kern_time.c revision 1.226 1 /* $NetBSD: kern_time.c,v 1.226 2024/12/22 23:18:29 riastradh Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009, 2020
5 * The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Christopher G. Demetriou, by Andrew Doran, and by Jason R. Thorpe.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1989, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.226 2024/12/22 23:18:29 riastradh Exp $");
66
67 #include <sys/param.h>
68 #include <sys/types.h>
69
70 #include <sys/callout.h>
71 #include <sys/cpu.h>
72 #include <sys/errno.h>
73 #include <sys/intr.h>
74 #include <sys/kauth.h>
75 #include <sys/kernel.h>
76 #include <sys/kmem.h>
77 #include <sys/lwp.h>
78 #include <sys/mount.h>
79 #include <sys/mutex.h>
80 #include <sys/proc.h>
81 #include <sys/queue.h>
82 #include <sys/resourcevar.h>
83 #include <sys/signal.h>
84 #include <sys/signalvar.h>
85 #include <sys/syscallargs.h>
86 #include <sys/syslog.h>
87 #include <sys/systm.h>
88 #include <sys/timetc.h>
89 #include <sys/timevar.h>
90 #include <sys/timex.h>
91 #include <sys/vnode.h>
92
93 #include <machine/limits.h>
94
95 kmutex_t itimer_mutex __cacheline_aligned; /* XXX static */
96 static struct itlist itimer_realtime_changed_notify;
97
98 static void itimer_callout(void *);
99 static void ptimer_intr(void *);
100 static void *ptimer_sih __read_mostly;
101 static TAILQ_HEAD(, ptimer) ptimer_queue;
102
103 #define CLOCK_VIRTUAL_P(clockid) \
104 ((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)
105
106 CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
107 CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
108 CTASSERT(ITIMER_PROF == CLOCK_PROF);
109 CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC);
110
111 /*
112 * Initialize timekeeping.
113 */
114 void
115 time_init(void)
116 {
117
118 mutex_init(&itimer_mutex, MUTEX_DEFAULT, IPL_SCHED);
119 LIST_INIT(&itimer_realtime_changed_notify);
120
121 TAILQ_INIT(&ptimer_queue);
122 ptimer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
123 ptimer_intr, NULL);
124 }
125
126 /*
127 * Check if the time will wrap if set to ts.
128 *
129 * ts - timespec describing the new time
130 * delta - the delta between the current time and ts
131 */
132 bool
133 time_wraps(struct timespec *ts, struct timespec *delta)
134 {
135
136 /*
137 * Don't allow the time to be set forward so far it
138 * will wrap and become negative, thus allowing an
139 * attacker to bypass the next check below. The
140 * cutoff is 1 year before rollover occurs, so even
141 * if the attacker uses adjtime(2) to move the time
142 * past the cutoff, it will take a very long time
143 * to get to the wrap point.
144 */
145 if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
146 (delta->tv_sec < 0 || delta->tv_nsec < 0))
147 return true;
148
149 return false;
150 }
151
152 /*
153 * itimer_lock:
154 *
155 * Acquire the interval timer data lock.
156 */
157 void
158 itimer_lock(void)
159 {
160 mutex_spin_enter(&itimer_mutex);
161 }
162
163 /*
164 * itimer_unlock:
165 *
166 * Release the interval timer data lock.
167 */
168 void
169 itimer_unlock(void)
170 {
171 mutex_spin_exit(&itimer_mutex);
172 }
173
174 /*
175 * itimer_lock_held:
176 *
177 * Check that the interval timer lock is held for diagnostic
178 * assertions.
179 */
180 inline bool __diagused
181 itimer_lock_held(void)
182 {
183 return mutex_owned(&itimer_mutex);
184 }
185
186 /*
187 * Time of day and interval timer support.
188 *
189 * These routines provide the kernel entry points to get and set
190 * the time-of-day and per-process interval timers. Subroutines
191 * here provide support for adding and subtracting timeval structures
192 * and decrementing interval timers, optionally reloading the interval
193 * timers when they expire.
194 */
195
196 /* This function is used by clock_settime and settimeofday */
197 static int
198 settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
199 {
200 struct timespec delta, now;
201
202 /*
203 * The time being set to an unreasonable value will cause
204 * unreasonable system behaviour.
205 */
206 if (ts->tv_sec < 0 || ts->tv_sec > (1LL << 36))
207 return EINVAL;
208
209 nanotime(&now);
210 timespecsub(ts, &now, &delta);
211
212 if (check_kauth && kauth_authorize_system(kauth_cred_get(),
213 KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
214 &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
215 return EPERM;
216 }
217
218 #ifdef notyet
219 if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
220 return EPERM;
221 }
222 #endif
223
224 tc_setclock(ts);
225
226 resettodr();
227
228 /*
229 * Notify pending CLOCK_REALTIME timers about the real time change.
230 * There may be inactive timers on this list, but this happens
231 * comparatively less often than timers firing, and so it's better
232 * to put the extra checks here than to complicate the other code
233 * path.
