kern_time.c revision 1.227 1 /* $NetBSD: kern_time.c,v 1.227 2024/12/22 23:24:20 riastradh Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009, 2020
5 * The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Christopher G. Demetriou, by Andrew Doran, and by Jason R. Thorpe.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1989, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.227 2024/12/22 23:24:20 riastradh Exp $");
66
67 #include <sys/param.h>
68 #include <sys/types.h>
69
70 #include <sys/callout.h>
71 #include <sys/cpu.h>
72 #include <sys/errno.h>
73 #include <sys/intr.h>
74 #include <sys/kauth.h>
75 #include <sys/kernel.h>
76 #include <sys/kmem.h>
77 #include <sys/lwp.h>
78 #include <sys/mount.h>
79 #include <sys/mutex.h>
80 #include <sys/proc.h>
81 #include <sys/queue.h>
82 #include <sys/resourcevar.h>
83 #include <sys/signal.h>
84 #include <sys/signalvar.h>
85 #include <sys/syscallargs.h>
86 #include <sys/syslog.h>
87 #include <sys/systm.h>
88 #include <sys/timetc.h>
89 #include <sys/timevar.h>
90 #include <sys/timex.h>
91 #include <sys/vnode.h>
92
93 #include <machine/limits.h>
94
95 kmutex_t itimer_mutex __cacheline_aligned; /* XXX static */
96 static struct itlist itimer_realtime_changed_notify;
97
98 static void itimer_callout(void *);
99 static void ptimer_intr(void *);
100 static void *ptimer_sih __read_mostly;
101 static TAILQ_HEAD(, ptimer) ptimer_queue;
102
103 #define CLOCK_VIRTUAL_P(clockid) \
104 ((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)
105
106 CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
107 CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
108 CTASSERT(ITIMER_PROF == CLOCK_PROF);
109 CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC);
110
111 /*
112 * Initialize timekeeping.
113 */
114 void
115 time_init(void)
116 {
117
118 mutex_init(&itimer_mutex, MUTEX_DEFAULT, IPL_SCHED);
119 LIST_INIT(&itimer_realtime_changed_notify);
120
121 TAILQ_INIT(&ptimer_queue);
122 ptimer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
123 ptimer_intr, NULL);
124 }
125
126 /*
127 * Check if the time will wrap if set to ts.
128 *
129 * ts - timespec describing the new time
130 * delta - the delta between the current time and ts
131 */
132 bool
133 time_wraps(struct timespec *ts, struct timespec *delta)
134 {
135
136 /*
137 * Don't allow the time to be set forward so far it
138 * will wrap and become negative, thus allowing an
139 * attacker to bypass the next check below. The
140 * cutoff is 1 year before rollover occurs, so even
141 * if the attacker uses adjtime(2) to move the time
142 * past the cutoff, it will take a very long time
143 * to get to the wrap point.
144 */
145 if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
146 (delta->tv_sec < 0 || delta->tv_nsec < 0))
147 return true;
148
149 return false;
150 }
151
152 /*
153 * itimer_lock:
154 *
155 * Acquire the interval timer data lock.
156 */
157 void
158 itimer_lock(void)
159 {
160 mutex_spin_enter(&itimer_mutex);
161 }
162
163 /*
164 * itimer_unlock:
165 *
166 * Release the interval timer data lock.
167 */
168 void
169 itimer_unlock(void)
170 {
171 mutex_spin_exit(&itimer_mutex);
172 }
173
174 /*
175 * itimer_lock_held:
176 *
177 * Check that the interval timer lock is held for diagnostic
178 * assertions.
179 */
180 inline bool __diagused
181 itimer_lock_held(void)
182 {
183 return mutex_owned(&itimer_mutex);
184 }
185
186 /*
187 * Time of day and interval timer support.
188 *
189 * These routines provide the kernel entry points to get and set
190 * the time-of-day and per-process interval timers. Subroutines
191 * here provide support for adding and subtracting timeval structures
192 * and decrementing interval timers, optionally reloading the interval
193 * timers when they expire.
194 */
195
196 /* This function is used by clock_settime and settimeofday */
197 static int
198 settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
199 {
200 struct timespec delta, now;
201
202 /*
203 * The time being set to an unreasonable value will cause
204 * unreasonable system behaviour.
205 */
206 if (ts->tv_sec < 0 || ts->tv_sec > (1LL << 36))
207 return EINVAL;
208
209 nanotime(&now);
210 timespecsub(ts, &now, &delta);
211
212 if (check_kauth && kauth_authorize_system(kauth_cred_get(),
213 KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
214 &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
215 return EPERM;
216 }
217
218 #ifdef notyet
219 if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
220 return EPERM;
221 }
222 #endif
223
224 tc_setclock(ts);
225
226 resettodr();
227
228 /*
229 * Notify pending CLOCK_REALTIME timers about the real time change.
230 * There may be inactive timers on this list, but this happens
231 * comparatively less often than timers firing, and so it's better
232 * to put the extra checks here than to complicate the other code
233 * path.
