kern_time.c revision 1.228 1 /* $NetBSD: kern_time.c,v 1.228 2025/03/19 14:27:05 pho Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009, 2020
5 * The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Christopher G. Demetriou, by Andrew Doran, and by Jason R. Thorpe.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1989, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.228 2025/03/19 14:27:05 pho Exp $");
66
67 #include <sys/param.h>
68 #include <sys/types.h>
69
70 #include <sys/callout.h>
71 #include <sys/cpu.h>
72 #include <sys/errno.h>
73 #include <sys/intr.h>
74 #include <sys/kauth.h>
75 #include <sys/kernel.h>
76 #include <sys/kmem.h>
77 #include <sys/lwp.h>
78 #include <sys/mount.h>
79 #include <sys/mutex.h>
80 #include <sys/proc.h>
81 #include <sys/queue.h>
82 #include <sys/resourcevar.h>
83 #include <sys/signal.h>
84 #include <sys/signalvar.h>
85 #include <sys/syscallargs.h>
86 #include <sys/syslog.h>
87 #include <sys/systm.h>
88 #include <sys/timetc.h>
89 #include <sys/timevar.h>
90 #include <sys/timex.h>
91 #include <sys/vnode.h>
92
93 #include <machine/limits.h>
94
95 kmutex_t itimer_mutex __cacheline_aligned; /* XXX static */
96 static struct itlist itimer_realtime_changed_notify;
97
98 static void itimer_callout(void *);
99 static void ptimer_intr(void *);
100 static void *ptimer_sih __read_mostly;
101 static TAILQ_HEAD(, ptimer) ptimer_queue;
102
103 #define CLOCK_VIRTUAL_P(clockid) \
104 ((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)
105
106 CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
107 CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
108 CTASSERT(ITIMER_PROF == CLOCK_PROF);
109 CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC);
110
111 /*
112 * Initialize timekeeping.
113 */
114 void
115 time_init(void)
116 {
117
118 mutex_init(&itimer_mutex, MUTEX_DEFAULT, IPL_SCHED);
119 LIST_INIT(&itimer_realtime_changed_notify);
120
121 TAILQ_INIT(&ptimer_queue);
122 ptimer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
123 ptimer_intr, NULL);
124 }
125
126 /*
127 * Check if the time will wrap if set to ts.
128 *
129 * ts - timespec describing the new time
130 * delta - the delta between the current time and ts
131 */
132 bool
133 time_wraps(struct timespec *ts, struct timespec *delta)
134 {
135
136 /*
137 * Don't allow the time to be set forward so far it
138 * will wrap and become negative, thus allowing an
139 * attacker to bypass the next check below. The
140 * cutoff is 1 year before rollover occurs, so even
141 * if the attacker uses adjtime(2) to move the time
142 * past the cutoff, it will take a very long time
143 * to get to the wrap point.
144 */
145 if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
146 (delta->tv_sec < 0 || delta->tv_nsec < 0))
147 return true;
148
149 return false;
150 }
151
152 /*
153 * itimer_lock:
154 *
155 * Acquire the interval timer data lock.
156 */
157 void
158 itimer_lock(void)
159 {
160 mutex_spin_enter(&itimer_mutex);
161 }
162
163 /*
164 * itimer_unlock:
165 *
166 * Release the interval timer data lock.
167 */
168 void
169 itimer_unlock(void)
170 {
171 mutex_spin_exit(&itimer_mutex);
172 }
173
174 /*
175 * itimer_lock_held:
176 *
177 * Check that the interval timer lock is held for diagnostic
178 * assertions.
179 */
180 inline bool __diagused
181 itimer_lock_held(void)
182 {
183 return mutex_owned(&itimer_mutex);
184 }
185
186 /*
187 * Time of day and interval timer support.
188 *
189 * These routines provide the kernel entry points to get and set
190 * the time-of-day and per-process interval timers. Subroutines
191 * here provide support for adding and subtracting timeval structures
192 * and decrementing interval timers, optionally reloading the interval
193 * timers when they expire.
194 */
195
196 /* This function is used by clock_settime and settimeofday */
197 static int
198 settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
199 {
200 struct timespec delta, now;
201
202 /*
203 * The time being set to an unreasonable value will cause
204 * unreasonable system behaviour.
205 */
206 if (ts->tv_sec < 0 || ts->tv_sec > (1LL << 36))
207 return EINVAL;
208
209 nanotime(&now);
210 timespecsub(ts, &now, &delta);
211
212 if (check_kauth && kauth_authorize_system(kauth_cred_get(),
213 KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
214 &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
215 return EPERM;
216 }
217
218 #ifdef notyet
219 if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
220 return EPERM;
221 }
222 #endif
223
224 tc_setclock(ts);
225
226 resettodr();
227
228 /*
229 * Notify pending CLOCK_REALTIME timers about the real time change.
230 * There may be inactive timers on this list, but this happens
231 * comparatively less often than timers firing, and so it's better
232 * to put the extra checks here than to complicate the other code
233 * path.