234 */
235 struct itimer *it;
236 itimer_lock();
237 LIST_FOREACH(it, &itimer_realtime_changed_notify, it_rtchgq) {
238 KASSERT(it->it_ops->ito_realtime_changed != NULL);
239 if (timespecisset(&it->it_time.it_value)) {
240 (*it->it_ops->ito_realtime_changed)(it);
241 }
242 }
243 itimer_unlock();
244
245 return 0;
246 }
247
248 int
249 settime(struct proc *p, struct timespec *ts)
250 {
251 return settime1(p, ts, true);
252 }
253
254 /* ARGSUSED */
255 int
256 sys___clock_gettime50(struct lwp *l,
257 const struct sys___clock_gettime50_args *uap, register_t *retval)
258 {
259 /* {
260 syscallarg(clockid_t) clock_id;
261 syscallarg(struct timespec *) tp;
262 } */
263 int error;
264 struct timespec ats;
265
266 error = clock_gettime1(SCARG(uap, clock_id), &ats);
267 if (error != 0)
268 return error;
269
270 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
271 }
272
273 /* ARGSUSED */
274 int
275 sys___clock_settime50(struct lwp *l,
276 const struct sys___clock_settime50_args *uap, register_t *retval)
277 {
278 /* {
279 syscallarg(clockid_t) clock_id;
280 syscallarg(const struct timespec *) tp;
281 } */
282 int error;
283 struct timespec ats;
284
285 if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
286 return error;
287
288 return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
289 }
290
291
292 int
293 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
294 bool check_kauth)
295 {
296 int error;
297
298 if (tp->tv_nsec < 0 || tp->tv_nsec >= 1000000000L)
299 return EINVAL;
300
301 switch (clock_id) {
302 case CLOCK_REALTIME:
303 if ((error = settime1(p, tp, check_kauth)) != 0)
304 return error;
305 break;
306 case CLOCK_MONOTONIC:
307 return EINVAL; /* read-only clock */
308 default:
309 return EINVAL;
310 }
311
312 return 0;
313 }
314
315 int
316 sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
317 register_t *retval)
318 {
319 /* {
320 syscallarg(clockid_t) clock_id;
321 syscallarg(struct timespec *) tp;
322 } */
323 struct timespec ts;
324 int error;
325
326 if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
327 return error;
328
329 if (SCARG(uap, tp))
330 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
331
332 return error;
333 }
334
335 int
336 clock_getres1(clockid_t clock_id, struct timespec *ts)
337 {
338
339 switch (clock_id) {
340 case CLOCK_REALTIME:
341 case CLOCK_MONOTONIC:
342 ts->tv_sec = 0;
343 if (tc_getfrequency() > 1000000000)
344 ts->tv_nsec = 1;
345 else
346 ts->tv_nsec = 1000000000 / tc_getfrequency();
347 break;
348 default:
349 return EINVAL;
350 }
351
352 return 0;
353 }
354
355 /* ARGSUSED */
356 int
357 sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
358 register_t *retval)
359 {
360 /* {
361 syscallarg(struct timespec *) rqtp;
362 syscallarg(struct timespec *) rmtp;
363 } */
364 struct timespec rmt, rqt;
365 int error, error1;
366
367 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
368 if (error)
369 return error;
370
371 error = nanosleep1(l, CLOCK_MONOTONIC, 0, &rqt,
372 SCARG(uap, rmtp) ? &rmt : NULL);
373 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
374 return error;
375
376 error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
377 return error1 ? error1 : error;
378 }
379
380 /* ARGSUSED */
381 int
382 sys_clock_nanosleep(struct lwp *l, const struct sys_clock_nanosleep_args *uap,
383 register_t *retval)
384 {
385 /* {
386 syscallarg(clockid_t) clock_id;
387 syscallarg(int) flags;
388 syscallarg(struct timespec *) rqtp;
389 syscallarg(struct timespec *) rmtp;
390 } */
391 struct timespec rmt, rqt;
392 int error, error1;
393
394 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
395 if (error)
396 goto out;
397
398 error = nanosleep1(l, SCARG(uap, clock_id), SCARG(uap, flags), &rqt,
399 SCARG(uap, rmtp) ? &rmt : NULL);
400 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
401 goto out;
402
403 if ((SCARG(uap, flags) & TIMER_ABSTIME) == 0 &&
404 (error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt))) != 0)
405 error = error1;
406 out:
407 *retval = error;
408 return 0;
409 }
410
411 int
412 nanosleep1(struct lwp *l, clockid_t clock_id, int flags, struct timespec *rqt,
413 struct timespec *rmt)
414 {
415 struct timespec rmtstart;
416 int error, timo;
417
418 if ((error = ts2timo(clock_id, flags, rqt, &timo, &rmtstart)) != 0) {
419 if (error == ETIMEDOUT) {
420 error = 0;
421 if (rmt != NULL)
422 rmt->tv_sec = rmt->tv_nsec = 0;
423 }
424 return error;
425 }
426
427 /*
428 * Avoid inadvertently sleeping forever
429 */
430 if (timo == 0)
431 timo = 1;
432 again:
433 error = kpause("nanoslp", true, timo, NULL);
434 if (error == EWOULDBLOCK)
435 error = 0;
436 if (rmt != NULL || error == 0) {
437 struct timespec rmtend;
438 struct timespec t0;
439 struct timespec *t;
440 int err;
441
442 err = clock_gettime1(clock_id, &rmtend);
443 if (err != 0)
444 return err;
445
446 t = (rmt != NULL) ? rmt : &t0;
447 if (flags & TIMER_ABSTIME) {
448 timespecsub(rqt, &rmtend, t);
449 } else {
450 if (timespeccmp(&rmtend, &rmtstart, <))
451 timespecclear(t); /* clock wound back */
452 else
453 timespecsub(&rmtend, &rmtstart, t);
454 if (timespeccmp(rqt, t, <))
455 timespecclear(t);
456 else
457 timespecsub(rqt, t, t);
458 }
459 if (t->tv_sec < 0)
460 timespecclear(t);
461 if (error == 0) {
462 timo = tstohz(t);
463 if (timo > 0)
464 goto again;
465 }
466 }
467
468 if (error == ERESTART)
469 error = EINTR;
470
471 return error;
472 }
473
474 int
475 sys_clock_getcpuclockid2(struct lwp *l,
476 const struct sys_clock_getcpuclockid2_args *uap,
477 register_t *retval)
478 {
479 /* {
480 syscallarg(idtype_t idtype;
481 syscallarg(id_t id);
482 syscallarg(clockid_t *)clock_id;
483 } */
484 pid_t pid;
485 lwpid_t lid;
486 clockid_t clock_id;
487 id_t id = SCARG(uap, id);
488
489 switch (SCARG(uap, idtype)) {
490 case P_PID:
491 pid = id == 0 ? l->l_proc->p_pid : id;
492 clock_id = CLOCK_PROCESS_CPUTIME_ID | pid;
493 break;
494 case P_LWPID:
495 lid = id == 0 ? l->l_lid : id;
496 clock_id = CLOCK_THREAD_CPUTIME_ID | lid;
497 break;
498 default:
499 return EINVAL;
500 }
501 return copyout(&clock_id, SCARG(uap, clock_id), sizeof(clock_id));
502 }
503
504 /* ARGSUSED */
505 int
506 sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
507 register_t *retval)
508 {
509 /* {
510 syscallarg(struct timeval *) tp;
511 syscallarg(void *) tzp; really "struct timezone *";
512 } */
513 struct timeval atv;
514 int error = 0;
515 struct timezone tzfake;
516
517 if (SCARG(uap, tp)) {
518 memset(&atv, 0, sizeof(atv));
519 microtime(&atv);
520 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
521 if (error)
522 return error;
523 }
524 if (SCARG(uap, tzp)) {
525 /*
526 * NetBSD has no kernel notion of time zone, so we just
527 * fake up a timezone struct and return it if demanded.
528 */
529 tzfake.tz_minuteswest = 0;
530 tzfake.tz_dsttime = 0;
531 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
532 }
533 return error;
534 }
535
536 /* ARGSUSED */
537 int
538 sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
539 register_t *retval)
540 {
541 /* {
542 syscallarg(const struct timeval *) tv;
543 syscallarg(const void *) tzp; really "const struct timezone *";
544 } */
545
546 return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
547 }
548
549 int
550 settimeofday1(const struct timeval *utv, bool userspace,
551 const void *utzp, struct lwp *l, bool check_kauth)
552 {
553 struct timeval atv;
554 struct timespec ts;
555 int error;
556
557 /* Verify all parameters before changing time. */
558
559 /*
560 * NetBSD has no kernel notion of time zone, and only an
561 * obsolete program would try to set it, so we log a warning.