234 */
235 struct itimer *it;
236 itimer_lock();
237 LIST_FOREACH(it, &itimer_realtime_changed_notify, it_rtchgq) {
238 KASSERT(it->it_ops->ito_realtime_changed != NULL);
239 if (timespecisset(&it->it_time.it_value)) {
240 (*it->it_ops->ito_realtime_changed)(it);
241 }
242 }
243 itimer_unlock();
244
245 return 0;
246 }
247
248 int
249 settime(struct proc *p, struct timespec *ts)
250 {
251 return settime1(p, ts, true);
252 }
253
254 /* ARGSUSED */
255 int
256 sys___clock_gettime50(struct lwp *l,
257 const struct sys___clock_gettime50_args *uap, register_t *retval)
258 {
259 /* {
260 syscallarg(clockid_t) clock_id;
261 syscallarg(struct timespec *) tp;
262 } */
263 int error;
264 struct timespec ats;
265
266 error = clock_gettime1(SCARG(uap, clock_id), &ats);
267 if (error != 0)
268 return error;
269
270 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
271 }
272
273 /* ARGSUSED */
274 int
275 sys___clock_settime50(struct lwp *l,
276 const struct sys___clock_settime50_args *uap, register_t *retval)
277 {
278 /* {
279 syscallarg(clockid_t) clock_id;
280 syscallarg(const struct timespec *) tp;
281 } */
282 int error;
283 struct timespec ats;
284
285 if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
286 return error;
287
288 return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
289 }
290
291
292 int
293 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
294 bool check_kauth)
295 {
296 int error;
297
298 if (tp->tv_nsec < 0 || tp->tv_nsec >= 1000000000L)
299 return EINVAL;
300
301 switch (clock_id) {
302 case CLOCK_REALTIME:
303 if ((error = settime1(p, tp, check_kauth)) != 0)
304 return error;
305 break;
306 case CLOCK_MONOTONIC:
307 return EINVAL; /* read-only clock */
308 default:
309 return EINVAL;
310 }
311
312 return 0;
313 }
314
315 int
316 sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
317 register_t *retval)
318 {
319 /* {
320 syscallarg(clockid_t) clock_id;
321 syscallarg(struct timespec *) tp;
322 } */
323 struct timespec ts;
324 int error;
325
326 if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
327 return error;
328
329 if (SCARG(uap, tp))
330 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
331
332 return error;
333 }
334
335 int
336 clock_getres1(clockid_t clock_id, struct timespec *ts)
337 {
338
339 switch (clock_id) {
340 case CLOCK_REALTIME:
341 case CLOCK_MONOTONIC:
342 ts->tv_sec = 0;
343 if (tc_getfrequency() > 1000000000)
344 ts->tv_nsec = 1;
345 else
346 ts->tv_nsec = 1000000000 / tc_getfrequency();
347 break;
348 default:
349 return EINVAL;
350 }
351
352 return 0;
353 }
354
355 /* ARGSUSED */
356 int
357 sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
358 register_t *retval)
359 {
360 /* {
361 syscallarg(struct timespec *) rqtp;
362 syscallarg(struct timespec *) rmtp;
363 } */
364 struct timespec rmt, rqt;
365 int error, error1;
366
367 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
368 if (error)
369 return error;
370
371 error = nanosleep1(l, CLOCK_MONOTONIC, 0, &rqt,
372 SCARG(uap, rmtp) ? &rmt : NULL);
373 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
374 return error;
375
376 error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
377 return error1 ? error1 : error;
378 }
379
380 /* ARGSUSED */
381 int
382 sys_clock_nanosleep(struct lwp *l, const struct sys_clock_nanosleep_args *uap,
383 register_t *retval)
384 {
385 /* {
386 syscallarg(clockid_t) clock_id;
387 syscallarg(int) flags;
388 syscallarg(struct timespec *) rqtp;
389 syscallarg(struct timespec *) rmtp;
390 } */
391 struct timespec rmt, rqt;
392 int error, error1;
393
394 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
395 if (error)
396 goto out;
397
398 error = nanosleep1(l, SCARG(uap, clock_id), SCARG(uap, flags), &rqt,
399 SCARG(uap, rmtp) ? &rmt : NULL);
400 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
401 goto out;
402
403 if ((SCARG(uap, flags) & TIMER_ABSTIME) == 0 &&
404 (error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt))) != 0)
405 error = error1;
406 out:
407 *retval = error;
408 return 0;
409 }
410
411 int
412 nanosleep1(struct lwp *l, clockid_t clock_id, int flags, struct timespec *rqt,
413 struct timespec *rmt)
414 {
415 struct timespec rmtstart;
416 int error, timo;
417
418 if ((error = ts2timo(clock_id, flags, rqt, &timo, &rmtstart)) != 0) {
419 if (error == ETIMEDOUT) {
420 error = 0;
421 if (rmt != NULL)
422 rmt->tv_sec = rmt->tv_nsec = 0;
423 }
424 return error;
425 }
426
427 /*
428 * Avoid inadvertently sleeping forever
429 */
430 if (timo == 0)
431 timo = 1;
432 again:
433 error = kpause("nanoslp", true, timo, NULL);
434 if (error == EWOULDBLOCK)
435 error = 0;
436 if (rmt != NULL || error == 0) {
437 struct timespec rmtend;
438 struct timespec t0;
439 struct timespec *t;
440 int err;
441
442 err = clock_gettime1(clock_id, &rmtend);
443 if (err != 0)
444 return err;
445
446 t = (rmt != NULL) ? rmt : &t0;
447 if (flags & TIMER_ABSTIME) {
448 timespecsub(rqt, &rmtend, t);
449 } else {
450 if (timespeccmp(&rmtend, &rmtstart, <))
451 timespecclear(t); /* clock wound back */
452 else
453 timespecsub(&rmtend, &rmtstart, t);
454 if (timespeccmp(rqt, t, <))
455 timespecclear(t);
456 else
457 timespecsub(rqt, t, t);
458 }
459 if (t->tv_sec < 0)
460 timespecclear(t);
461 if (error == 0) {
462 timo = tstohz(t);
463 if (timo > 0)
464 goto again;
465 }
466 }
467
468 if (error == ERESTART)
469 error = EINTR;
470
471 return error;
472 }
473
474 int
475 sys_clock_getcpuclockid2(struct lwp *l,
476 const struct sys_clock_getcpuclockid2_args *uap,
477 register_t *retval)
478 {
479 /* {
480 syscallarg(idtype_t idtype;
481 syscallarg(id_t id);
482 syscallarg(clockid_t *)clock_id;
483 } */
484 pid_t pid;
485 lwpid_t lid;
486 clockid_t clock_id;
487 id_t id = SCARG(uap, id);
488
489 switch (SCARG(uap, idtype)) {
490 case P_PID:
491 pid = id == 0 ? l->l_proc->p_pid : id;
492 clock_id = CLOCK_PROCESS_CPUTIME_ID | pid;
493 break;
494 case P_LWPID:
495 lid = id == 0 ? l->l_lid : id;
496 clock_id = CLOCK_THREAD_CPUTIME_ID | lid;
497 break;
498 default:
499 return EINVAL;
500 }
501 return copyout(&clock_id, SCARG(uap, clock_id), sizeof(clock_id));
502 }
503
504 /* ARGSUSED */
505 int
506 sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
507 register_t *retval)
508 {
509 /* {
510 syscallarg(struct timeval *) tp;
511 syscallarg(void *) tzp; really "struct timezone *";
512 } */
513 struct timeval atv;
514 int error = 0;
515 struct timezone tzfake;
516
517 if (SCARG(uap, tp)) {
518 memset(&atv, 0, sizeof(atv));
519 microtime(&atv);
520 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
521 if (error)
522 return error;
523 }
524 if (SCARG(uap, tzp)) {
525 /*
526 * NetBSD has no kernel notion of time zone, so we just
527 * fake up a timezone struct and return it if demanded.
528 */
529 tzfake.tz_minuteswest = 0;
530 tzfake.tz_dsttime = 0;
531 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
532 }
533 return error;
534 }
535
536 /* ARGSUSED */
537 int
538 sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
539 register_t *retval)
540 {
541 /* {
542 syscallarg(const struct timeval *) tv;
543 syscallarg(const void *) tzp; really "const struct timezone *";
544 } */
545
546 return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
547 }
548
549 int
550 settimeofday1(const struct timeval *utv, bool userspace,
551 const void *utzp, struct lwp *l, bool check_kauth)
552 {
553 struct timeval atv;
554 struct timespec ts;
555 int error;
556
557 /* Verify all parameters before changing time. */
558
559 /*
560 * NetBSD has no kernel notion of time zone, and only an
561 * obsolete program would try to set it, so we log a warning.