234 */
235 struct itimer *it;
236 itimer_lock();
237 LIST_FOREACH(it, &itimer_realtime_changed_notify, it_rtchgq) {
238 KASSERT(it->it_ops->ito_realtime_changed != NULL);
239 if (timespecisset(&it->it_time.it_value)) {
240 (*it->it_ops->ito_realtime_changed)(it);
241 }
242 }
243 itimer_unlock();
244
245 return 0;
246 }
247
248 int
249 settime(struct proc *p, struct timespec *ts)
250 {
251 return settime1(p, ts, true);
252 }
253
254 /* ARGSUSED */
255 int
256 sys___clock_gettime50(struct lwp *l,
257 const struct sys___clock_gettime50_args *uap, register_t *retval)
258 {
259 /* {
260 syscallarg(clockid_t) clock_id;
261 syscallarg(struct timespec *) tp;
262 } */
263 int error;
264 struct timespec ats;
265
266 error = clock_gettime1(SCARG(uap, clock_id), &ats);
267 if (error != 0)
268 return error;
269
270 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
271 }
272
273 /* ARGSUSED */
274 int
275 sys___clock_settime50(struct lwp *l,
276 const struct sys___clock_settime50_args *uap, register_t *retval)
277 {
278 /* {
279 syscallarg(clockid_t) clock_id;
280 syscallarg(const struct timespec *) tp;
281 } */
282 int error;
283 struct timespec ats;
284
285 if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
286 return error;
287
288 return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
289 }
290
291
292 int
293 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
294 bool check_kauth)
295 {
296 int error;
297
298 if (tp->tv_nsec < 0 || tp->tv_nsec >= 1000000000L)
299 return EINVAL;
300
301 switch (clock_id) {
302 case CLOCK_REALTIME:
303 if ((error = settime1(p, tp, check_kauth)) != 0)
304 return error;
305 break;
306 case CLOCK_MONOTONIC:
307 return EINVAL; /* read-only clock */
308 default:
309 return EINVAL;
310 }
311
312 return 0;
313 }
314
315 int
316 sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
317 register_t *retval)
318 {
319 /* {
320 syscallarg(clockid_t) clock_id;
321 syscallarg(struct timespec *) tp;
322 } */
323 struct timespec ts;
324 int error;
325
326 if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
327 return error;
328
329 if (SCARG(uap, tp))
330 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
331
332 return error;
333 }
334
335 int
336 clock_getres1(clockid_t clock_id, struct timespec *ts)
337 {
338
339 switch (clock_id) {
340 case CLOCK_REALTIME:
341 case CLOCK_MONOTONIC:
342 case CLOCK_PROCESS_CPUTIME_ID:
343 case CLOCK_THREAD_CPUTIME_ID:
344 ts->tv_sec = 0;
345 if (tc_getfrequency() > 1000000000)
346 ts->tv_nsec = 1;
347 else
348 ts->tv_nsec = 1000000000 / tc_getfrequency();
349 break;
350 default:
351 return EINVAL;
352 }
353
354 return 0;
355 }
356
357 /* ARGSUSED */
358 int
359 sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
360 register_t *retval)
361 {
362 /* {
363 syscallarg(struct timespec *) rqtp;
364 syscallarg(struct timespec *) rmtp;
365 } */
366 struct timespec rmt, rqt;
367 int error, error1;
368
369 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
370 if (error)
371 return error;
372
373 error = nanosleep1(l, CLOCK_MONOTONIC, 0, &rqt,
374 SCARG(uap, rmtp) ? &rmt : NULL);
375 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
376 return error;
377
378 error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
379 return error1 ? error1 : error;
380 }
381
382 /* ARGSUSED */
383 int
384 sys_clock_nanosleep(struct lwp *l, const struct sys_clock_nanosleep_args *uap,
385 register_t *retval)
386 {
387 /* {
388 syscallarg(clockid_t) clock_id;
389 syscallarg(int) flags;
390 syscallarg(struct timespec *) rqtp;
391 syscallarg(struct timespec *) rmtp;
392 } */
393 struct timespec rmt, rqt;
394 int error, error1;
395
396 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
397 if (error)
398 goto out;
399
400 error = nanosleep1(l, SCARG(uap, clock_id), SCARG(uap, flags), &rqt,
401 SCARG(uap, rmtp) ? &rmt : NULL);
402 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
403 goto out;
404
405 if ((SCARG(uap, flags) & TIMER_ABSTIME) == 0 &&
406 (error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt))) != 0)
407 error = error1;
408 out:
409 *retval = error;
410 return 0;
411 }
412
413 int
414 nanosleep1(struct lwp *l, clockid_t clock_id, int flags, struct timespec *rqt,
415 struct timespec *rmt)
416 {
417 struct timespec rmtstart;
418 int error, timo;
419
420 if ((error = ts2timo(clock_id, flags, rqt, &timo, &rmtstart)) != 0) {
421 if (error == ETIMEDOUT) {
422 error = 0;
423 if (rmt != NULL)
424 rmt->tv_sec = rmt->tv_nsec = 0;
425 }
426 return error;
427 }
428
429 /*
430 * Avoid inadvertently sleeping forever
431 */
432 if (timo == 0)
433 timo = 1;
434 again:
435 error = kpause("nanoslp", true, timo, NULL);
436 if (error == EWOULDBLOCK)
437 error = 0;
438 if (rmt != NULL || error == 0) {
439 struct timespec rmtend;
440 struct timespec t0;
441 struct timespec *t;
442 int err;
443
444 err = clock_gettime1(clock_id, &rmtend);
445 if (err != 0)
446 return err;
447
448 t = (rmt != NULL) ? rmt : &t0;
449 if (flags & TIMER_ABSTIME) {
450 timespecsub(rqt, &rmtend, t);
451 } else {
452 if (timespeccmp(&rmtend, &rmtstart, <))
453 timespecclear(t); /* clock wound back */
454 else
455 timespecsub(&rmtend, &rmtstart, t);
456 if (timespeccmp(rqt, t, <))
457 timespecclear(t);
458 else
459 timespecsub(rqt, t, t);
460 }
461 if (t->tv_sec < 0)
462 timespecclear(t);
463 if (error == 0) {
464 timo = tstohz(t);
465 if (timo > 0)
466 goto again;
467 }
468 }
469
470 if (error == ERESTART)
471 error = EINTR;
472
473 return error;
474 }
475
476 int
477 sys_clock_getcpuclockid2(struct lwp *l,
478 const struct sys_clock_getcpuclockid2_args *uap,
479 register_t *retval)
480 {
481 /* {
482 syscallarg(idtype_t idtype;
483 syscallarg(id_t id);
484 syscallarg(clockid_t *)clock_id;
485 } */
486 pid_t pid;
487 lwpid_t lid;
488 clockid_t clock_id;
489 id_t id = SCARG(uap, id);
490
491 switch (SCARG(uap, idtype)) {
492 case P_PID:
493 pid = id == 0 ? l->l_proc->p_pid : id;
494 clock_id = CLOCK_PROCESS_CPUTIME_ID | pid;
495 break;
496 case P_LWPID:
497 lid = id == 0 ? l->l_lid : id;
498 clock_id = CLOCK_THREAD_CPUTIME_ID | lid;
499 break;
500 default:
501 return EINVAL;
502 }
503 return copyout(&clock_id, SCARG(uap, clock_id), sizeof(clock_id));
504 }
505
506 /* ARGSUSED */
507 int
508 sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
509 register_t *retval)
510 {
511 /* {
512 syscallarg(struct timeval *) tp;
513 syscallarg(void *) tzp; really "struct timezone *";
514 } */
515 struct timeval atv;
516 int error = 0;
517 struct timezone tzfake;
518
519 if (SCARG(uap, tp)) {
520 memset(&atv, 0, sizeof(atv));
521 microtime(&atv);
522 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
523 if (error)
524 return error;
525 }
526 if (SCARG(uap, tzp)) {
527 /*
528 * NetBSD has no kernel notion of time zone, so we just
529 * fake up a timezone struct and return it if demanded.