562 */
563 if (utzp)
564 log(LOG_WARNING, "pid %d attempted to set the "
565 "(obsolete) kernel time zone\n", l->l_proc->p_pid);
566
567 if (utv == NULL)
568 return 0;
569
570 if (userspace) {
571 if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
572 return error;
573 utv = &atv;
574 }
575
576 if (utv->tv_usec < 0 || utv->tv_usec >= 1000000)
577 return EINVAL;
578
579 TIMEVAL_TO_TIMESPEC(utv, &ts);
580 return settime1(l->l_proc, &ts, check_kauth);
581 }
582
583 int time_adjusted; /* set if an adjustment is made */
584
585 /* ARGSUSED */
586 int
587 sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
588 register_t *retval)
589 {
590 /* {
591 syscallarg(const struct timeval *) delta;
592 syscallarg(struct timeval *) olddelta;
593 } */
594 int error;
595 struct timeval atv, oldatv;
596
597 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
598 KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
599 return error;
600
601 if (SCARG(uap, delta)) {
602 error = copyin(SCARG(uap, delta), &atv,
603 sizeof(*SCARG(uap, delta)));
604 if (error)
605 return error;
606 }
607 adjtime1(SCARG(uap, delta) ? &atv : NULL,
608 SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
609 if (SCARG(uap, olddelta))
610 error = copyout(&oldatv, SCARG(uap, olddelta),
611 sizeof(*SCARG(uap, olddelta)));
612 return error;
613 }
614
615 void
616 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
617 {
618
619 if (olddelta) {
620 memset(olddelta, 0, sizeof(*olddelta));
621 mutex_spin_enter(&timecounter_lock);
622 olddelta->tv_sec = time_adjtime / 1000000;
623 olddelta->tv_usec = time_adjtime % 1000000;
624 if (olddelta->tv_usec < 0) {
625 olddelta->tv_usec += 1000000;
626 olddelta->tv_sec--;
627 }
628 mutex_spin_exit(&timecounter_lock);
629 }
630
631 if (delta) {
632 mutex_spin_enter(&timecounter_lock);
633 /*
634 * XXX This should maybe just report failure to
635 * userland for nonsense deltas.
636 */
637 if (delta->tv_sec > INT64_MAX/1000000 - 1) {
638 time_adjtime = INT64_MAX;
639 } else if (delta->tv_sec < INT64_MIN/1000000 + 1) {
640 time_adjtime = INT64_MIN;
641 } else {
642 time_adjtime = delta->tv_sec * 1000000
643 + MAX(-999999, MIN(999999, delta->tv_usec));
644 }
645
646 if (time_adjtime) {
647 /* We need to save the system time during shutdown */
648 time_adjusted |= 1;
649 }
650 mutex_spin_exit(&timecounter_lock);
651 }
652 }
653
654 /*
655 * Interval timer support.
656 *
657 * The itimer_*() routines provide generic support for interval timers,
658 * both real (CLOCK_REALTIME, CLOCK_MONOTIME), and virtual (CLOCK_VIRTUAL,
659 * CLOCK_PROF).
660 *
661 * Real timers keep their deadline as an absolute time, and are fired
662 * by a callout. Virtual timers are kept as a linked-list of deltas,
663 * and are processed by hardclock().
664 *
665 * Because the real time timer callout may be delayed in real time due
666 * to interrupt processing on the system, it is possible for the real
667 * time timeout routine (itimer_callout()) run past after its deadline.
668 * It does not suffice, therefore, to reload the real timer .it_value
669 * from the timer's .it_interval. Rather, we compute the next deadline
670 * in absolute time based on the current time and the .it_interval value,
671 * and report any overruns.
672 *
673 * Note that while the virtual timers are supported in a generic fashion
674 * here, they only (currently) make sense as per-process timers, and thus
675 * only really work for that case.
676 */
677
678 /*
679 * itimer_init:
680 *
681 * Initialize the common data for an interval timer.
682 */
683 void
684 itimer_init(struct itimer * const it, const struct itimer_ops * const ops,
685 clockid_t const id, struct itlist * const itl)
686 {
687
688 KASSERT(itimer_lock_held());
689 KASSERT(ops != NULL);
690
691 timespecclear(&it->it_time.it_value);
692 it->it_ops = ops;
693 it->it_clockid = id;
694 it->it_overruns = 0;
695 it->it_dying = false;
696 if (!CLOCK_VIRTUAL_P(id)) {
697 KASSERT(itl == NULL);
698 callout_init(&it->it_ch, CALLOUT_MPSAFE);
699 callout_setfunc(&it->it_ch, itimer_callout, it);
700 if (id == CLOCK_REALTIME && ops->ito_realtime_changed != NULL) {
701 LIST_INSERT_HEAD(&itimer_realtime_changed_notify,
702 it, it_rtchgq);
703 }
704 } else {
705 KASSERT(itl != NULL);
706 it->it_vlist = itl;
707 it->it_active = false;
708 }
709 }
710
711 /*
712 * itimer_poison:
713 *
714 * Poison an interval timer, preventing it from being scheduled
715 * or processed, in preparation for freeing the timer.
716 */
717 void
718 itimer_poison(struct itimer * const it)
719 {
720
721 KASSERT(itimer_lock_held());
722
723 it->it_dying = true;
724
725 /*
726 * For non-virtual timers, stop the callout, or wait for it to
727 * run if it has already fired. It cannot restart again after
728 * this point: the callout won't restart itself when dying, no
729 * other users holding the lock can restart it, and any other
730 * users waiting for callout_halt concurrently (itimer_settime)
731 * will restart from the top.
732 */
733 if (!CLOCK_VIRTUAL_P(it->it_clockid)) {
734 callout_halt(&it->it_ch, &itimer_mutex);
735 if (it->it_clockid == CLOCK_REALTIME &&
736 it->it_ops->ito_realtime_changed != NULL) {
737 LIST_REMOVE(it, it_rtchgq);
738 }
739 }
740 }
741
742 /*
743 * itimer_fini:
744 *
745 * Release resources used by an interval timer.
746 *
747 * N.B. itimer_lock must be held on entry, and is released on exit.
748 */
749 void
750 itimer_fini(struct itimer * const it)
751 {
752
753 KASSERT(itimer_lock_held());
754
755 /* All done with the global state. */
756 itimer_unlock();
757
758 /* Destroy the callout, if needed. */
759 if (!CLOCK_VIRTUAL_P(it->it_clockid))
760 callout_destroy(&it->it_ch);
761 }
762
763 /*
764 * itimer_decr:
765 *
766 * Decrement an interval timer by a specified number of nanoseconds,
767 * which must be less than a second, i.e. < 1000000000. If the timer
768 * expires, then reload it. In this case, carry over (nsec - old value)
769 * to reduce the value reloaded into the timer so that the timer does
770 * not drift. This routine assumes that it is called in a context where
771 * the timers on which it is operating cannot change in value.
772 *
773 * Returns true if the timer has expired.
