer_lock();
   1404  restart:
   1405 	if ((it = pts->pts_timers[timerid]) == NULL) {
   1406 		itimer_unlock();
   1407 		return EINVAL;
   1408 	}
   1409 
   1410 	oval = it->it_time;
   1411 	it->it_time = val;
   1412 
   1413 	/*
   1414 	 * If we've been passed a relative time for a realtime timer,
   1415 	 * convert it to absolute; if an absolute time for a virtual
   1416 	 * timer, convert it to relative and make sure we don't set it
   1417 	 * to zero, which would cancel the timer, or let it go
   1418 	 * negative, which would confuse the comparison tests.
   1419 	 */
   1420 	if (timespecisset(&it->it_time.it_value)) {
   1421 		if (!CLOCK_VIRTUAL_P(it->it_clockid)) {
   1422 			if ((flags & TIMER_ABSTIME) == 0) {
   1423 				if (it->it_clockid == CLOCK_REALTIME) {
   1424 					getnanotime(&now);
   1425 				} else { /* CLOCK_MONOTONIC */
   1426 					getnanouptime(&now);
   1427 				}
   1428 				timespecadd(&it->it_time.it_value, &now,
   1429 				    &it->it_time.it_value);
   1430 			}
   1431 		} else {
   1432 			if ((flags & TIMER_ABSTIME) != 0) {
   1433 				getnanotime(&now);
   1434 				timespecsub(&it->it_time.it_value, &now,
   1435 				    &it->it_time.it_value);
   1436 				if (!timespecisset(&it->it_time.it_value) ||
   1437 				    it->it_time.it_value.tv_sec < 0) {
   1438 					it->it_time.it_value.tv_sec = 0;
   1439 					it->it_time.it_value.tv_nsec = 1;
   1440 				}
   1441 			}
   1442 		}
   1443 	}
   1444 
   1445 	error = itimer_settime(it);
   1446 	if (error == ERESTART) {
   1447 		KASSERT(!CLOCK_VIRTUAL_P(it->it_clockid));
   1448 		goto restart;
   1449 	}
   1450 	KASSERT(error == 0);
   1451 	itimer_unlock();
   1452 
   1453 	if (ovalue)
   1454 		*ovalue = oval;
   1455 
   1456 	return 0;
   1457 }
   1458 
   1459 /*
   1460  * sys___timer_gettime50:
   1461  *
   1462  *	System call to return the time remaining until a POSIX timer fires.
   1463  */
   1464 int
   1465 sys___timer_gettime50(struct lwp *l,
   1466     const struct sys___timer_gettime50_args *uap, register_t *retval)
   1467 {
   1468 	/* {
   1469 		syscallarg(timer_t) timerid;
   1470 		syscallarg(struct itimerspec *) value;
   1471 	} */
   1472 	struct itimerspec its;
   1473 	int error;
   1474 
   1475 	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
   1476 	    &its)) != 0)
   1477 		return error;
   1478 
   1479 	return copyout(&its, SCARG(uap, value), sizeof(its));
   1480 }
   1481 
   1482 int
   1483 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
   1484 {
   1485 	struct itimer *it;
   1486 	struct ptimers *pts;
   1487 
   1488 	pts = p->p_timers;
   1489 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
   1490 		return EINVAL;
   1491 	itimer_lock();
   1492 	if ((it = pts->pts_timers[timerid]) == NULL) {
   1493 		itimer_unlock();
   1494 		return EINVAL;
   1495 	}
   1496 	itimer_gettime(it, its);
   1497 	itimer_unlock();
   1498 
   1499 	return 0;
   1500 }
   1501 
   1502 /*
   1503  * sys_timer_getoverrun:
   1504  *
   1505  *	System call to return the number of times a POSIX timer has
   1506  *	expired while a notification was already pending.  The counter
   1507  *	is reset when a timer expires and a notification can be posted.
   1508  */
   1509 int
   1510 sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
   1511     register_t *retval)
   1512 {
   1513 	/* {
   1514 		syscallarg(timer_t) timerid;
   1515 	} */
   1516 	struct proc *p = l->l_proc;
   1517 	struct ptimers *pts;
   1518 	int timerid;
   1519 	struct itimer *it;
   1520 	struct ptimer *pt;
   1521 
   1522 	timerid = SCARG(uap, timerid);
   1523 
   1524 	pts = p->p_timers;
   1525 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
   1526 		return EINVAL;
   1527 	itimer_lock();
   1528 	if ((it = pts->pts_timers[timerid]) == NULL) {
   1529 		itimer_unlock();
   1530 		return EINVAL;
   1531 	}
   1532 	pt = container_of(it, struct ptimer, pt_itimer);
   1533 	*retval = pt->pt_poverruns;
   1534 	if (*retval >= DELAYTIMER_MAX)
   1535 		*retval = DELAYTIMER_MAX;
   1536 	itimer_unlock();
   1537 
   1538 	return 0;
   1539 }
   1540 
   1541 /*
   1542  * sys___getitimer50:
   1543  *
   1544  *	System call to get the time remaining before a BSD timer fires.