530 */
531 tzfake.tz_minuteswest = 0;
532 tzfake.tz_dsttime = 0;
533 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
534 }
535 return error;
536 }
537
538 /* ARGSUSED */
539 int
540 sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
541 register_t *retval)
542 {
543 /* {
544 syscallarg(const struct timeval *) tv;
545 syscallarg(const void *) tzp; really "const struct timezone *";
546 } */
547
548 return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
549 }
550
551 int
552 settimeofday1(const struct timeval *utv, bool userspace,
553 const void *utzp, struct lwp *l, bool check_kauth)
554 {
555 struct timeval atv;
556 struct timespec ts;
557 int error;
558
559 /* Verify all parameters before changing time. */
560
561 /*
562 * NetBSD has no kernel notion of time zone, and only an
563 * obsolete program would try to set it, so we log a warning.
564 */
565 if (utzp)
566 log(LOG_WARNING, "pid %d attempted to set the "
567 "(obsolete) kernel time zone\n", l->l_proc->p_pid);
568
569 if (utv == NULL)
570 return 0;
571
572 if (userspace) {
573 if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
574 return error;
575 utv = &atv;
576 }
577
578 if (utv->tv_usec < 0 || utv->tv_usec >= 1000000)
579 return EINVAL;
580
581 TIMEVAL_TO_TIMESPEC(utv, &ts);
582 return settime1(l->l_proc, &ts, check_kauth);
583 }
584
585 int time_adjusted; /* set if an adjustment is made */
586
587 /* ARGSUSED */
588 int
589 sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
590 register_t *retval)
591 {
592 /* {
593 syscallarg(const struct timeval *) delta;
594 syscallarg(struct timeval *) olddelta;
595 } */
596 int error;
597 struct timeval atv, oldatv;
598
599 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
600 KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
601 return error;
602
603 if (SCARG(uap, delta)) {
604 error = copyin(SCARG(uap, delta), &atv,
605 sizeof(*SCARG(uap, delta)));
606 if (error)
607 return error;
608 }
609 adjtime1(SCARG(uap, delta) ? &atv : NULL,
610 SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
611 if (SCARG(uap, olddelta))
612 error = copyout(&oldatv, SCARG(uap, olddelta),
613 sizeof(*SCARG(uap, olddelta)));
614 return error;
615 }
616
617 void
618 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
619 {
620
621 if (olddelta) {
622 memset(olddelta, 0, sizeof(*olddelta));
623 mutex_spin_enter(&timecounter_lock);
624 olddelta->tv_sec = time_adjtime / 1000000;
625 olddelta->tv_usec = time_adjtime % 1000000;
626 if (olddelta->tv_usec < 0) {
627 olddelta->tv_usec += 1000000;
628 olddelta->tv_sec--;
629 }
630 mutex_spin_exit(&timecounter_lock);
631 }
632
633 if (delta) {
634 mutex_spin_enter(&timecounter_lock);
635 /*
636 * XXX This should maybe just report failure to
637 * userland for nonsense deltas.
638 */
639 if (delta->tv_sec > INT64_MAX/1000000 - 1) {
640 time_adjtime = INT64_MAX;
641 } else if (delta->tv_sec < INT64_MIN/1000000 + 1) {
642 time_adjtime = INT64_MIN;
643 } else {
644 time_adjtime = delta->tv_sec * 1000000
645 + MAX(-999999, MIN(999999, delta->tv_usec));
646 }
647
648 if (time_adjtime) {
649 /* We need to save the system time during shutdown */
650 time_adjusted |= 1;
651 }
652 mutex_spin_exit(&timecounter_lock);
653 }
654 }
655
656 /*
657 * Interval timer support.
658 *
659 * The itimer_*() routines provide generic support for interval timers,
660 * both real (CLOCK_REALTIME, CLOCK_MONOTIME), and virtual (CLOCK_VIRTUAL,
661 * CLOCK_PROF).
662 *
663 * Real timers keep their deadline as an absolute time, and are fired
664 * by a callout. Virtual timers are kept as a linked-list of deltas,
665 * and are processed by hardclock().
666 *
667 * Because the real time timer callout may be delayed in real time due
668 * to interrupt processing on the system, it is possible for the real
669 * time timeout routine (itimer_callout()) run past after its deadline.
670 * It does not suffice, therefore, to reload the real timer .it_value
671 * from the timer's .it_interval. Rather, we compute the next deadline
672 * in absolute time based on the current time and the .it_interval value,
673 * and report any overruns.
674 *
675 * Note that while the virtual timers are supported in a generic fashion
676 * here, they only (currently) make sense as per-process timers, and thus
677 * only really work for that case.
678 */
679
680 /*
681 * itimer_init:
682 *
683 * Initialize the common data for an interval timer.
684 */
685 void
686 itimer_init(struct itimer * const it, const struct itimer_ops * const ops,
687 clockid_t const id, struct itlist * const itl)
688 {
689
690 KASSERT(itimer_lock_held());
691 KASSERT(ops != NULL);
692
693 timespecclear(&it->it_time.it_value);
694 it->it_ops = ops;
695 it->it_clockid = id;
696 it->it_overruns = 0;
697 it->it_dying = false;
698 if (!CLOCK_VIRTUAL_P(id)) {
699 KASSERT(itl == NULL);
700 callout_init(&it->it_ch, CALLOUT_MPSAFE);
701 callout_setfunc(&it->it_ch, itimer_callout, it);
702 if (id == CLOCK_REALTIME && ops->ito_realtime_changed != NULL) {
703 LIST_INSERT_HEAD(&itimer_realtime_changed_notify,
704 it, it_rtchgq);
705 }
706 } else {
707 KASSERT(itl != NULL);
708 it->it_vlist = itl;
709 it->it_active = false;
710 }
711 }
712
713 /*
714 * itimer_poison:
715 *
716 * Poison an interval timer, preventing it from being scheduled
717 * or processed, in preparation for freeing the timer.
718 */
719 void
720 itimer_poison(struct itimer * const it)
721 {
722
723 KASSERT(itimer_lock_held());
724
725 it->it_dying = true;
726
727 /*
728 * For non-virtual timers, stop the callout, or wait for it to
729 * run if it has already fired. It cannot restart again after
730 * this point: the callout won't restart itself when dying, no
731 * other users holding the lock can restart it, and any other
732 * users waiting for callout_halt concurrently (itimer_settime)
733 * will restart from the top.
734 */
735 if (!CLOCK_VIRTUAL_P(it->it_clockid)) {
736 callout_halt(&it->it_ch, &itimer_mutex);
737 if (it->it_clockid == CLOCK_REALTIME &&
738 it->it_ops->ito_realtime_changed != NULL) {
739 LIST_REMOVE(it, it_rtchgq);
740 }
741 }
742 }
743
744 /*
745 * itimer_fini:
746 *
747 * Release resources used by an interval timer.