774 */
775 static bool
776 itimer_decr(struct itimer *it, int nsec)
777 {
778 struct itimerspec *itp;
779 int error __diagused;
780
781 KASSERT(itimer_lock_held());
782 KASSERT(CLOCK_VIRTUAL_P(it->it_clockid));
783
784 itp = &it->it_time;
785 if (itp->it_value.tv_nsec < nsec) {
786 if (itp->it_value.tv_sec == 0) {
787 /* expired, and already in next interval */
788 nsec -= itp->it_value.tv_nsec;
789 goto expire;
790 }
791 itp->it_value.tv_nsec += 1000000000;
792 itp->it_value.tv_sec--;
793 }
794 itp->it_value.tv_nsec -= nsec;
795 nsec = 0;
796 if (timespecisset(&itp->it_value))
797 return false;
798 /* expired, exactly at end of interval */
799 expire:
800 if (timespecisset(&itp->it_interval)) {
801 itp->it_value = itp->it_interval;
802 itp->it_value.tv_nsec -= nsec;
803 if (itp->it_value.tv_nsec < 0) {
804 itp->it_value.tv_nsec += 1000000000;
805 itp->it_value.tv_sec--;
806 }
807 error = itimer_settime(it);
808 KASSERT(error == 0); /* virtual, never fails */
809 } else
810 itp->it_value.tv_nsec = 0; /* sec is already 0 */
811 return true;
812 }
813
814 /*
815 * itimer_arm_real:
816 *
817 * Arm a non-virtual timer.
818 */
819 static void
820 itimer_arm_real(struct itimer * const it)
821 {
822
823 KASSERT(!it->it_dying);
824 KASSERT(!CLOCK_VIRTUAL_P(it->it_clockid));
825 KASSERT(!callout_pending(&it->it_ch));
826
827 /*
828 * Don't need to check tshzto() return value, here.
829 * callout_schedule() does it for us.
830 */
831 callout_schedule(&it->it_ch,
832 (it->it_clockid == CLOCK_MONOTONIC
833 ? tshztoup(&it->it_time.it_value)
834 : tshzto(&it->it_time.it_value)));
835 }
836
837 /*
838 * itimer_callout:
839 *
840 * Callout to expire a non-virtual timer. Queue it up for processing,
841 * and then reload, if it is configured to do so.
842 *
843 * N.B. A delay in processing this callout causes multiple
844 * SIGALRM calls to be compressed into one.
845 */
846 static void
847 itimer_callout(void *arg)
848 {
849 uint64_t last_val, next_val, interval, now_ns;
850 struct timespec now, next;
851 struct itimer * const it = arg;
852 int backwards;
853
854 itimer_lock();
855 (*it->it_ops->ito_fire)(it);
856
857 if (!timespecisset(&it->it_time.it_interval)) {
858 timespecclear(&it->it_time.it_value);
859 itimer_unlock();
860 return;
861 }
862
863 if (it->it_clockid == CLOCK_MONOTONIC) {
864 getnanouptime(&now);
865 } else {
866 getnanotime(&now);
867 }
868
869 backwards = (timespeccmp(&it->it_time.it_value, &now, >));
870
871 /* Nonnegative interval guaranteed by itimerfix. */
872 KASSERT(it->it_time.it_interval.tv_sec >= 0);
873 KASSERT(it->it_time.it_interval.tv_nsec >= 0);
874
875 /* Handle the easy case of non-overflown timers first. */
876 if (!backwards &&
877 timespecaddok(&it->it_time.it_value, &it->it_time.it_interval)) {
878 timespecadd(&it->it_time.it_value, &it->it_time.it_interval,
879 &next);
880 it->it_time.it_value = next;
881 } else {
882 now_ns = timespec2ns(&now);
883 last_val = timespec2ns(&it->it_time.it_value);
884 interval = timespec2ns(&it->it_time.it_interval);
885
886 next_val = now_ns +
887 (now_ns - last_val + interval - 1) % interval;
888
889 if (backwards)
890 next_val += interval;
891 else
892 it->it_overruns += (now_ns - last_val) / interval;
893
894 it->it_time.it_value.tv_sec = next_val / 1000000000;
895 it->it_time.it_value.tv_nsec = next_val % 1000000000;
896 }
897
898 /*
899 * Reset the callout, if it's not going away.
900 */
901 if (!it->it_dying)
902 itimer_arm_real(it);
903 itimer_unlock();
904 }
905
906 /*
907 * itimer_settime:
908 *
909 * Set up the given interval timer. The value in it->it_time.it_value
910 * is taken to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC
911 * timers and a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
912 *
913 * If the callout had already fired but not yet run, fails with
914 * ERESTART -- caller must restart from the top to look up a timer.
915 *
916 * Caller is responsible for validating it->it_value and
917 * it->it_interval, e.g. with itimerfix or itimespecfix.
918 */
919 int
920 itimer_settime(struct itimer *it)
921 {
922 struct itimer *itn, *pitn;
923 struct itlist *itl;
924
925 KASSERT(itimer_lock_held());
926 KASSERT(!it->it_dying);
927 KASSERT(it->it_time.it_value.tv_sec >= 0);
928 KASSERT(it->it_time.it_value.tv_nsec >= 0);
929 KASSERT(it->it_time.it_value.tv_nsec < 1000000000);
930 KASSERT(it->it_time.it_interval.tv_sec >= 0);
931 KASSERT(it->it_time.it_interval.tv_nsec >= 0);
932 KASSERT(it->it_time.it_interval.tv_nsec < 1000000000);
933
934 if (!CLOCK_VIRTUAL_P(it->it_clockid)) {
935 /*
936 * Try to stop the callout. However, if it had already
937 * fired, we have to drop the lock to wait for it, so
938 * the world may have changed and pt may not be there
939 * any more. In that case, tell the caller to start
940 * over from the top.
941 */
942 if (callout_halt(&it->it_ch, &itimer_mutex))
943 return ERESTART;
944 KASSERT(!it->it_dying);
945
946 /* Now we can touch it and start it up again. */
947 if (timespecisset(&it->it_time.it_value))
948 itimer_arm_real(it);
949 } else {
950 if (it->it_active) {
951 itn = LIST_NEXT(it, it_list);
952 LIST_REMOVE(it, it_list);
953 for ( ; itn; itn = LIST_NEXT(itn, it_list))
954 timespecadd(&it->it_time.it_value,
955 &itn->it_time.it_value,
956 &itn->it_time.it_value);
957 }
958 if (timespecisset(&it->it_time.it_value)) {
959 itl = it->it_vlist;
960 for (itn = LIST_FIRST(itl), pitn = NULL;
961 itn && timespeccmp(&it->it_time.it_value,
962 &itn->it_time.it_value, >);
963 pitn = itn, itn = LIST_NEXT(itn, it_list))
964 timespecsub(&it->it_time.it_value,
965 &itn->it_time.it_value,
966 &it->it_time.it_value);
967
968 if (pitn)
969 LIST_INSERT_AFTER(pitn, it, it_list);
970 else
971 LIST_INSERT_HEAD(itl, it, it_list);
972
973 for ( ; itn ; itn = LIST_NEXT(itn, it_list))
974 timespecsub(&itn->it_time.it_value,
975 &it->it_time.it_value,
976 &itn->it_time.it_value);
977
978 it->it_active = true;
979 } else {
980 it->it_active = false;
981 }
982 }
983
984 /* Success! */
985 return 0;
986 }
987
988 /*
989 * itimer_gettime:
990 *
991 * Return the remaining time of an interval timer.