   1545  */
   1546 int
   1547 sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
   1548     register_t *retval)
   1549 {
   1550 	/* {
   1551 		syscallarg(int) which;
   1552 		syscallarg(struct itimerval *) itv;
   1553 	} */
   1554 	struct proc *p = l->l_proc;
   1555 	struct itimerval aitv;
   1556 	int error;
   1557 
   1558 	memset(&aitv, 0, sizeof(aitv));
   1559 	error = dogetitimer(p, SCARG(uap, which), &aitv);
   1560 	if (error)
   1561 		return error;
   1562 	return copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval));
   1563 }
   1564 
   1565 int
   1566 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
   1567 {
   1568 	struct ptimers *pts;
   1569 	struct itimer *it;
   1570 	struct itimerspec its;
   1571 
   1572 	if ((u_int)which > ITIMER_MONOTONIC)
   1573 		return EINVAL;
   1574 
   1575 	itimer_lock();
   1576 	pts = p->p_timers;
   1577 	if (pts == NULL || (it = pts->pts_timers[which]) == NULL) {
   1578 		timerclear(&itvp->it_value);
   1579 		timerclear(&itvp->it_interval);
   1580 	} else {
   1581 		itimer_gettime(it, &its);
   1582 		TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
   1583 		TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
   1584 	}
   1585 	itimer_unlock();
   1586 
   1587 	return 0;
   1588 }
   1589 
   1590 /*
   1591  * sys___setitimer50:
   1592  *
   1593  *	System call to set/arm a BSD timer.
   1594  */
   1595 int
   1596 sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
   1597     register_t *retval)
   1598 {
   1599 	/* {
   1600 		syscallarg(int) which;
   1601 		syscallarg(const struct itimerval *) itv;
   1602 		syscallarg(struct itimerval *) oitv;
   1603 	} */
   1604 	struct proc *p = l->l_proc;
   1605 	int which = SCARG(uap, which);
   1606 	struct sys___getitimer50_args getargs;
   1607 	const struct itimerval *itvp;
   1608 	struct itimerval aitv;
   1609 	int error;
   1610 
   1611 	itvp = SCARG(uap, itv);
   1612 	if (itvp &&
   1613 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval))) != 0)
   1614 		return error;
   1615 	if (SCARG(uap, oitv) != NULL) {
   1616 		SCARG(&getargs, which) = which;
   1617 		SCARG(&getargs, itv) = SCARG(uap, oitv);
   1618 		if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
   1619 			return error;
   1620 	}
   1621 	if (itvp == 0)
   1622 		return 0;
   1623 
   1624 	return dosetitimer(p, which, &aitv);
   1625 }
   1626 
   1627 int
   1628 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
   1629 {
   1630 	struct timespec now;
   1631 	struct ptimers *pts;
   1632 	struct ptimer *spare;
   1633 	struct itimer *it;
   1634 	struct itlist *itl;
   1635 	int error;
   1636 
   1637 	if ((u_int)which > ITIMER_MONOTONIC)
   1638 		return EINVAL;
   1639 	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
   1640 		return EINVAL;
   1641 
   1642 	/*
   1643 	 * Don't bother allocating data structures if the process just
   1644 	 * wants to clear the timer.
   1645 	 */
   1646 	spare = NULL;
   1647 	pts = p->p_timers;
   1648  retry:
   1649 	if (!timerisset(&itvp->it_value) && (pts == NULL ||
   1650 	    pts->pts_timers[which] == NULL))
   1651 		return 0;
   1652 	if (pts == NULL)
   1653 		pts = ptimers_alloc(p);
   1654 	itimer_lock();
   1655  restart:
   1656 	it = pts->pts_timers[which];
   1657 	if (it == NULL) {
   1658 		struct ptimer *pt;
   1659 
   1660 		if (spare == NULL) {
   1661 			itimer_unlock();
   1662 			spare = kmem_zalloc(sizeof(*spare), KM_SLEEP);
   1663 			goto retry;
   1664 		}
   1665 		pt = spare;
   1666 		spare = NULL;
   1667 
   1668 		it = &pt->pt_itimer;
   1669 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
   1670 		pt->pt_ev.sigev_value.sival_int = which;
   1671 
   1672 		switch (which) {
   1673 		case ITIMER_REAL:
   1674 		case ITIMER_MONOTONIC:
   1675 			itl = NULL;
   1676 			pt->pt_ev.sigev_signo = SIGALRM;
   1677 			break;
   1678 		case ITIMER_VIRTUAL:
   1679 			itl = &pts->pts_virtual;
   1680 			pt->pt_ev.sigev_signo = SIGVTALRM;
   1681 			break;