562 */
563 if (utzp)
564 log(LOG_WARNING, "pid %d attempted to set the "
565 "(obsolete) kernel time zone\n", l->l_proc->p_pid);
566
567 if (utv == NULL)
568 return 0;
569
570 if (userspace) {
571 if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
572 return error;
573 utv = &atv;
574 }
575
576 if (utv->tv_usec < 0 || utv->tv_usec >= 1000000)
577 return EINVAL;
578
579 TIMEVAL_TO_TIMESPEC(utv, &ts);
580 return settime1(l->l_proc, &ts, check_kauth);
581 }
582
583 int time_adjusted; /* set if an adjustment is made */
584
585 /* ARGSUSED */
586 int
587 sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
588 register_t *retval)
589 {
590 /* {
591 syscallarg(const struct timeval *) delta;
592 syscallarg(struct timeval *) olddelta;
593 } */
594 int error;
595 struct timeval atv, oldatv;
596
597 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
598 KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
599 return error;
600
601 if (SCARG(uap, delta)) {
602 error = copyin(SCARG(uap, delta), &atv,
603 sizeof(*SCARG(uap, delta)));
604 if (error)
605 return error;
606 }
607 adjtime1(SCARG(uap, delta) ? &atv : NULL,
608 SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
609 if (SCARG(uap, olddelta))
610 error = copyout(&oldatv, SCARG(uap, olddelta),
611 sizeof(*SCARG(uap, olddelta)));
612 return error;
613 }
614
615 void
616 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
617 {
618
619 if (olddelta) {
620 memset(olddelta, 0, sizeof(*olddelta));
621 mutex_spin_enter(&timecounter_lock);
622 olddelta->tv_sec = time_adjtime / 1000000;
623 olddelta->tv_usec = time_adjtime % 1000000;
624 if (olddelta->tv_usec < 0) {
625 olddelta->tv_usec += 1000000;
626 olddelta->tv_sec--;
627 }
628 mutex_spin_exit(&timecounter_lock);
629 }
630
631 if (delta) {
632 mutex_spin_enter(&timecounter_lock);
633 /*
634 * XXX This should maybe just report failure to
635 * userland for nonsense deltas.
636 */
637 if (delta->tv_sec > INT64_MAX/1000000 - 1) {
638 time_adjtime = INT64_MAX;
639 } else if (delta->tv_sec < INT64_MIN/1000000 + 1) {
640 time_adjtime = INT64_MIN;
641 } else {
642 time_adjtime = delta->tv_sec * 1000000
643 + MAX(-999999, MIN(999999, delta->tv_usec));
644 }
645
646 if (time_adjtime) {
647 /* We need to save the system time during shutdown */
648 time_adjusted |= 1;
649 }
650 mutex_spin_exit(&timecounter_lock);
651 }
652 }
653
654 /*
655 * Interval timer support.
656 *
657 * The itimer_*() routines provide generic support for interval timers,
658 * both real (CLOCK_REALTIME, CLOCK_MONOTIME), and virtual (CLOCK_VIRTUAL,
659 * CLOCK_PROF).
660 *
661 * Real timers keep their deadline as an absolute time, and are fired
662 * by a callout. Virtual timers are kept as a linked-list of deltas,
663 * and are processed by hardclock().
664 *
665 * Because the real time timer callout may be delayed in real time due
666 * to interrupt processing on the system, it is possible for the real
667 * time timeout routine (itimer_callout()) run past after its deadline.
668 * It does not suffice, therefore, to reload the real timer .it_value
669 * from the timer's .it_interval. Rather, we compute the next deadline
670 * in absolute time based on the current time and the .it_interval value,
671 * and report any overruns.
672 *
673 * Note that while the virtual timers are supported in a generic fashion
674 * here, they only (currently) make sense as per-process timers, and thus
675 * only really work for that case.
676 */
677
678 /*
679 * itimer_init:
680 *
681 * Initialize the common data for an interval timer.
682 */
683 void
684 itimer_init(struct itimer * const it, const struct itimer_ops * const ops,
685 clockid_t const id, struct itlist * const itl)
686 {
687
688 KASSERT(itimer_lock_held());
689 KASSERT(ops != NULL);
690
691 timespecclear(&it->it_time.it_value);
692 it->it_ops = ops;
693 it->it_clockid = id;
694 it->it_overruns = 0;
695 it->it_dying = false;
696 if (!CLOCK_VIRTUAL_P(id)) {
697 KASSERT(itl == NULL);
698 callout_init(&it->it_ch, CALLOUT_MPSAFE);
699 callout_setfunc(&it->it_ch, itimer_callout, it);
700 if (id == CLOCK_REALTIME && ops->ito_realtime_changed != NULL) {
701 LIST_INSERT_HEAD(&itimer_realtime_changed_notify,
702 it, it_rtchgq);
703 }
704 } else {
705 KASSERT(itl != NULL);
706 it->it_vlist = itl;
707 it->it_active = false;
708 }
709 }
710
711 /*
712 * itimer_poison:
713 *
714 * Poison an interval timer, preventing it from being scheduled
715 * or processed, in preparation for freeing the timer.
716 */
717 void
718 itimer_poison(struct itimer * const it)
719 {
720
721 KASSERT(itimer_lock_held());
722
723 it->it_dying = true;
724
725 /*
726 * For non-virtual timers, stop the callout, or wait for it to
727 * run if it has already fired. It cannot restart again after
728 * this point: the callout won't restart itself when dying, no
729 * other users holding the lock can restart it, and any other
730 * users waiting for callout_halt concurrently (itimer_settime)
731 * will restart from the top.
732 */
733 if (!CLOCK_VIRTUAL_P(it->it_clockid)) {
734 callout_halt(&it->it_ch, &itimer_mutex);
735 if (it->it_clockid == CLOCK_REALTIME &&
736 it->it_ops->ito_realtime_changed != NULL) {
737 LIST_REMOVE(it, it_rtchgq);
738 }
739 }
740 }
741
742 /*
743 * itimer_fini:
744 *
745 * Release resources used by an interval timer.
746 *
747 * N.B. itimer_lock must be held on entry, and is released on exit.
748 */
749 void
750 itimer_fini(struct itimer * const it)
751 {
752
753 KASSERT(itimer_lock_held());
754
755 /* All done with the global state. */
756 itimer_unlock();
757
758 /* Destroy the callout, if needed. */
759 if (!CLOCK_VIRTUAL_P(it->it_clockid))
760 callout_destroy(&it->it_ch);
761 }
762
763 /*
764 * itimer_decr:
765 *
766 * Decrement an interval timer by a specified number of nanoseconds,
767 * which must be less than a second, i.e. < 1000000000. If the timer
768 * expires, then reload it. In this case, carry over (nsec - old value)
769 * to reduce the value reloaded into the timer so that the timer does
770 * not drift. This routine assumes that it is called in a context where
771 * the timers on which it is operating cannot change in value.