992 */
993 void
994 itimer_gettime(const struct itimer *it, struct itimerspec *aits)
995 {
996 struct timespec now;
997 struct itimer *itn;
998
999 KASSERT(itimer_lock_held());
1000 KASSERT(!it->it_dying);
1001
1002 *aits = it->it_time;
1003 if (!CLOCK_VIRTUAL_P(it->it_clockid)) {
1004 /*
1005 * Convert from absolute to relative time in .it_value
1006 * part of real time timer. If time for real time
1007 * timer has passed return 0, else return difference
1008 * between current time and time for the timer to go
1009 * off.
1010 */
1011 if (timespecisset(&aits->it_value)) {
1012 if (it->it_clockid == CLOCK_REALTIME) {
1013 getnanotime(&now);
1014 } else { /* CLOCK_MONOTONIC */
1015 getnanouptime(&now);
1016 }
1017 if (timespeccmp(&aits->it_value, &now, <))
1018 timespecclear(&aits->it_value);
1019 else
1020 timespecsub(&aits->it_value, &now,
1021 &aits->it_value);
1022 }
1023 } else if (it->it_active) {
1024 for (itn = LIST_FIRST(it->it_vlist); itn && itn != it;
1025 itn = LIST_NEXT(itn, it_list))
1026 timespecadd(&aits->it_value,
1027 &itn->it_time.it_value, &aits->it_value);
1028 KASSERT(itn != NULL); /* it should be findable on the list */
1029 } else
1030 timespecclear(&aits->it_value);
1031 }
1032
1033 /*
1034 * Per-process timer support.
1035 *
1036 * Both the BSD getitimer() family and the POSIX timer_*() family of
1037 * routines are supported.
1038 *
1039 * All timers are kept in an array pointed to by p_timers, which is
1040 * allocated on demand - many processes don't use timers at all. The
1041 * first four elements in this array are reserved for the BSD timers:
1042 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element
1043 * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be
1044 * allocated by the timer_create() syscall.
1045 *
1046 * These timers are a "sub-class" of interval timer.
1047 */
1048
1049 /*
1050 * ptimer_free:
1051 *
1052 * Free the per-process timer at the specified index.
1053 */
1054 static void
1055 ptimer_free(struct ptimers *pts, int index)
1056 {
1057 struct itimer *it;
1058 struct ptimer *pt;
1059
1060 KASSERT(itimer_lock_held());
1061
1062 it = pts->pts_timers[index];
1063 pt = container_of(it, struct ptimer, pt_itimer);
1064 pts->pts_timers[index] = NULL;
1065 itimer_poison(it);
1066
1067 /*
1068 * Remove it from the queue to be signalled. Must be done
1069 * after itimer is poisoned, because we may have had to wait
1070 * for the callout to complete.
1071 */
1072 if (pt->pt_queued) {
1073 TAILQ_REMOVE(&ptimer_queue, pt, pt_chain);
1074 pt->pt_queued = false;
1075 }
1076
1077 itimer_fini(it); /* releases itimer_lock */
1078 kmem_free(pt, sizeof(*pt));
1079 }
1080
1081 /*
1082 * ptimers_alloc:
1083 *
1084 * Allocate a ptimers for the specified process.
1085 */
1086 static struct ptimers *
1087 ptimers_alloc(struct proc *p)
1088 {
1089 struct ptimers *pts;
1090 int i;
1091
1092 pts = kmem_alloc(sizeof(*pts), KM_SLEEP);
1093 LIST_INIT(&pts->pts_virtual);
1094 LIST_INIT(&pts->pts_prof);
1095 for (i = 0; i < TIMER_MAX; i++)
1096 pts->pts_timers[i] = NULL;
1097 itimer_lock();
1098 if (p->p_timers == NULL) {
1099 p->p_timers = pts;
1100 itimer_unlock();
1101 return pts;
1102 }
1103 itimer_unlock();
1104 kmem_free(pts, sizeof(*pts));
1105 return p->p_timers;
1106 }
1107
1108 /*
1109 * ptimers_free:
1110 *
1111 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1112 * then clean up all timers and free all the data structures. If
1113 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1114 * by timer_create(), not the BSD setitimer() timers, and only free the
1115 * structure if none of those remain.
1116 *
1117 * This function is exported because it is needed in the exec and
1118 * exit code paths.
1119 */
1120 void
1121 ptimers_free(struct proc *p, int which)
1122 {
1123 struct ptimers *pts;
1124 struct itimer *itn;
1125 struct timespec ts;
1126 int i;
1127
1128 if (p->p_timers == NULL)
1129 return;
1130
1131 pts = p->p_timers;
1132 itimer_lock();
1133 if (which == TIMERS_ALL) {
1134 p->p_timers = NULL;
1135 i = 0;
1136 } else {
1137 timespecclear(&ts);
1138 for (itn = LIST_FIRST(&pts->pts_virtual);
1139 itn && itn != pts->pts_timers[ITIMER_VIRTUAL];
1140 itn = LIST_NEXT(itn, it_list)) {
1141 KASSERT(itn->it_clockid == CLOCK_VIRTUAL);
1142 timespecadd(&ts, &itn->it_time.it_value, &ts);
1143 }
1144 LIST_FIRST(&pts->pts_virtual) = NULL;
1145 if (itn) {
1146 KASSERT(itn->it_clockid == CLOCK_VIRTUAL);
1147 timespecadd(&ts, &itn->it_time.it_value,
1148 &itn->it_time.it_value);
1149 LIST_INSERT_HEAD(&pts->pts_virtual, itn, it_list);
1150 }
1151 timespecclear(&ts);
1152 for (itn = LIST_FIRST(&pts->pts_prof);
1153 itn && itn != pts->pts_timers[ITIMER_PROF];
1154 itn = LIST_NEXT(itn, it_list)) {
1155 KASSERT(itn->it_clockid == CLOCK_PROF);
1156 timespecadd(&ts, &itn->it_time.it_value, &ts);
1157 }
1158 LIST_FIRST(&pts->pts_prof) = NULL;
1159 if (itn) {
1160 KASSERT(itn->it_clockid == CLOCK_PROF);
1161 timespecadd(&ts, &itn->it_time.it_value,
1162 &itn->it_time.it_value);
1163 LIST_INSERT_HEAD(&pts->pts_prof, itn, it_list);
1164 }
1165 i = TIMER_MIN;
1166 }
1167 for ( ; i < TIMER_MAX; i++) {
1168 if (pts->pts_timers[i] != NULL) {
1169 /* Free the timer and release the lock. */
1170 ptimer_free(pts, i);
1171 /* Reacquire the lock for the next one. */
1172 itimer_lock();
1173 }
1174 }
1175 if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
1176 pts->pts_timers[2] == NULL && pts->pts_timers[3] == NULL) {
1177 p->p_timers = NULL;
1178 itimer_unlock();
1179 kmem_free(pts, sizeof(*pts));
1180 } else
1181 itimer_unlock();
1182 }
1183
1184 /*
1185 * ptimer_fire:
1186 *
1187 * Fire a per-process timer.