748 *
749 * N.B. itimer_lock must be held on entry, and is released on exit.
750 */
751 void
752 itimer_fini(struct itimer * const it)
753 {
754
755 KASSERT(itimer_lock_held());
756
757 /* All done with the global state. */
758 itimer_unlock();
759
760 /* Destroy the callout, if needed. */
761 if (!CLOCK_VIRTUAL_P(it->it_clockid))
762 callout_destroy(&it->it_ch);
763 }
764
765 /*
766 * itimer_decr:
767 *
768 * Decrement an interval timer by a specified number of nanoseconds,
769 * which must be less than a second, i.e. < 1000000000. If the timer
770 * expires, then reload it. In this case, carry over (nsec - old value)
771 * to reduce the value reloaded into the timer so that the timer does
772 * not drift. This routine assumes that it is called in a context where
773 * the timers on which it is operating cannot change in value.
774 *
775 * Returns true if the timer has expired.
776 */
777 static bool
778 itimer_decr(struct itimer *it, int nsec)
779 {
780 struct itimerspec *itp;
781 int error __diagused;
782
783 KASSERT(itimer_lock_held());
784 KASSERT(CLOCK_VIRTUAL_P(it->it_clockid));
785
786 itp = &it->it_time;
787 if (itp->it_value.tv_nsec < nsec) {
788 if (itp->it_value.tv_sec == 0) {
789 /* expired, and already in next interval */
790 nsec -= itp->it_value.tv_nsec;
791 goto expire;
792 }
793 itp->it_value.tv_nsec += 1000000000;
794 itp->it_value.tv_sec--;
795 }
796 itp->it_value.tv_nsec -= nsec;
797 nsec = 0;
798 if (timespecisset(&itp->it_value))
799 return false;
800 /* expired, exactly at end of interval */
801 expire:
802 if (timespecisset(&itp->it_interval)) {
803 itp->it_value = itp->it_interval;
804 itp->it_value.tv_nsec -= nsec;
805 if (itp->it_value.tv_nsec < 0) {
806 itp->it_value.tv_nsec += 1000000000;
807 itp->it_value.tv_sec--;
808 }
809 error = itimer_settime(it);
810 KASSERT(error == 0); /* virtual, never fails */
811 } else
812 itp->it_value.tv_nsec = 0; /* sec is already 0 */
813 return true;
814 }
815
816 /*
817 * itimer_arm_real:
818 *
819 * Arm a non-virtual timer.
820 */
821 static void
822 itimer_arm_real(struct itimer * const it)
823 {
824
825 KASSERT(!it->it_dying);
826 KASSERT(!CLOCK_VIRTUAL_P(it->it_clockid));
827 KASSERT(!callout_pending(&it->it_ch));
828
829 /*
830 * Don't need to check tshzto() return value, here.
831 * callout_schedule() does it for us.
832 */
833 callout_schedule(&it->it_ch,
834 (it->it_clockid == CLOCK_MONOTONIC
835 ? tshztoup(&it->it_time.it_value)
836 : tshzto(&it->it_time.it_value)));
837 }
838
839 /*
840 * itimer_callout:
841 *
842 * Callout to expire a non-virtual timer. Queue it up for processing,
843 * and then reload, if it is configured to do so.
844 *
845 * N.B. A delay in processing this callout causes multiple
846 * SIGALRM calls to be compressed into one.
847 */
848 static void
849 itimer_callout(void *arg)
850 {
851 struct timespec now, next;
852 struct itimer * const it = arg;
853 int overruns;
854
855 itimer_lock();
856 (*it->it_ops->ito_fire)(it);
857
858 if (!timespecisset(&it->it_time.it_interval)) {
859 timespecclear(&it->it_time.it_value);
860 itimer_unlock();
861 return;
862 }
863
864 if (it->it_clockid == CLOCK_MONOTONIC) {
865 getnanouptime(&now);
866 } else {
867 getnanotime(&now);
868 }
869
870 /*
871 * Given the current itimer value and interval and the time
872 * now, compute the next itimer value and count overruns.
873 */
874 itimer_transition(&it->it_time, &now, &next, &overruns);
875 it->it_time.it_value = next;
876 it->it_overruns += overruns;
877
878 /*
879 * Reset the callout, if it's not going away.
880 */
881 if (!it->it_dying)
882 itimer_arm_real(it);
883 itimer_unlock();
884 }
885
886 /*
887 * itimer_settime:
888 *
889 * Set up the given interval timer. The value in it->it_time.it_value
890 * is taken to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC
891 * timers and a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
892 *
893 * If the callout had already fired but not yet run, fails with
894 * ERESTART -- caller must restart from the top to look up a timer.
895 *
896 * Caller is responsible for validating it->it_value and
897 * it->it_interval, e.g. with itimerfix or itimespecfix.
898 */
899 int
900 itimer_settime(struct itimer *it)
901 {
902 struct itimer *itn, *pitn;
903 struct itlist *itl;
904
905 KASSERT(itimer_lock_held());
906 KASSERT(!it->it_dying);
907 KASSERT(it->it_time.it_value.tv_sec >= 0);
908 KASSERT(it->it_time.it_value.tv_nsec >= 0);
909 KASSERT(it->it_time.it_value.tv_nsec < 1000000000);
910 KASSERT(it->it_time.it_interval.tv_sec >= 0);
911 KASSERT(it->it_time.it_interval.tv_nsec >= 0);
912 KASSERT(it->it_time.it_interval.tv_nsec < 1000000000);
913
914 if (!CLOCK_VIRTUAL_P(it->it_clockid)) {
915 /*
916 * Try to stop the callout. However, if it had already
917 * fired, we have to drop the lock to wait for it, so
918 * the world may have changed and pt may not be there
919 * any more. In that case, tell the caller to start
920 * over from the top.