772 *
773 * Returns true if the timer has expired.
774 */
775 static bool
776 itimer_decr(struct itimer *it, int nsec)
777 {
778 struct itimerspec *itp;
779 int error __diagused;
780
781 KASSERT(itimer_lock_held());
782 KASSERT(CLOCK_VIRTUAL_P(it->it_clockid));
783
784 itp = &it->it_time;
785 if (itp->it_value.tv_nsec < nsec) {
786 if (itp->it_value.tv_sec == 0) {
787 /* expired, and already in next interval */
788 nsec -= itp->it_value.tv_nsec;
789 goto expire;
790 }
791 itp->it_value.tv_nsec += 1000000000;
792 itp->it_value.tv_sec--;
793 }
794 itp->it_value.tv_nsec -= nsec;
795 nsec = 0;
796 if (timespecisset(&itp->it_value))
797 return false;
798 /* expired, exactly at end of interval */
799 expire:
800 if (timespecisset(&itp->it_interval)) {
801 itp->it_value = itp->it_interval;
802 itp->it_value.tv_nsec -= nsec;
803 if (itp->it_value.tv_nsec < 0) {
804 itp->it_value.tv_nsec += 1000000000;
805 itp->it_value.tv_sec--;
806 }
807 error = itimer_settime(it);
808 KASSERT(error == 0); /* virtual, never fails */
809 } else
810 itp->it_value.tv_nsec = 0; /* sec is already 0 */
811 return true;
812 }
813
814 /*
815 * itimer_arm_real:
816 *
817 * Arm a non-virtual timer.
818 */
819 static void
820 itimer_arm_real(struct itimer * const it)
821 {
822
823 KASSERT(!it->it_dying);
824 KASSERT(!CLOCK_VIRTUAL_P(it->it_clockid));
825 KASSERT(!callout_pending(&it->it_ch));
826
827 /*
828 * Don't need to check tshzto() return value, here.
829 * callout_schedule() does it for us.
830 */
831 callout_schedule(&it->it_ch,
832 (it->it_clockid == CLOCK_MONOTONIC
833 ? tshztoup(&it->it_time.it_value)
834 : tshzto(&it->it_time.it_value)));
835 }
836
837 /*
838 * itimer_callout:
839 *
840 * Callout to expire a non-virtual timer. Queue it up for processing,
841 * and then reload, if it is configured to do so.
842 *
843 * N.B. A delay in processing this callout causes multiple
844 * SIGALRM calls to be compressed into one.
845 */
846 static void
847 itimer_callout(void *arg)
848 {
849 struct timespec now, next;
850 struct itimer * const it = arg;
851 int overruns;
852
853 itimer_lock();
854 (*it->it_ops->ito_fire)(it);
855
856 if (!timespecisset(&it->it_time.it_interval)) {
857 timespecclear(&it->it_time.it_value);
858 itimer_unlock();
859 return;
860 }
861
862 if (it->it_clockid == CLOCK_MONOTONIC) {
863 getnanouptime(&now);
864 } else {
865 getnanotime(&now);
866 }
867
868 /*
869 * Given the current itimer value and interval and the time
870 * now, compute the next itimer value and count overruns.
871 */
872 itimer_transition(&it->it_time, &now, &next, &overruns);
873 it->it_time.it_value = next;
874 it->it_overruns += overruns;
875
876 /*
877 * Reset the callout, if it's not going away.
878 */
879 if (!it->it_dying)
880 itimer_arm_real(it);
881 itimer_unlock();
882 }
883
884 /*
885 * itimer_settime:
886 *
887 * Set up the given interval timer. The value in it->it_time.it_value
888 * is taken to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC
889 * timers and a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
890 *
891 * If the callout had already fired but not yet run, fails with
892 * ERESTART -- caller must restart from the top to look up a timer.
893 *
894 * Caller is responsible for validating it->it_value and
895 * it->it_interval, e.g. with itimerfix or itimespecfix.
896 */
897 int
898 itimer_settime(struct itimer *it)
899 {
900 struct itimer *itn, *pitn;
901 struct itlist *itl;
902
903 KASSERT(itimer_lock_held());
904 KASSERT(!it->it_dying);
905 KASSERT(it->it_time.it_value.tv_sec >= 0);
906 KASSERT(it->it_time.it_value.tv_nsec >= 0);
907 KASSERT(it->it_time.it_value.tv_nsec < 1000000000);
908 KASSERT(it->it_time.it_interval.tv_sec >= 0);
909 KASSERT(it->it_time.it_interval.tv_nsec >= 0);
910 KASSERT(it->it_time.it_interval.tv_nsec < 1000000000);
911
912 if (!CLOCK_VIRTUAL_P(it->it_clockid)) {
913 /*
914 * Try to stop the callout. However, if it had already
915 * fired, we have to drop the lock to wait for it, so
916 * the world may have changed and pt may not be there
917 * any more. In that case, tell the caller to start
918 * over from the top.
919 */
920 if (callout_halt(&it->it_ch, &itimer_mutex))
921 return ERESTART;
922 KASSERT(!it->it_dying);
923
924 /* Now we can touch it and start it up again. */
925 if (timespecisset(&it->it_time.it_value))
926 itimer_arm_real(it);
927 } else {
928 if (it->it_active) {
929 itn = LIST_NEXT(it, it_list);
930 LIST_REMOVE(it, it_list);
931 for ( ; itn; itn = LIST_NEXT(itn, it_list))
932 timespecadd(&it->it_time.it_value,
933 &itn->it_time.it_value,
934 &itn->it_time.it_value);
935 }
936 if (timespecisset(&it->it_time.it_value)) {
937 itl = it->it_vlist;
938 for (itn = LIST_FIRST(itl), pitn = NULL;
939 itn && timespeccmp(&it->it_time.it_value,
940 &itn->it_time.it_value, >);
941 pitn = itn, itn = LIST_NEXT(itn, it_list))
942 timespecsub(&it->it_time.it_value,
943 &itn->it_time.it_value,
944 &it->it_time.it_value);
945
946 if (pitn)
947 LIST_INSERT_AFTER(pitn, it, it_list);
948 else
949 LIST_INSERT_HEAD(itl, it, it_list);
950
951 for ( ; itn ; itn = LIST_NEXT(itn, it_list))
952 timespecsub(&itn->it_time.it_value,
953 &it->it_time.it_value,
954 &itn->it_time.it_value);
955
956 it->it_active = true;
957 } else {
958 it->it_active = false;
959 }
960 }
961
962 /* Success! */
963 return 0;
964 }
965
966 /*
967 * itimer_gettime:
968 *
969 * Return the remaining time of an interval timer.