1188 */
1189 static void
1190 ptimer_fire(struct itimer *it)
1191 {
1192 struct ptimer *pt = container_of(it, struct ptimer, pt_itimer);
1193
1194 KASSERT(itimer_lock_held());
1195
1196 /*
1197 * XXX Can overrun, but we don't do signal queueing yet, anyway.
1198 * XXX Relying on the clock interrupt is stupid.
1199 */
1200 if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
1201 return;
1202 }
1203
1204 if (!pt->pt_queued) {
1205 TAILQ_INSERT_TAIL(&ptimer_queue, pt, pt_chain);
1206 pt->pt_queued = true;
1207 softint_schedule(ptimer_sih);
1208 }
1209 }
1210
1211 /*
1212 * Operations vector for per-process timers (BSD and POSIX).
1213 */
1214 static const struct itimer_ops ptimer_itimer_ops = {
1215 .ito_fire = ptimer_fire,
1216 };
1217
1218 /*
1219 * sys_timer_create:
1220 *
1221 * System call to create a POSIX timer.
1222 */
1223 int
1224 sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
1225 register_t *retval)
1226 {
1227 /* {
1228 syscallarg(clockid_t) clock_id;
1229 syscallarg(struct sigevent *) evp;
1230 syscallarg(timer_t *) timerid;
1231 } */
1232
1233 return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
1234 SCARG(uap, evp), copyin, l);
1235 }
1236
1237 int
1238 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
1239 copyin_t fetch_event, struct lwp *l)
1240 {
1241 int error;
1242 timer_t timerid;
1243 struct itlist *itl;
1244 struct ptimers *pts;
1245 struct ptimer *pt;
1246 struct proc *p;
1247
1248 p = l->l_proc;
1249
1250 if ((u_int)id > CLOCK_MONOTONIC)
1251 return EINVAL;
1252
1253 if ((pts = p->p_timers) == NULL)
1254 pts = ptimers_alloc(p);
1255
1256 pt = kmem_zalloc(sizeof(*pt), KM_SLEEP);
1257 if (evp != NULL) {
1258 if (((error =
1259 (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
1260 ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
1261 (pt->pt_ev.sigev_notify > SIGEV_SA)) ||
1262 (pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
1263 (pt->pt_ev.sigev_signo <= 0 ||
1264 pt->pt_ev.sigev_signo >= NSIG))) {
1265 kmem_free(pt, sizeof(*pt));
1266 return (error ? error : EINVAL);
1267 }
1268 }
1269
1270 /* Find a free timer slot, skipping those reserved for setitimer(). */
1271 itimer_lock();
1272 for (timerid = TIMER_MIN; timerid < TIMER_MAX; timerid++)
1273 if (pts->pts_timers[timerid] == NULL)
1274 break;
1275 if (timerid == TIMER_MAX) {
1276 itimer_unlock();
1277 kmem_free(pt, sizeof(*pt));
1278 return EAGAIN;
1279 }
1280 if (evp == NULL) {
1281 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1282 switch (id) {
1283 case CLOCK_REALTIME:
1284 case CLOCK_MONOTONIC:
1285 pt->pt_ev.sigev_signo = SIGALRM;
1286 break;
1287 case CLOCK_VIRTUAL:
1288 pt->pt_ev.sigev_signo = SIGVTALRM;
1289 break;
1290 case CLOCK_PROF:
1291 pt->pt_ev.sigev_signo = SIGPROF;
1292 break;
1293 }
1294 pt->pt_ev.sigev_value.sival_int = timerid;
1295 }
1296
1297 switch (id) {
1298 case CLOCK_VIRTUAL:
1299 itl = &pts->pts_virtual;
1300 break;
1301 case CLOCK_PROF:
1302 itl = &pts->pts_prof;
1303 break;
1304 default:
1305 itl = NULL;
1306 }
1307
1308 itimer_init(&pt->pt_itimer, &ptimer_itimer_ops, id, itl);
1309 pt->pt_proc = p;
1310 pt->pt_poverruns = 0;
1311 pt->pt_entry = timerid;
1312 pt->pt_queued = false;
1313
1314 pts->pts_timers[timerid] = &pt->pt_itimer;
1315 itimer_unlock();
1316
1317 return copyout(&timerid, tid, sizeof(timerid));
1318 }
1319
1320 /*
1321 * sys_timer_delete:
1322 *
1323 * System call to delete a POSIX timer.
1324 */
1325 int
1326 sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
1327 register_t *retval)
1328 {
1329 /* {
1330 syscallarg(timer_t) timerid;
1331 } */
1332 struct proc *p = l->l_proc;
1333 timer_t timerid;
1334 struct ptimers *pts;
1335 struct itimer *it, *itn;
1336
1337 timerid = SCARG(uap, timerid);
1338 pts = p->p_timers;
1339
1340 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
1341 return EINVAL;
1342
1343 itimer_lock();
1344 if ((it = pts->pts_timers[timerid]) == NULL) {
1345 itimer_unlock();
1346 return EINVAL;
1347 }
1348
1349 if (CLOCK_VIRTUAL_P(it->it_clockid)) {
1350 if (it->it_active) {
1351 itn = LIST_NEXT(it, it_list);
1352 LIST_REMOVE(it, it_list);
1353 for ( ; itn; itn = LIST_NEXT(itn, it_list))
1354 timespecadd(&it->it_time.it_value,
1355 &itn->it_time.it_value,
1356 &itn->it_time.it_value);
1357 it->it_active = false;
1358 }
1359 }
1360
1361 /* Free the timer and release the lock. */
1362 ptimer_free(pts, timerid);
1363
1364 return 0;
1365 }
1366
1367 /*
1368 * sys___timer_settime50:
1369 *
1370 * System call to set/arm a POSIX timer.