921 */
922 if (callout_halt(&it->it_ch, &itimer_mutex))
923 return ERESTART;
924 KASSERT(!it->it_dying);
925
926 /* Now we can touch it and start it up again. */
927 if (timespecisset(&it->it_time.it_value))
928 itimer_arm_real(it);
929 } else {
930 if (it->it_active) {
931 itn = LIST_NEXT(it, it_list);
932 LIST_REMOVE(it, it_list);
933 for ( ; itn; itn = LIST_NEXT(itn, it_list))
934 timespecadd(&it->it_time.it_value,
935 &itn->it_time.it_value,
936 &itn->it_time.it_value);
937 }
938 if (timespecisset(&it->it_time.it_value)) {
939 itl = it->it_vlist;
940 for (itn = LIST_FIRST(itl), pitn = NULL;
941 itn && timespeccmp(&it->it_time.it_value,
942 &itn->it_time.it_value, >);
943 pitn = itn, itn = LIST_NEXT(itn, it_list))
944 timespecsub(&it->it_time.it_value,
945 &itn->it_time.it_value,
946 &it->it_time.it_value);
947
948 if (pitn)
949 LIST_INSERT_AFTER(pitn, it, it_list);
950 else
951 LIST_INSERT_HEAD(itl, it, it_list);
952
953 for ( ; itn ; itn = LIST_NEXT(itn, it_list))
954 timespecsub(&itn->it_time.it_value,
955 &it->it_time.it_value,
956 &itn->it_time.it_value);
957
958 it->it_active = true;
959 } else {
960 it->it_active = false;
961 }
962 }
963
964 /* Success! */
965 return 0;
966 }
967
968 /*
969 * itimer_gettime:
970 *
971 * Return the remaining time of an interval timer.
972 */
973 void
974 itimer_gettime(const struct itimer *it, struct itimerspec *aits)
975 {
976 struct timespec now;
977 struct itimer *itn;
978
979 KASSERT(itimer_lock_held());
980 KASSERT(!it->it_dying);
981
982 *aits = it->it_time;
983 if (!CLOCK_VIRTUAL_P(it->it_clockid)) {
984 /*
985 * Convert from absolute to relative time in .it_value
986 * part of real time timer. If time for real time
987 * timer has passed return 0, else return difference
988 * between current time and time for the timer to go
989 * off.
990 */
991 if (timespecisset(&aits->it_value)) {
992 if (it->it_clockid == CLOCK_REALTIME) {
993 getnanotime(&now);
994 } else { /* CLOCK_MONOTONIC */
995 getnanouptime(&now);
996 }
997 if (timespeccmp(&aits->it_value, &now, <))
998 timespecclear(&aits->it_value);
999 else
1000 timespecsub(&aits->it_value, &now,
1001 &aits->it_value);
1002 }
1003 } else if (it->it_active) {
1004 for (itn = LIST_FIRST(it->it_vlist); itn && itn != it;
1005 itn = LIST_NEXT(itn, it_list))
1006 timespecadd(&aits->it_value,
1007 &itn->it_time.it_value, &aits->it_value);
1008 KASSERT(itn != NULL); /* it should be findable on the list */
1009 } else
1010 timespecclear(&aits->it_value);
1011 }
1012
1013 /*
1014 * Per-process timer support.
1015 *
1016 * Both the BSD getitimer() family and the POSIX timer_*() family of
1017 * routines are supported.
1018 *
1019 * All timers are kept in an array pointed to by p_timers, which is
1020 * allocated on demand - many processes don't use timers at all. The
1021 * first four elements in this array are reserved for the BSD timers:
1022 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element
1023 * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be
1024 * allocated by the timer_create() syscall.
1025 *
1026 * These timers are a "sub-class" of interval timer.
1027 */
1028
1029 /*
1030 * ptimer_free:
1031 *
1032 * Free the per-process timer at the specified index.
1033 */
1034 static void
1035 ptimer_free(struct ptimers *pts, int index)
1036 {
1037 struct itimer *it;
1038 struct ptimer *pt;
1039
1040 KASSERT(itimer_lock_held());
1041
1042 it = pts->pts_timers[index];
1043 pt = container_of(it, struct ptimer, pt_itimer);
1044 pts->pts_timers[index] = NULL;
1045 itimer_poison(it);
1046
1047 /*
1048 * Remove it from the queue to be signalled. Must be done
1049 * after itimer is poisoned, because we may have had to wait
1050 * for the callout to complete.
1051 */
1052 if (pt->pt_queued) {
1053 TAILQ_REMOVE(&ptimer_queue, pt, pt_chain);
1054 pt->pt_queued = false;
1055 }
1056
1057 itimer_fini(it); /* releases itimer_lock */
1058 kmem_free(pt, sizeof(*pt));
1059 }
1060
1061 /*
1062 * ptimers_alloc:
1063 *
1064 * Allocate a ptimers for the specified process.
1065 */
1066 static struct ptimers *
1067 ptimers_alloc(struct proc *p)
1068 {
1069 struct ptimers *pts;
1070 int i;
1071
1072 pts = kmem_alloc(sizeof(*pts), KM_SLEEP);
1073 LIST_INIT(&pts->pts_virtual);
1074 LIST_INIT(&pts->pts_prof);
1075 for (i = 0; i < TIMER_MAX; i++)
1076 pts->pts_timers[i] = NULL;
1077 itimer_lock();
1078 if (p->p_timers == NULL) {
1079 p->p_timers = pts;
1080 itimer_unlock();
1081 return pts;
1082 }
1083 itimer_unlock();
1084 kmem_free(pts, sizeof(*pts));
1085 return p->p_timers;
1086 }
1087
1088 /*
1089 * ptimers_free:
1090 *
1091 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1092 * then clean up all timers and free all the data structures. If
1093 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1094 * by timer_create(), not the BSD setitimer() timers, and only free the
1095 * structure if none of those remain.
1096 *
1097 * This function is exported because it is needed in the exec and
1098 * exit code paths.
1099 */
1100 void
1101 ptimers_free(struct proc *p, int which)
1102 {
1103 struct ptimers *pts;
1104 struct itimer *itn;
1105 struct timespec ts;
1106 int i;
1107
1108 if (p->p_timers == NULL)
1109 return;
1110
1111 pts = p->p_timers;
1112 itimer_lock();
1113 if (which == TIMERS_ALL) {
1114 p->p_timers = NULL;
1115 i = 0;
1116 } else {
1117 timespecclear(&ts);
1118 for (itn = LIST_FIRST(&pts->pts_virtual);
1119 itn && itn != pts->pts_timers[ITIMER_VIRTUAL];
1120 itn = LIST_NEXT(itn, it_list)) {
1121 KASSERT(itn->it_clockid == CLOCK_VIRTUAL);
1122 timespecadd(&ts, &itn->it_time.it_value, &ts);
1123 }
1124 LIST_FIRST(&pts->pts_virtual) = NULL;
1125 if (itn) {
1126 KASSERT(itn->it_clockid == CLOCK_VIRTUAL);
1127 timespecadd(&ts, &itn->it_time.it_value,
1128 &itn->it_time.it_value);
1129 LIST_INSERT_HEAD(&pts->pts_virtual, itn, it_list);
1130 }
1131 timespecclear(&ts);
1132 for (itn = LIST_FIRST(&pts->pts_prof);
1133 itn && itn != pts->pts_timers[ITIMER_PROF];
1134 itn = LIST_NEXT(itn, it_list)) {
1135 KASSERT(itn->it_clockid == CLOCK_PROF);
1136 timespecadd(&ts, &itn->it_time.it_value, &ts);
1137 }
1138 LIST_FIRST(&pts->pts_prof) = NULL;
1139 if (itn) {
1140 KASSERT(itn->it_clockid == CLOCK_PROF);
1141 timespecadd(&ts, &itn->it_time.it_value,
1142 &itn->it_time.it_value);
1143 LIST_INSERT_HEAD(&pts->pts_prof, itn, it_list);
1144 }
1145 i = TIMER_MIN;
1146 }
1147 for ( ; i < TIMER_MAX; i++) {
1148 if (pts->pts_timers[i] != NULL) {
1149 /* Free the timer and release the lock. */
1150 ptimer_free(pts, i);
1151 /* Reacquire the lock for the next one. */
1152 itimer_lock();
1153 }
1154 }
1155 if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
1156 pts->pts_timers[2] == NULL && pts->pts_timers[3] == NULL) {
1157 p->p_timers = NULL;
1158 itimer_unlock();
1159 kmem_free(pts, sizeof(*pts));
1160 } else
1161 itimer_unlock();
1162 }
1163
1164 /*
1165 * ptimer_fire:
1166 *
1167 * Fire a per-process timer.