970 */
971 void
972 itimer_gettime(const struct itimer *it, struct itimerspec *aits)
973 {
974 struct timespec now;
975 struct itimer *itn;
976
977 KASSERT(itimer_lock_held());
978 KASSERT(!it->it_dying);
979
980 *aits = it->it_time;
981 if (!CLOCK_VIRTUAL_P(it->it_clockid)) {
982 /*
983 * Convert from absolute to relative time in .it_value
984 * part of real time timer. If time for real time
985 * timer has passed return 0, else return difference
986 * between current time and time for the timer to go
987 * off.
988 */
989 if (timespecisset(&aits->it_value)) {
990 if (it->it_clockid == CLOCK_REALTIME) {
991 getnanotime(&now);
992 } else { /* CLOCK_MONOTONIC */
993 getnanouptime(&now);
994 }
995 if (timespeccmp(&aits->it_value, &now, <))
996 timespecclear(&aits->it_value);
997 else
998 timespecsub(&aits->it_value, &now,
999 &aits->it_value);
1000 }
1001 } else if (it->it_active) {
1002 for (itn = LIST_FIRST(it->it_vlist); itn && itn != it;
1003 itn = LIST_NEXT(itn, it_list))
1004 timespecadd(&aits->it_value,
1005 &itn->it_time.it_value, &aits->it_value);
1006 KASSERT(itn != NULL); /* it should be findable on the list */
1007 } else
1008 timespecclear(&aits->it_value);
1009 }
1010
1011 /*
1012 * Per-process timer support.
1013 *
1014 * Both the BSD getitimer() family and the POSIX timer_*() family of
1015 * routines are supported.
1016 *
1017 * All timers are kept in an array pointed to by p_timers, which is
1018 * allocated on demand - many processes don't use timers at all. The
1019 * first four elements in this array are reserved for the BSD timers:
1020 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element
1021 * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be
1022 * allocated by the timer_create() syscall.
1023 *
1024 * These timers are a "sub-class" of interval timer.
1025 */
1026
1027 /*
1028 * ptimer_free:
1029 *
1030 * Free the per-process timer at the specified index.
1031 */
1032 static void
1033 ptimer_free(struct ptimers *pts, int index)
1034 {
1035 struct itimer *it;
1036 struct ptimer *pt;
1037
1038 KASSERT(itimer_lock_held());
1039
1040 it = pts->pts_timers[index];
1041 pt = container_of(it, struct ptimer, pt_itimer);
1042 pts->pts_timers[index] = NULL;
1043 itimer_poison(it);
1044
1045 /*
1046 * Remove it from the queue to be signalled. Must be done
1047 * after itimer is poisoned, because we may have had to wait
1048 * for the callout to complete.
1049 */
1050 if (pt->pt_queued) {
1051 TAILQ_REMOVE(&ptimer_queue, pt, pt_chain);
1052 pt->pt_queued = false;
1053 }
1054
1055 itimer_fini(it); /* releases itimer_lock */
1056 kmem_free(pt, sizeof(*pt));
1057 }
1058
1059 /*
1060 * ptimers_alloc:
1061 *
1062 * Allocate a ptimers for the specified process.
1063 */
1064 static struct ptimers *
1065 ptimers_alloc(struct proc *p)
1066 {
1067 struct ptimers *pts;
1068 int i;
1069
1070 pts = kmem_alloc(sizeof(*pts), KM_SLEEP);
1071 LIST_INIT(&pts->pts_virtual);
1072 LIST_INIT(&pts->pts_prof);
1073 for (i = 0; i < TIMER_MAX; i++)
1074 pts->pts_timers[i] = NULL;
1075 itimer_lock();
1076 if (p->p_timers == NULL) {
1077 p->p_timers = pts;
1078 itimer_unlock();
1079 return pts;
1080 }
1081 itimer_unlock();
1082 kmem_free(pts, sizeof(*pts));
1083 return p->p_timers;
1084 }
1085
1086 /*
1087 * ptimers_free:
1088 *
1089 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1090 * then clean up all timers and free all the data structures. If
1091 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1092 * by timer_create(), not the BSD setitimer() timers, and only free the
1093 * structure if none of those remain.
1094 *
1095 * This function is exported because it is needed in the exec and
1096 * exit code paths.
1097 */
1098 void
1099 ptimers_free(struct proc *p, int which)
1100 {
1101 struct ptimers *pts;
1102 struct itimer *itn;
1103 struct timespec ts;
1104 int i;
1105
1106 if (p->p_timers == NULL)
1107 return;
1108
1109 pts = p->p_timers;
1110 itimer_lock();
1111 if (which == TIMERS_ALL) {
1112 p->p_timers = NULL;
1113 i = 0;
1114 } else {
1115 timespecclear(&ts);
1116 for (itn = LIST_FIRST(&pts->pts_virtual);
1117 itn && itn != pts->pts_timers[ITIMER_VIRTUAL];
1118 itn = LIST_NEXT(itn, it_list)) {
1119 KASSERT(itn->it_clockid == CLOCK_VIRTUAL);
1120 timespecadd(&ts, &itn->it_time.it_value, &ts);
1121 }
1122 LIST_FIRST(&pts->pts_virtual) = NULL;
1123 if (itn) {
1124 KASSERT(itn->it_clockid == CLOCK_VIRTUAL);
1125 timespecadd(&ts, &itn->it_time.it_value,
1126 &itn->it_time.it_value);
1127 LIST_INSERT_HEAD(&pts->pts_virtual, itn, it_list);
1128 }
1129 timespecclear(&ts);
1130 for (itn = LIST_FIRST(&pts->pts_prof);
1131 itn && itn != pts->pts_timers[ITIMER_PROF];
1132 itn = LIST_NEXT(itn, it_list)) {
1133 KASSERT(itn->it_clockid == CLOCK_PROF);
1134 timespecadd(&ts, &itn->it_time.it_value, &ts);
1135 }
1136 LIST_FIRST(&pts->pts_prof) = NULL;
1137 if (itn) {
1138 KASSERT(itn->it_clockid == CLOCK_PROF);
1139 timespecadd(&ts, &itn->it_time.it_value,
1140 &itn->it_time.it_value);
1141 LIST_INSERT_HEAD(&pts->pts_prof, itn, it_list);
1142 }
1143 i = TIMER_MIN;
1144 }
1145 for ( ; i < TIMER_MAX; i++) {
1146 if (pts->pts_timers[i] != NULL) {
1147 /* Free the timer and release the lock. */
1148 ptimer_free(pts, i);
1149 /* Reacquire the lock for the next one. */
1150 itimer_lock();
1151 }
1152 }
1153 if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
1154 pts->pts_timers[2] == NULL && pts->pts_timers[3] == NULL) {
1155 p->p_timers = NULL;
1156 itimer_unlock();
1157 kmem_free(pts, sizeof(*pts));
1158 } else
1159 itimer_unlock();
1160 }
1161
1162 /*
1163 * ptimer_fire:
1164 *
1165 * Fire a per-process timer.