1371 */
1372 int
1373 sys___timer_settime50(struct lwp *l,
1374 const struct sys___timer_settime50_args *uap,
1375 register_t *retval)
1376 {
1377 /* {
1378 syscallarg(timer_t) timerid;
1379 syscallarg(int) flags;
1380 syscallarg(const struct itimerspec *) value;
1381 syscallarg(struct itimerspec *) ovalue;
1382 } */
1383 int error;
1384 struct itimerspec value, ovalue, *ovp = NULL;
1385
1386 if ((error = copyin(SCARG(uap, value), &value,
1387 sizeof(struct itimerspec))) != 0)
1388 return error;
1389
1390 if (SCARG(uap, ovalue))
1391 ovp = &ovalue;
1392
1393 if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
1394 SCARG(uap, flags), l->l_proc)) != 0)
1395 return error;
1396
1397 if (ovp)
1398 return copyout(&ovalue, SCARG(uap, ovalue),
1399 sizeof(struct itimerspec));
1400 return 0;
1401 }
1402
1403 int
1404 dotimer_settime(int timerid, struct itimerspec *value,
1405 struct itimerspec *ovalue, int flags, struct proc *p)
1406 {
1407 struct timespec now;
1408 struct itimerspec val;
1409 struct ptimers *pts;
1410 struct itimer *it;
1411 int error;
1412
1413 pts = p->p_timers;
1414
1415 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
1416 return EINVAL;
1417 val = *value;
1418 if (itimespecfix(&val.it_value) != 0 ||
1419 itimespecfix(&val.it_interval) != 0)
1420 return EINVAL;
1421
1422 itimer_lock();
1423 restart:
1424 if ((it = pts->pts_timers[timerid]) == NULL) {
1425 itimer_unlock();
1426 return EINVAL;
1427 }
1428
1429 if (ovalue)
1430 itimer_gettime(it, ovalue);
1431 it->it_time = val;
1432
1433 /*
1434 * If we've been passed a relative time for a realtime timer,
1435 * convert it to absolute; if an absolute time for a virtual
1436 * timer, convert it to relative and make sure we don't set it
1437 * to zero, which would cancel the timer, or let it go
1438 * negative, which would confuse the comparison tests.
1439 */
1440 if (timespecisset(&it->it_time.it_value)) {
1441 if (!CLOCK_VIRTUAL_P(it->it_clockid)) {
1442 if ((flags & TIMER_ABSTIME) == 0) {
1443 if (it->it_clockid == CLOCK_REALTIME) {
1444 getnanotime(&now);
1445 } else { /* CLOCK_MONOTONIC */
1446 getnanouptime(&now);
1447 }
1448 timespecadd(&it->it_time.it_value, &now,
1449 &it->it_time.it_value);
1450 }
1451 } else {
1452 if ((flags & TIMER_ABSTIME) != 0) {
1453 getnanotime(&now);
1454 timespecsub(&it->it_time.it_value, &now,
1455 &it->it_time.it_value);
1456 if (!timespecisset(&it->it_time.it_value) ||
1457 it->it_time.it_value.tv_sec < 0) {
1458 it->it_time.it_value.tv_sec = 0;
1459 it->it_time.it_value.tv_nsec = 1;
1460 }
1461 }
1462 }
1463 }
1464
1465 error = itimer_settime(it);
1466 if (error == ERESTART) {
1467 KASSERT(!CLOCK_VIRTUAL_P(it->it_clockid));
1468 goto restart;
1469 }
1470 KASSERT(error == 0);
1471 itimer_unlock();
1472
1473 return 0;
1474 }
1475
1476 /*
1477 * sys___timer_gettime50:
1478 *
1479 * System call to return the time remaining until a POSIX timer fires.
1480 */
1481 int
1482 sys___timer_gettime50(struct lwp *l,
1483 const struct sys___timer_gettime50_args *uap, register_t *retval)
1484 {
1485 /* {
1486 syscallarg(timer_t) timerid;
1487 syscallarg(struct itimerspec *) value;
1488 } */
1489 struct itimerspec its;
1490 int error;
1491
1492 if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
1493 &its)) != 0)
1494 return error;
1495
1496 return copyout(&its, SCARG(uap, value), sizeof(its));
1497 }
1498
1499 int
1500 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
1501 {
1502 struct itimer *it;
1503 struct ptimers *pts;
1504
1505 pts = p->p_timers;
1506 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
1507 return EINVAL;
1508 itimer_lock();
1509 if ((it = pts->pts_timers[timerid]) == NULL) {
1510 itimer_unlock();
1511 return EINVAL;
1512 }
1513 itimer_gettime(it, its);
1514 itimer_unlock();
1515
1516 return 0;
1517 }
1518
1519 /*
1520 * sys_timer_getoverrun:
1521 *
1522 * System call to return the number of times a POSIX timer has
1523 * expired while a notification was already pending. The counter
1524 * is reset when a timer expires and a notification can be posted.
1525 */
1526 int
1527 sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
1528 register_t *retval)
1529 {
1530 /* {
1531 syscallarg(timer_t) timerid;
1532 } */
1533 struct proc *p = l->l_proc;
1534 struct ptimers *pts;
1535 int timerid;
1536 struct itimer *it;
1537 struct ptimer *pt;
1538
1539 timerid = SCARG(uap, timerid);
1540
1541 pts = p->p_timers;
1542 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
1543 return EINVAL;
1544 itimer_lock();
1545 if ((it = pts->pts_timers[timerid]) == NULL) {
1546 itimer_unlock();
1547 return EINVAL;
1548 }
1549 pt = container_of(it, struct ptimer, pt_itimer);
1550 *retval = pt->pt_poverruns;
1551 if (*retval >= DELAYTIMER_MAX)
1552 *retval = DELAYTIMER_MAX;
1553 itimer_unlock();
1554
1555 return 0;
1556 }
1557
1558 /*
1559 * sys___getitimer50:
1560 *
1561 * System call to get the time remaining before a BSD timer fires.
1562 */
1563 int
1564 sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
1565 register_t *retval)
1566 {
1567 /* {
1568 syscallarg(int) which;
1569 syscallarg(struct itimerval *) itv;
1570 } */
1571 struct proc *p = l->l_proc;
1572 struct itimerval aitv;
1573 int error;
1574
1575 memset(&aitv, 0, sizeof(aitv));
1576 error = dogetitimer(p, SCARG(uap, which), &aitv);
1577 if (error)
1578 return error;
1579 return copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval));
1580 }
1581
1582 int
1583 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1584 {
1585 struct ptimers *pts;
1586 struct itimer *it;
1587 struct itimerspec its;
1588
1589 if ((u_int)which > ITIMER_MONOTONIC)
1590 return EINVAL;
1591
1592 itimer_lock();
1593 pts = p->p_timers;
1594 if (pts == NULL || (it = pts->pts_timers[which]) == NULL) {
1595 timerclear(&itvp->it_value);
1596 timerclear(&itvp->it_interval);
1597 } else {
1598 itimer_gettime(it, &its);
1599 TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
1600 TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
1601 }
1602 itimer_unlock();
1603
1604 return 0;
1605 }
1606
1607 /*
1608 * sys___setitimer50:
1609 *
1610 * System call to set/arm a BSD timer.