1168 */
1169 static void
1170 ptimer_fire(struct itimer *it)
1171 {
1172 struct ptimer *pt = container_of(it, struct ptimer, pt_itimer);
1173
1174 KASSERT(itimer_lock_held());
1175
1176 /*
1177 * XXX Can overrun, but we don't do signal queueing yet, anyway.
1178 * XXX Relying on the clock interrupt is stupid.
1179 */
1180 if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
1181 return;
1182 }
1183
1184 if (!pt->pt_queued) {
1185 TAILQ_INSERT_TAIL(&ptimer_queue, pt, pt_chain);
1186 pt->pt_queued = true;
1187 softint_schedule(ptimer_sih);
1188 }
1189 }
1190
1191 /*
1192 * Operations vector for per-process timers (BSD and POSIX).
1193 */
1194 static const struct itimer_ops ptimer_itimer_ops = {
1195 .ito_fire = ptimer_fire,
1196 };
1197
1198 /*
1199 * sys_timer_create:
1200 *
1201 * System call to create a POSIX timer.
1202 */
1203 int
1204 sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
1205 register_t *retval)
1206 {
1207 /* {
1208 syscallarg(clockid_t) clock_id;
1209 syscallarg(struct sigevent *) evp;
1210 syscallarg(timer_t *) timerid;
1211 } */
1212
1213 return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
1214 SCARG(uap, evp), copyin, l);
1215 }
1216
1217 int
1218 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
1219 copyin_t fetch_event, struct lwp *l)
1220 {
1221 int error;
1222 timer_t timerid;
1223 struct itlist *itl;
1224 struct ptimers *pts;
1225 struct ptimer *pt;
1226 struct proc *p;
1227
1228 p = l->l_proc;
1229
1230 if ((u_int)id > CLOCK_MONOTONIC)
1231 return EINVAL;
1232
1233 if ((pts = p->p_timers) == NULL)
1234 pts = ptimers_alloc(p);
1235
1236 pt = kmem_zalloc(sizeof(*pt), KM_SLEEP);
1237 if (evp != NULL) {
1238 if (((error =
1239 (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
1240 ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
1241 (pt->pt_ev.sigev_notify > SIGEV_SA)) ||
1242 (pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
1243 (pt->pt_ev.sigev_signo <= 0 ||
1244 pt->pt_ev.sigev_signo >= NSIG))) {
1245 kmem_free(pt, sizeof(*pt));
1246 return (error ? error : EINVAL);
1247 }
1248 }
1249
1250 /* Find a free timer slot, skipping those reserved for setitimer(). */
1251 itimer_lock();
1252 for (timerid = TIMER_MIN; timerid < TIMER_MAX; timerid++)
1253 if (pts->pts_timers[timerid] == NULL)
1254 break;
1255 if (timerid == TIMER_MAX) {
1256 itimer_unlock();
1257 kmem_free(pt, sizeof(*pt));
1258 return EAGAIN;
1259 }
1260 if (evp == NULL) {
1261 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1262 switch (id) {
1263 case CLOCK_REALTIME:
1264 case CLOCK_MONOTONIC:
1265 pt->pt_ev.sigev_signo = SIGALRM;
1266 break;
1267 case CLOCK_VIRTUAL:
1268 pt->pt_ev.sigev_signo = SIGVTALRM;
1269 break;
1270 case CLOCK_PROF:
1271 pt->pt_ev.sigev_signo = SIGPROF;
1272 break;
1273 }
1274 pt->pt_ev.sigev_value.sival_int = timerid;
1275 }
1276
1277 switch (id) {
1278 case CLOCK_VIRTUAL:
1279 itl = &pts->pts_virtual;
1280 break;
1281 case CLOCK_PROF:
1282 itl = &pts->pts_prof;
1283 break;
1284 default:
1285 itl = NULL;
1286 }
1287
1288 itimer_init(&pt->pt_itimer, &ptimer_itimer_ops, id, itl);
1289 pt->pt_proc = p;
1290 pt->pt_poverruns = 0;
1291 pt->pt_entry = timerid;
1292 pt->pt_queued = false;
1293
1294 pts->pts_timers[timerid] = &pt->pt_itimer;
1295 itimer_unlock();
1296
1297 return copyout(&timerid, tid, sizeof(timerid));
1298 }
1299
1300 /*
1301 * sys_timer_delete:
1302 *
1303 * System call to delete a POSIX timer.
1304 */
1305 int
1306 sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
1307 register_t *retval)
1308 {
1309 /* {
1310 syscallarg(timer_t) timerid;
1311 } */
1312 struct proc *p = l->l_proc;
1313 timer_t timerid;
1314 struct ptimers *pts;
1315 struct itimer *it, *itn;
1316
1317 timerid = SCARG(uap, timerid);
1318 pts = p->p_timers;
1319
1320 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
1321 return EINVAL;
1322
1323 itimer_lock();
1324 if ((it = pts->pts_timers[timerid]) == NULL) {
1325 itimer_unlock();
1326 return EINVAL;
1327 }
1328
1329 if (CLOCK_VIRTUAL_P(it->it_clockid)) {
1330 if (it->it_active) {
1331 itn = LIST_NEXT(it, it_list);
1332 LIST_REMOVE(it, it_list);
1333 for ( ; itn; itn = LIST_NEXT(itn, it_list))
1334 timespecadd(&it->it_time.it_value,
1335 &itn->it_time.it_value,
1336 &itn->it_time.it_value);
1337 it->it_active = false;
1338 }
1339 }
1340
1341 /* Free the timer and release the lock. */
1342 ptimer_free(pts, timerid);
1343
1344 return 0;
1345 }
1346
1347 /*
1348 * sys___timer_settime50:
1349 *
1350 * System call to set/arm a POSIX timer.