1166 */
1167 static void
1168 ptimer_fire(struct itimer *it)
1169 {
1170 struct ptimer *pt = container_of(it, struct ptimer, pt_itimer);
1171
1172 KASSERT(itimer_lock_held());
1173
1174 /*
1175 * XXX Can overrun, but we don't do signal queueing yet, anyway.
1176 * XXX Relying on the clock interrupt is stupid.
1177 */
1178 if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
1179 return;
1180 }
1181
1182 if (!pt->pt_queued) {
1183 TAILQ_INSERT_TAIL(&ptimer_queue, pt, pt_chain);
1184 pt->pt_queued = true;
1185 softint_schedule(ptimer_sih);
1186 }
1187 }
1188
1189 /*
1190 * Operations vector for per-process timers (BSD and POSIX).
1191 */
1192 static const struct itimer_ops ptimer_itimer_ops = {
1193 .ito_fire = ptimer_fire,
1194 };
1195
1196 /*
1197 * sys_timer_create:
1198 *
1199 * System call to create a POSIX timer.
1200 */
1201 int
1202 sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
1203 register_t *retval)
1204 {
1205 /* {
1206 syscallarg(clockid_t) clock_id;
1207 syscallarg(struct sigevent *) evp;
1208 syscallarg(timer_t *) timerid;
1209 } */
1210
1211 return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
1212 SCARG(uap, evp), copyin, l);
1213 }
1214
1215 int
1216 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
1217 copyin_t fetch_event, struct lwp *l)
1218 {
1219 int error;
1220 timer_t timerid;
1221 struct itlist *itl;
1222 struct ptimers *pts;
1223 struct ptimer *pt;
1224 struct proc *p;
1225
1226 p = l->l_proc;
1227
1228 if ((u_int)id > CLOCK_MONOTONIC)
1229 return EINVAL;
1230
1231 if ((pts = p->p_timers) == NULL)
1232 pts = ptimers_alloc(p);
1233
1234 pt = kmem_zalloc(sizeof(*pt), KM_SLEEP);
1235 if (evp != NULL) {
1236 if (((error =
1237 (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
1238 ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
1239 (pt->pt_ev.sigev_notify > SIGEV_SA)) ||
1240 (pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
1241 (pt->pt_ev.sigev_signo <= 0 ||
1242 pt->pt_ev.sigev_signo >= NSIG))) {
1243 kmem_free(pt, sizeof(*pt));
1244 return (error ? error : EINVAL);
1245 }
1246 }
1247
1248 /* Find a free timer slot, skipping those reserved for setitimer(). */
1249 itimer_lock();
1250 for (timerid = TIMER_MIN; timerid < TIMER_MAX; timerid++)
1251 if (pts->pts_timers[timerid] == NULL)
1252 break;
1253 if (timerid == TIMER_MAX) {
1254 itimer_unlock();
1255 kmem_free(pt, sizeof(*pt));
1256 return EAGAIN;
1257 }
1258 if (evp == NULL) {
1259 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1260 switch (id) {
1261 case CLOCK_REALTIME:
1262 case CLOCK_MONOTONIC:
1263 pt->pt_ev.sigev_signo = SIGALRM;
1264 break;
1265 case CLOCK_VIRTUAL:
1266 pt->pt_ev.sigev_signo = SIGVTALRM;
1267 break;
1268 case CLOCK_PROF:
1269 pt->pt_ev.sigev_signo = SIGPROF;
1270 break;
1271 }
1272 pt->pt_ev.sigev_value.sival_int = timerid;
1273 }
1274
1275 switch (id) {
1276 case CLOCK_VIRTUAL:
1277 itl = &pts->pts_virtual;
1278 break;
1279 case CLOCK_PROF:
1280 itl = &pts->pts_prof;
1281 break;
1282 default:
1283 itl = NULL;
1284 }
1285
1286 itimer_init(&pt->pt_itimer, &ptimer_itimer_ops, id, itl);
1287 pt->pt_proc = p;
1288 pt->pt_poverruns = 0;
1289 pt->pt_entry = timerid;
1290 pt->pt_queued = false;
1291
1292 pts->pts_timers[timerid] = &pt->pt_itimer;
1293 itimer_unlock();
1294
1295 return copyout(&timerid, tid, sizeof(timerid));
1296 }
1297
1298 /*
1299 * sys_timer_delete:
1300 *
1301 * System call to delete a POSIX timer.
1302 */
1303 int
1304 sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
1305 register_t *retval)
1306 {
1307 /* {
1308 syscallarg(timer_t) timerid;
1309 } */
1310 struct proc *p = l->l_proc;
1311 timer_t timerid;
1312 struct ptimers *pts;
1313 struct itimer *it, *itn;
1314
1315 timerid = SCARG(uap, timerid);
1316 pts = p->p_timers;
1317
1318 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
1319 return EINVAL;
1320
1321 itimer_lock();
1322 if ((it = pts->pts_timers[timerid]) == NULL) {
1323 itimer_unlock();
1324 return EINVAL;
1325 }
1326
1327 if (CLOCK_VIRTUAL_P(it->it_clockid)) {
1328 if (it->it_active) {
1329 itn = LIST_NEXT(it, it_list);
1330 LIST_REMOVE(it, it_list);
1331 for ( ; itn; itn = LIST_NEXT(itn, it_list))
1332 timespecadd(&it->it_time.it_value,
1333 &itn->it_time.it_value,
1334 &itn->it_time.it_value);
1335 it->it_active = false;
1336 }
1337 }
1338
1339 /* Free the timer and release the lock. */
1340 ptimer_free(pts, timerid);
1341
1342 return 0;
1343 }
1344
1345 /*
1346 * sys___timer_settime50:
1347 *
1348 * System call to set/arm a POSIX timer.