   1682 		case ITIMER_PROF:
   1683 			itl = &pts->pts_prof;
   1684 			pt->pt_ev.sigev_signo = SIGPROF;
   1685 			break;
   1686 		default:
   1687 			panic("%s: can't happen %d", __func__, which);
   1688 		}
   1689 		itimer_init(it, &ptimer_itimer_ops, which, itl);
   1690 		pt->pt_proc = p;
   1691 		pt->pt_entry = which;
   1692 
   1693 		pts->pts_timers[which] = it;
   1694 	}
   1695 
   1696 	TIMEVAL_TO_TIMESPEC(&itvp->it_value, &it->it_time.it_value);
   1697 	TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &it->it_time.it_interval);
   1698 
   1699 	error = 0;
   1700 	if (timespecisset(&it->it_time.it_value)) {
   1701 		/* Convert to absolute time */
   1702 		/* XXX need to wrap in splclock for timecounters case? */
   1703 		switch (which) {
   1704 		case ITIMER_REAL:
   1705 			getnanotime(&now);
   1706 			if (!timespecaddok(&it->it_time.it_value, &now)) {
   1707 				error = EINVAL;
   1708 				goto out;
   1709 			}
   1710 			timespecadd(&it->it_time.it_value, &now,
   1711 			    &it->it_time.it_value);
   1712 			break;
   1713 		case ITIMER_MONOTONIC:
   1714 			getnanouptime(&now);
   1715 			if (!timespecaddok(&it->it_time.it_value, &now)) {
   1716 				error = EINVAL;
   1717 				goto out;
   1718 			}
   1719 			timespecadd(&it->it_time.it_value, &now,
   1720 			    &it->it_time.it_value);
   1721 			break;
   1722 		default:
   1723 			break;
   1724 		}
   1725 	}
   1726 
   1727 	error = itimer_settime(it);
   1728 	if (error == ERESTART) {
   1729 		KASSERT(!CLOCK_VIRTUAL_P(it->it_clockid));
   1730 		goto restart;
   1731 	}
   1732 	KASSERT(error == 0);
   1733 out:
   1734 	itimer_unlock();
   1735 	if (spare != NULL)
   1736 		kmem_free(spare, sizeof(*spare));
   1737 
   1738 	return error;
   1739 }
   1740 
   1741 /*
   1742  * ptimer_tick:
   1743  *
   1744  *	Called from hardclock() to decrement per-process virtual timers.
   1745  */
   1746 void
   1747 ptimer_tick(lwp_t *l, bool user)
   1748 {
   1749 	struct ptimers *pts;
   1750 	struct itimer *it;
   1751 	proc_t *p;
   1752 
   1753 	p = l->l_proc;
   1754 	if (p->p_timers == NULL)
   1755 		return;
   1756 
   1757 	itimer_lock();
   1758 	if ((pts = l->l_proc->p_timers) != NULL) {
   1759 		/*
   1760 		 * Run current process's virtual and profile time, as needed.
   1761 		 */
   1762 		if (user && (it = LIST_FIRST(&pts->pts_virtual)) != NULL)
   1763 			if (itimer_decr(it, tick * 1000))
   1764 				(*it->it_ops->ito_fire)(it);
   1765 		if ((it = LIST_FIRST(&pts->pts_prof)) != NULL)
   1766 			if (itimer_decr(it, tick * 1000))
   1767 				(*it->it_ops->ito_fire)(it);
   1768 	}
   1769 	itimer_unlock();
   1770 }
   1771 
   1772 /*
   1773  * ptimer_intr:
   1774  *
   1775  *	Software interrupt handler for processing per-process
   1776  *	timer expiration.
   1777  */
   1778 static void
   1779 ptimer_intr(void *cookie)
   1780 {
   1781 	ksiginfo_t ksi;
   1782 	struct itimer *it;
   1783 	struct ptimer *pt;
   1784 	proc_t *p;
   1785 
   1786 	mutex_enter(&proc_lock);
   1787 	itimer_lock();
   1788 	while ((pt = TAILQ_FIRST(&ptimer_queue)) != NULL) {
   1789 		it = &pt->pt_itimer;
   1790 
   1791 		TAILQ_REMOVE(&ptimer_queue, pt, pt_chain);
   1792 		KASSERT(pt->pt_queued);
   1793 		pt->pt_queued = false;
   1794 
   1795 		p = pt->pt_proc;
   1796 		if (p->p_timers == NULL) {
   1797 			/* Process is dying. */
   1798 			continue;
   1799 		}
   1800 		if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
   1801 			continue;
   1802 		}
   1803 		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
   1804 			it->it_overruns++;
   1805 			continue;
   1806 		}
   1807 
   1808 		KSI_INIT(&ksi);
   1809 		ksi.ksi_signo = pt->pt_ev.sigev_signo;
   1810 		ksi.ksi_code = SI_TIMER;
   1811 		ksi.ksi_value = pt->pt_ev.sigev_value;
   1812 		pt->pt_poverruns = it->it_overruns;
   1813 		it->it_overruns = 0;
   1814 		itimer_unlock();
   1815 		kpsignal(p, &ksi, NULL);
   1816 		itimer_lock();
   1817 	}
   1818 	itimer_unlock();
   1819 	mutex_exit(&proc_lock);
   1820 }
   1821