1351 */
1352 int
1353 sys___timer_settime50(struct lwp *l,
1354 const struct sys___timer_settime50_args *uap,
1355 register_t *retval)
1356 {
1357 /* {
1358 syscallarg(timer_t) timerid;
1359 syscallarg(int) flags;
1360 syscallarg(const struct itimerspec *) value;
1361 syscallarg(struct itimerspec *) ovalue;
1362 } */
1363 int error;
1364 struct itimerspec value, ovalue, *ovp = NULL;
1365
1366 if ((error = copyin(SCARG(uap, value), &value,
1367 sizeof(struct itimerspec))) != 0)
1368 return error;
1369
1370 if (SCARG(uap, ovalue))
1371 ovp = &ovalue;
1372
1373 if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
1374 SCARG(uap, flags), l->l_proc)) != 0)
1375 return error;
1376
1377 if (ovp)
1378 return copyout(&ovalue, SCARG(uap, ovalue),
1379 sizeof(struct itimerspec));
1380 return 0;
1381 }
1382
1383 int
1384 dotimer_settime(int timerid, struct itimerspec *value,
1385 struct itimerspec *ovalue, int flags, struct proc *p)
1386 {
1387 struct timespec now;
1388 struct itimerspec val;
1389 struct ptimers *pts;
1390 struct itimer *it;
1391 int error;
1392
1393 pts = p->p_timers;
1394
1395 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
1396 return EINVAL;
1397 val = *value;
1398 if (itimespecfix(&val.it_value) != 0 ||
1399 itimespecfix(&val.it_interval) != 0)
1400 return EINVAL;
1401
1402 itimer_lock();
1403 restart:
1404 if ((it = pts->pts_timers[timerid]) == NULL) {
1405 itimer_unlock();
1406 return EINVAL;
1407 }
1408
1409 if (ovalue)
1410 itimer_gettime(it, ovalue);
1411 it->it_time = val;
1412
1413 /*
1414 * If we've been passed a relative time for a realtime timer,
1415 * convert it to absolute; if an absolute time for a virtual
1416 * timer, convert it to relative and make sure we don't set it
1417 * to zero, which would cancel the timer, or let it go
1418 * negative, which would confuse the comparison tests.
1419 */
1420 if (timespecisset(&it->it_time.it_value)) {
1421 if (!CLOCK_VIRTUAL_P(it->it_clockid)) {
1422 if ((flags & TIMER_ABSTIME) == 0) {
1423 if (it->it_clockid == CLOCK_REALTIME) {
1424 getnanotime(&now);
1425 } else { /* CLOCK_MONOTONIC */
1426 getnanouptime(&now);
1427 }
1428 timespecadd(&it->it_time.it_value, &now,
1429 &it->it_time.it_value);
1430 }
1431 } else {
1432 if ((flags & TIMER_ABSTIME) != 0) {
1433 getnanotime(&now);
1434 timespecsub(&it->it_time.it_value, &now,
1435 &it->it_time.it_value);
1436 if (!timespecisset(&it->it_time.it_value) ||
1437 it->it_time.it_value.tv_sec < 0) {
1438 it->it_time.it_value.tv_sec = 0;
1439 it->it_time.it_value.tv_nsec = 1;
1440 }
1441 }
1442 }
1443 }
1444
1445 error = itimer_settime(it);
1446 if (error == ERESTART) {
1447 KASSERT(!CLOCK_VIRTUAL_P(it->it_clockid));
1448 goto restart;
1449 }
1450 KASSERT(error == 0);
1451 itimer_unlock();
1452
1453 return 0;
1454 }
1455
1456 /*
1457 * sys___timer_gettime50:
1458 *
1459 * System call to return the time remaining until a POSIX timer fires.
1460 */
1461 int
1462 sys___timer_gettime50(struct lwp *l,
1463 const struct sys___timer_gettime50_args *uap, register_t *retval)
1464 {
1465 /* {
1466 syscallarg(timer_t) timerid;
1467 syscallarg(struct itimerspec *) value;
1468 } */
1469 struct itimerspec its;
1470 int error;
1471
1472 if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
1473 &its)) != 0)
1474 return error;
1475
1476 return copyout(&its, SCARG(uap, value), sizeof(its));
1477 }
1478
1479 int
1480 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
1481 {
1482 struct itimer *it;
1483 struct ptimers *pts;
1484
1485 pts = p->p_timers;
1486 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
1487 return EINVAL;
1488 itimer_lock();
1489 if ((it = pts->pts_timers[timerid]) == NULL) {
1490 itimer_unlock();
1491 return EINVAL;
1492 }
1493 itimer_gettime(it, its);
1494 itimer_unlock();
1495
1496 return 0;
1497 }
1498
1499 /*
1500 * sys_timer_getoverrun:
1501 *
1502 * System call to return the number of times a POSIX timer has
1503 * expired while a notification was already pending. The counter
1504 * is reset when a timer expires and a notification can be posted.
1505 */
1506 int
1507 sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
1508 register_t *retval)
1509 {
1510 /* {
1511 syscallarg(timer_t) timerid;
1512 } */
1513 struct proc *p = l->l_proc;
1514 struct ptimers *pts;
1515 int timerid;
1516 struct itimer *it;
1517 struct ptimer *pt;
1518
1519 timerid = SCARG(uap, timerid);
1520
1521 pts = p->p_timers;
1522 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
1523 return EINVAL;
1524 itimer_lock();
1525 if ((it = pts->pts_timers[timerid]) == NULL) {
1526 itimer_unlock();
1527 return EINVAL;
1528 }
1529 pt = container_of(it, struct ptimer, pt_itimer);
1530 *retval = pt->pt_poverruns;
1531 if (*retval >= DELAYTIMER_MAX)
1532 *retval = DELAYTIMER_MAX;
1533 itimer_unlock();
1534
1535 return 0;
1536 }
1537
1538 /*
1539 * sys___getitimer50:
1540 *
1541 * System call to get the time remaining before a BSD timer fires.