1611 */
1612 int
1613 sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
1614 register_t *retval)
1615 {
1616 /* {
1617 syscallarg(int) which;
1618 syscallarg(const struct itimerval *) itv;
1619 syscallarg(struct itimerval *) oitv;
1620 } */
1621 struct proc *p = l->l_proc;
1622 int which = SCARG(uap, which);
1623 struct sys___getitimer50_args getargs;
1624 const struct itimerval *itvp;
1625 struct itimerval aitv;
1626 int error;
1627
1628 itvp = SCARG(uap, itv);
1629 if (itvp &&
1630 (error = copyin(itvp, &aitv, sizeof(struct itimerval))) != 0)
1631 return error;
1632 if (SCARG(uap, oitv) != NULL) {
1633 SCARG(&getargs, which) = which;
1634 SCARG(&getargs, itv) = SCARG(uap, oitv);
1635 if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
1636 return error;
1637 }
1638 if (itvp == 0)
1639 return 0;
1640
1641 return dosetitimer(p, which, &aitv);
1642 }
1643
1644 int
1645 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1646 {
1647 struct timespec now;
1648 struct ptimers *pts;
1649 struct ptimer *spare;
1650 struct itimer *it;
1651 struct itlist *itl;
1652 int error;
1653
1654 if ((u_int)which > ITIMER_MONOTONIC)
1655 return EINVAL;
1656 if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1657 return EINVAL;
1658
1659 /*
1660 * Don't bother allocating data structures if the process just
1661 * wants to clear the timer.
1662 */
1663 spare = NULL;
1664 pts = p->p_timers;
1665 retry:
1666 if (!timerisset(&itvp->it_value) && (pts == NULL ||
1667 pts->pts_timers[which] == NULL))
1668 return 0;
1669 if (pts == NULL)
1670 pts = ptimers_alloc(p);
1671 itimer_lock();
1672 restart:
1673 it = pts->pts_timers[which];
1674 if (it == NULL) {
1675 struct ptimer *pt;
1676
1677 if (spare == NULL) {
1678 itimer_unlock();
1679 spare = kmem_zalloc(sizeof(*spare), KM_SLEEP);
1680 goto retry;
1681 }
1682 pt = spare;
1683 spare = NULL;
1684
1685 it = &pt->pt_itimer;
1686 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1687 pt->pt_ev.sigev_value.sival_int = which;
1688
1689 switch (which) {
1690 case ITIMER_REAL:
1691 case ITIMER_MONOTONIC:
1692 itl = NULL;
1693 pt->pt_ev.sigev_signo = SIGALRM;
1694 break;
1695 case ITIMER_VIRTUAL:
1696 itl = &pts->pts_virtual;
1697 pt->pt_ev.sigev_signo = SIGVTALRM;
1698 break;
1699 case ITIMER_PROF:
1700 itl = &pts->pts_prof;
1701 pt->pt_ev.sigev_signo = SIGPROF;
1702 break;
1703 default:
1704 panic("%s: can't happen %d", __func__, which);
1705 }
1706 itimer_init(it, &ptimer_itimer_ops, which, itl);
1707 pt->pt_proc = p;
1708 pt->pt_entry = which;
1709
1710 pts->pts_timers[which] = it;
1711 }
1712
1713 TIMEVAL_TO_TIMESPEC(&itvp->it_value, &it->it_time.it_value);
1714 TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &it->it_time.it_interval);
1715
1716 error = 0;
1717 if (timespecisset(&it->it_time.it_value)) {
1718 /* Convert to absolute time */
1719 /* XXX need to wrap in splclock for timecounters case? */
1720 switch (which) {
1721 case ITIMER_REAL:
1722 getnanotime(&now);
1723 if (!timespecaddok(&it->it_time.it_value, &now)) {
1724 error = EINVAL;
1725 goto out;
1726 }
1727 timespecadd(&it->it_time.it_value, &now,
1728 &it->it_time.it_value);
1729 break;
1730 case ITIMER_MONOTONIC:
1731 getnanouptime(&now);
1732 if (!timespecaddok(&it->it_time.it_value, &now)) {
1733 error = EINVAL;
1734 goto out;
1735 }
1736 timespecadd(&it->it_time.it_value, &now,
1737 &it->it_time.it_value);
1738 break;
1739 default:
1740 break;
1741 }
1742 }
1743
1744 error = itimer_settime(it);
1745 if (error == ERESTART) {
1746 KASSERT(!CLOCK_VIRTUAL_P(it->it_clockid));
1747 goto restart;
1748 }
1749 KASSERT(error == 0);
1750 out:
1751 itimer_unlock();
1752 if (spare != NULL)
1753 kmem_free(spare, sizeof(*spare));
1754
1755 return error;
1756 }
1757
1758 /*
1759 * ptimer_tick:
1760 *
1761 * Called from hardclock() to decrement per-process virtual timers.
1762 */
1763 void
1764 ptimer_tick(lwp_t *l, bool user)
1765 {
1766 struct ptimers *pts;
1767 struct itimer *it;
1768 proc_t *p;
1769
1770 p = l->l_proc;
1771 if (p->p_timers == NULL)
1772 return;
1773
1774 itimer_lock();
1775 if ((pts = l->l_proc->p_timers) != NULL) {
1776 /*
1777 * Run current process's virtual and profile time, as needed.
1778 */
1779 if (user && (it = LIST_FIRST(&pts->pts_virtual)) != NULL)
1780 if (itimer_decr(it, tick * 1000))
1781 (*it->it_ops->ito_fire)(it);
1782 if ((it = LIST_FIRST(&pts->pts_prof)) != NULL)
1783 if (itimer_decr(it, tick * 1000))
1784 (*it->it_ops->ito_fire)(it);
1785 }
1786 itimer_unlock();
1787 }
1788
1789 /*
1790 * ptimer_intr:
1791 *
1792 * Software interrupt handler for processing per-process
1793 * timer expiration.
1794 */
1795 static void
1796 ptimer_intr(void *cookie)
1797 {
1798 ksiginfo_t ksi;
1799 struct itimer *it;
1800 struct ptimer *pt;
1801 proc_t *p;
1802
1803 mutex_enter(&proc_lock);
1804 itimer_lock();
1805 while ((pt = TAILQ_FIRST(&ptimer_queue)) != NULL) {
1806 it = &pt->pt_itimer;
1807
1808 TAILQ_REMOVE(&ptimer_queue, pt, pt_chain);
1809 KASSERT(pt->pt_queued);
1810 pt->pt_queued = false;
1811
1812 p = pt->pt_proc;
1813 if (p->p_timers == NULL) {
1814 /* Process is dying. */
1815 continue;
1816 }
1817 if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
1818 continue;
1819 }
1820 if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
1821 it->it_overruns++;
1822 continue;
1823 }
1824
1825 KSI_INIT(&ksi);
1826 ksi.ksi_signo = pt->pt_ev.sigev_signo;
1827 ksi.ksi_code = SI_TIMER;
1828 ksi.ksi_value = pt->pt_ev.sigev_value;
1829 pt->pt_poverruns = it->it_overruns;
1830 it->it_overruns = 0;
1831 itimer_unlock();
1832 kpsignal(p, &ksi, NULL);
1833 itimer_lock();
1834 }
1835 itimer_unlock();
1836 mutex_exit(&proc_lock);
1837 }
1838