1349 */
1350 int
1351 sys___timer_settime50(struct lwp *l,
1352 const struct sys___timer_settime50_args *uap,
1353 register_t *retval)
1354 {
1355 /* {
1356 syscallarg(timer_t) timerid;
1357 syscallarg(int) flags;
1358 syscallarg(const struct itimerspec *) value;
1359 syscallarg(struct itimerspec *) ovalue;
1360 } */
1361 int error;
1362 struct itimerspec value, ovalue, *ovp = NULL;
1363
1364 if ((error = copyin(SCARG(uap, value), &value,
1365 sizeof(struct itimerspec))) != 0)
1366 return error;
1367
1368 if (SCARG(uap, ovalue))
1369 ovp = &ovalue;
1370
1371 if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
1372 SCARG(uap, flags), l->l_proc)) != 0)
1373 return error;
1374
1375 if (ovp)
1376 return copyout(&ovalue, SCARG(uap, ovalue),
1377 sizeof(struct itimerspec));
1378 return 0;
1379 }
1380
1381 int
1382 dotimer_settime(int timerid, struct itimerspec *value,
1383 struct itimerspec *ovalue, int flags, struct proc *p)
1384 {
1385 struct timespec now;
1386 struct itimerspec val;
1387 struct ptimers *pts;
1388 struct itimer *it;
1389 int error;
1390
1391 pts = p->p_timers;
1392
1393 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
1394 return EINVAL;
1395 val = *value;
1396 if (itimespecfix(&val.it_value) != 0 ||
1397 itimespecfix(&val.it_interval) != 0)
1398 return EINVAL;
1399
1400 itimer_lock();
1401 restart:
1402 if ((it = pts->pts_timers[timerid]) == NULL) {
1403 itimer_unlock();
1404 return EINVAL;
1405 }
1406
1407 if (ovalue)
1408 itimer_gettime(it, ovalue);
1409 it->it_time = val;
1410
1411 /*
1412 * If we've been passed a relative time for a realtime timer,
1413 * convert it to absolute; if an absolute time for a virtual
1414 * timer, convert it to relative and make sure we don't set it
1415 * to zero, which would cancel the timer, or let it go
1416 * negative, which would confuse the comparison tests.
1417 */
1418 if (timespecisset(&it->it_time.it_value)) {
1419 if (!CLOCK_VIRTUAL_P(it->it_clockid)) {
1420 if ((flags & TIMER_ABSTIME) == 0) {
1421 if (it->it_clockid == CLOCK_REALTIME) {
1422 getnanotime(&now);
1423 } else { /* CLOCK_MONOTONIC */
1424 getnanouptime(&now);
1425 }
1426 timespecadd(&it->it_time.it_value, &now,
1427 &it->it_time.it_value);
1428 }
1429 } else {
1430 if ((flags & TIMER_ABSTIME) != 0) {
1431 getnanotime(&now);
1432 timespecsub(&it->it_time.it_value, &now,
1433 &it->it_time.it_value);
1434 if (!timespecisset(&it->it_time.it_value) ||
1435 it->it_time.it_value.tv_sec < 0) {
1436 it->it_time.it_value.tv_sec = 0;
1437 it->it_time.it_value.tv_nsec = 1;
1438 }
1439 }
1440 }
1441 }
1442
1443 error = itimer_settime(it);
1444 if (error == ERESTART) {
1445 KASSERT(!CLOCK_VIRTUAL_P(it->it_clockid));
1446 goto restart;
1447 }
1448 KASSERT(error == 0);
1449 itimer_unlock();
1450
1451 return 0;
1452 }
1453
1454 /*
1455 * sys___timer_gettime50:
1456 *
1457 * System call to return the time remaining until a POSIX timer fires.
1458 */
1459 int
1460 sys___timer_gettime50(struct lwp *l,
1461 const struct sys___timer_gettime50_args *uap, register_t *retval)
1462 {
1463 /* {
1464 syscallarg(timer_t) timerid;
1465 syscallarg(struct itimerspec *) value;
1466 } */
1467 struct itimerspec its;
1468 int error;
1469
1470 if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
1471 &its)) != 0)
1472 return error;
1473
1474 return copyout(&its, SCARG(uap, value), sizeof(its));
1475 }
1476
1477 int
1478 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
1479 {
1480 struct itimer *it;
1481 struct ptimers *pts;
1482
1483 pts = p->p_timers;
1484 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
1485 return EINVAL;
1486 itimer_lock();
1487 if ((it = pts->pts_timers[timerid]) == NULL) {
1488 itimer_unlock();
1489 return EINVAL;
1490 }
1491 itimer_gettime(it, its);
1492 itimer_unlock();
1493
1494 return 0;
1495 }
1496
1497 /*
1498 * sys_timer_getoverrun:
1499 *
1500 * System call to return the number of times a POSIX timer has
1501 * expired while a notification was already pending. The counter
1502 * is reset when a timer expires and a notification can be posted.
1503 */
1504 int
1505 sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
1506 register_t *retval)
1507 {
1508 /* {
1509 syscallarg(timer_t) timerid;
1510 } */
1511 struct proc *p = l->l_proc;
1512 struct ptimers *pts;
1513 int timerid;
1514 struct itimer *it;
1515 struct ptimer *pt;
1516
1517 timerid = SCARG(uap, timerid);
1518
1519 pts = p->p_timers;
1520 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
1521 return EINVAL;
1522 itimer_lock();
1523 if ((it = pts->pts_timers[timerid]) == NULL) {
1524 itimer_unlock();
1525 return EINVAL;
1526 }
1527 pt = container_of(it, struct ptimer, pt_itimer);
1528 *retval = pt->pt_poverruns;
1529 if (*retval >= DELAYTIMER_MAX)
1530 *retval = DELAYTIMER_MAX;
1531 itimer_unlock();
1532
1533 return 0;
1534 }
1535
1536 /*
1537 * sys___getitimer50:
1538 *
1539 * System call to get the time remaining before a BSD timer fires.
1540 */
1541 int
1542 sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
1543 register_t *retval)
1544 {
1545 /* {
1546 syscallarg(int) which;
1547 syscallarg(struct itimerval *) itv;
1548 } */
1549 struct proc *p = l->l_proc;
1550 struct itimerval aitv;
1551 int error;
1552
1553 memset(&aitv, 0, sizeof(aitv));
1554 error = dogetitimer(p, SCARG(uap, which), &aitv);
1555 if (error)
1556 return error;
1557 return copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval));
1558 }
1559
1560 int
1561 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1562 {
1563 struct ptimers *pts;
1564 struct itimer *it;
1565 struct itimerspec its;
1566
1567 if ((u_int)which > ITIMER_MONOTONIC)
1568 return EINVAL;
1569
1570 itimer_lock();
1571 pts = p->p_timers;
1572 if (pts == NULL || (it = pts->pts_timers[which]) == NULL) {
1573 timerclear(&itvp->it_value);
1574 timerclear(&itvp->it_interval);
1575 } else {
1576 itimer_gettime(it, &its);
1577 TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
1578 TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
1579 }
1580 itimer_unlock();
1581
1582 return 0;
1583 }
1584
1585 /*
1586 * sys___setitimer50:
1587 *
1588 * System call to set/arm a BSD timer.
1589 */
1590 int
1591 sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
1592 register_t *retval)
1593 {
1594 /* {
1595 syscallarg(int) which;
1596 syscallarg(const struct itimerval *) itv;
1597 syscallarg(struct itimerval *) oitv;
1598 } */
1599 struct proc *p = l->l_proc;
1600 int which = SCARG(uap, which);
1601 struct sys___getitimer50_args getargs;
1602 const struct itimerval *itvp;
1603 struct itimerval aitv;
1604 int error;
1605
1606 itvp = SCARG(uap, itv);
1607 if (itvp &&
1608 (error = copyin(itvp, &aitv, sizeof(struct itimerval))) != 0)
1609 return error;
1610 if (SCARG(uap, oitv) != NULL) {
1611 SCARG(&getargs, which) = which;
1612 SCARG(&getargs, itv) = SCARG(uap, oitv);
1613 if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
1614 return error;
1615 }
1616 if (itvp == 0)
1617 return 0;
1618
1619 return dosetitimer(p, which, &aitv);
1620 }
1621
1622 int
1623 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1624 {
1625 struct timespec now;
1626 struct ptimers *pts;
1627 struct ptimer *spare;
1628 struct itimer *it;
1629 struct itlist *itl;
1630 int error;
1631
1632 if ((u_int)which > ITIMER_MONOTONIC)
1633 return EINVAL;
1634 if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1635 return EINVAL;
1636
1637 /*
1638 * Don't bother allocating data structures if the process just
1639 * wants to clear the timer.
1640 */
1641 spare = NULL;
1642 pts = p->p_timers;
1643 retry:
1644 if (!timerisset(&itvp->it_value) && (pts == NULL ||
1645 pts->pts_timers[which] == NULL))
1646 return 0;
1647 if (pts == NULL)
1648 pts = ptimers_alloc(p);
1649 itimer_lock();
1650 restart:
1651 it = pts->pts_timers[which];
1652 if (it == NULL) {
1653 struct ptimer *pt;
1654
1655 if (spare == NULL) {
1656 itimer_unlock();
1657 spare = kmem_zalloc(sizeof(*spare), KM_SLEEP);
1658 goto retry;
1659 }
1660 pt = spare;
1661 spare = NULL;
1662
1663 it = &pt->pt_itimer;
1664 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1665 pt->pt_ev.sigev_value.sival_int = which;
1666
1667 switch (which) {
1668 case ITIMER_REAL:
1669 case ITIMER_MONOTONIC:
1670 itl = NULL;
1671 pt->pt_ev.sigev_signo = SIGALRM;
1672 break;
1673 case ITIMER_VIRTUAL:
1674 itl = &pts->pts_virtual;
1675 pt->pt_ev.sigev_signo = SIGVTALRM;
1676 break;
1677 case ITIMER_PROF:
1678 itl = &pts->pts_prof;
1679 pt->pt_ev.sigev_signo = SIGPROF;
1680 break;
1681 default:
1682 panic("%s: can't happen %d", __func__, which);
1683 }
1684 itimer_init(it, &ptimer_itimer_ops, which, itl);
1685 pt->pt_proc = p;
1686 pt->pt_entry = which;
1687
1688 pts->pts_timers[which] = it;
1689 }
1690
1691 TIMEVAL_TO_TIMESPEC(&itvp->it_value, &it->it_time.it_value);
1692 TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &it->it_time.it_interval);
1693
1694 error = 0;
1695 if (timespecisset(&it->it_time.it_value)) {
1696 /* Convert to absolute time */
1697 /* XXX need to wrap in splclock for timecounters case? */
1698 switch (which) {
1699 case ITIMER_REAL:
1700 getnanotime(&now);
1701 if (!timespecaddok(&it->it_time.it_value, &now)) {
1702 error = EINVAL;
1703 goto out;
1704 }
1705 timespecadd(&it->it_time.it_value, &now,
1706 &it->it_time.it_value);
1707 break;
1708 case ITIMER_MONOTONIC:
1709 getnanouptime(&now);
1710 if (!timespecaddok(&it->it_time.it_value, &now)) {
1711 error = EINVAL;
1712 goto out;
1713 }
1714 timespecadd(&it->it_time.it_value, &now,
1715 &it->it_time.it_value);
1716 break;
1717 default:
1718 break;
1719 }
1720 }
1721
1722 error = itimer_settime(it);
1723 if (error == ERESTART) {
1724 KASSERT(!CLOCK_VIRTUAL_P(it->it_clockid));
1725 goto restart;
1726 }
1727 KASSERT(error == 0);
1728 out:
1729 itimer_unlock();
1730 if (spare != NULL)
1731 kmem_free(spare, sizeof(*spare));
1732
1733 return error;
1734 }
1735
1736 /*
1737 * ptimer_tick:
1738 *
1739 * Called from hardclock() to decrement per-process virtual timers.
1740 */
1741 void
1742 ptimer_tick(lwp_t *l, bool user)
1743 {
1744 struct ptimers *pts;
1745 struct itimer *it;
1746 proc_t *p;
1747
1748 p = l->l_proc;
1749 if (p->p_timers == NULL)
1750 return;
1751
1752 itimer_lock();
1753 if ((pts = l->l_proc->p_timers) != NULL) {
1754 /*
1755 * Run current process's virtual and profile time, as needed.
1756 */
1757 if (user && (it = LIST_FIRST(&pts->pts_virtual)) != NULL)
1758 if (itimer_decr(it, tick * 1000))
1759 (*it->it_ops->ito_fire)(it);
1760 if ((it = LIST_FIRST(&pts->pts_prof)) != NULL)
1761 if (itimer_decr(it, tick * 1000))
1762 (*it->it_ops->ito_fire)(it);
1763 }
1764 itimer_unlock();
1765 }
1766
1767 /*
1768 * ptimer_intr:
1769 *
1770 * Software interrupt handler for processing per-process
1771 * timer expiration.
1772 */
1773 static void
1774 ptimer_intr(void *cookie)
1775 {
1776 ksiginfo_t ksi;
1777 struct itimer *it;
1778 struct ptimer *pt;
1779 proc_t *p;
1780
1781 mutex_enter(&proc_lock);
1782 itimer_lock();
1783 while ((pt = TAILQ_FIRST(&ptimer_queue)) != NULL) {
1784 it = &pt->pt_itimer;
1785
1786 TAILQ_REMOVE(&ptimer_queue, pt, pt_chain);
1787 KASSERT(pt->pt_queued);
1788 pt->pt_queued = false;
1789
1790 p = pt->pt_proc;
1791 if (p->p_timers == NULL) {
1792 /* Process is dying. */
1793 continue;
1794 }
1795 if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
1796 continue;
1797 }
1798 if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
1799 it->it_overruns++;
1800 continue;
1801 }
1802
1803 KSI_INIT(&ksi);
1804 ksi.ksi_signo = pt->pt_ev.sigev_signo;
1805 ksi.ksi_code = SI_TIMER;
1806 ksi.ksi_value = pt->pt_ev.sigev_value;
1807 pt->pt_poverruns = it->it_overruns;
1808 it->it_overruns = 0;
1809 itimer_unlock();
1810 kpsignal(p, &ksi, NULL);
1811 itimer_lock();
1812 }
1813 itimer_unlock();
1814 mutex_exit(&proc_lock);
1815 }
1816