1542 */
1543 int
1544 sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
1545 register_t *retval)
1546 {
1547 /* {
1548 syscallarg(int) which;
1549 syscallarg(struct itimerval *) itv;
1550 } */
1551 struct proc *p = l->l_proc;
1552 struct itimerval aitv;
1553 int error;
1554
1555 memset(&aitv, 0, sizeof(aitv));
1556 error = dogetitimer(p, SCARG(uap, which), &aitv);
1557 if (error)
1558 return error;
1559 return copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval));
1560 }
1561
1562 int
1563 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1564 {
1565 struct ptimers *pts;
1566 struct itimer *it;
1567 struct itimerspec its;
1568
1569 if ((u_int)which > ITIMER_MONOTONIC)
1570 return EINVAL;
1571
1572 itimer_lock();
1573 pts = p->p_timers;
1574 if (pts == NULL || (it = pts->pts_timers[which]) == NULL) {
1575 timerclear(&itvp->it_value);
1576 timerclear(&itvp->it_interval);
1577 } else {
1578 itimer_gettime(it, &its);
1579 TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
1580 TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
1581 }
1582 itimer_unlock();
1583
1584 return 0;
1585 }
1586
1587 /*
1588 * sys___setitimer50:
1589 *
1590 * System call to set/arm a BSD timer.
1591 */
1592 int
1593 sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
1594 register_t *retval)
1595 {
1596 /* {
1597 syscallarg(int) which;
1598 syscallarg(const struct itimerval *) itv;
1599 syscallarg(struct itimerval *) oitv;
1600 } */
1601 struct proc *p = l->l_proc;
1602 int which = SCARG(uap, which);
1603 struct sys___getitimer50_args getargs;
1604 const struct itimerval *itvp;
1605 struct itimerval aitv;
1606 int error;
1607
1608 itvp = SCARG(uap, itv);
1609 if (itvp &&
1610 (error = copyin(itvp, &aitv, sizeof(struct itimerval))) != 0)
1611 return error;
1612 if (SCARG(uap, oitv) != NULL) {
1613 SCARG(&getargs, which) = which;
1614 SCARG(&getargs, itv) = SCARG(uap, oitv);
1615 if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
1616 return error;
1617 }
1618 if (itvp == 0)
1619 return 0;
1620
1621 return dosetitimer(p, which, &aitv);
1622 }
1623
1624 int
1625 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1626 {
1627 struct timespec now;
1628 struct ptimers *pts;
1629 struct ptimer *spare;
1630 struct itimer *it;
1631 struct itlist *itl;
1632 int error;
1633
1634 if ((u_int)which > ITIMER_MONOTONIC)
1635 return EINVAL;
1636 if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1637 return EINVAL;
1638
1639 /*
1640 * Don't bother allocating data structures if the process just
1641 * wants to clear the timer.
1642 */
1643 spare = NULL;
1644 pts = p->p_timers;
1645 retry:
1646 if (!timerisset(&itvp->it_value) && (pts == NULL ||
1647 pts->pts_timers[which] == NULL))
1648 return 0;
1649 if (pts == NULL)
1650 pts = ptimers_alloc(p);
1651 itimer_lock();
1652 restart:
1653 it = pts->pts_timers[which];
1654 if (it == NULL) {
1655 struct ptimer *pt;
1656
1657 if (spare == NULL) {
1658 itimer_unlock();
1659 spare = kmem_zalloc(sizeof(*spare), KM_SLEEP);
1660 goto retry;
1661 }
1662 pt = spare;
1663 spare = NULL;
1664
1665 it = &pt->pt_itimer;
1666 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1667 pt->pt_ev.sigev_value.sival_int = which;
1668
1669 switch (which) {
1670 case ITIMER_REAL:
1671 case ITIMER_MONOTONIC:
1672 itl = NULL;
1673 pt->pt_ev.sigev_signo = SIGALRM;
1674 break;
1675 case ITIMER_VIRTUAL:
1676 itl = &pts->pts_virtual;
1677 pt->pt_ev.sigev_signo = SIGVTALRM;
1678 break;
1679 case ITIMER_PROF:
1680 itl = &pts->pts_prof;
1681 pt->pt_ev.sigev_signo = SIGPROF;
1682 break;
1683 default:
1684 panic("%s: can't happen %d", __func__, which);
1685 }
1686 itimer_init(it, &ptimer_itimer_ops, which, itl);
1687 pt->pt_proc = p;
1688 pt->pt_entry = which;
1689
1690 pts->pts_timers[which] = it;
1691 }
1692
1693 TIMEVAL_TO_TIMESPEC(&itvp->it_value, &it->it_time.it_value);
1694 TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &it->it_time.it_interval);
1695
1696 error = 0;
1697 if (timespecisset(&it->it_time.it_value)) {
1698 /* Convert to absolute time */
1699 /* XXX need to wrap in splclock for timecounters case? */
1700 switch (which) {
1701 case ITIMER_REAL:
1702 getnanotime(&now);
1703 if (!timespecaddok(&it->it_time.it_value, &now)) {
1704 error = EINVAL;
1705 goto out;
1706 }
1707 timespecadd(&it->it_time.it_value, &now,
1708 &it->it_time.it_value);
1709 break;
1710 case ITIMER_MONOTONIC:
1711 getnanouptime(&now);
1712 if (!timespecaddok(&it->it_time.it_value, &now)) {
1713 error = EINVAL;
1714 goto out;
1715 }
1716 timespecadd(&it->it_time.it_value, &now,
1717 &it->it_time.it_value);
1718 break;
1719 default:
1720 break;
1721 }
1722 }
1723
1724 error = itimer_settime(it);
1725 if (error == ERESTART) {
1726 KASSERT(!CLOCK_VIRTUAL_P(it->it_clockid));
1727 goto restart;
1728 }
1729 KASSERT(error == 0);
1730 out:
1731 itimer_unlock();
1732 if (spare != NULL)
1733 kmem_free(spare, sizeof(*spare));
1734
1735 return error;
1736 }
1737
1738 /*
1739 * ptimer_tick:
1740 *
1741 * Called from hardclock() to decrement per-process virtual timers.
1742 */
1743 void
1744 ptimer_tick(lwp_t *l, bool user)
1745 {
1746 struct ptimers *pts;
1747 struct itimer *it;
1748 proc_t *p;
1749
1750 p = l->l_proc;
1751 if (p->p_timers == NULL)
1752 return;
1753
1754 itimer_lock();
1755 if ((pts = l->l_proc->p_timers) != NULL) {
1756 /*
1757 * Run current process's virtual and profile time, as needed.
1758 */
1759 if (user && (it = LIST_FIRST(&pts->pts_virtual)) != NULL)
1760 if (itimer_decr(it, tick * 1000))
1761 (*it->it_ops->ito_fire)(it);
1762 if ((it = LIST_FIRST(&pts->pts_prof)) != NULL)
1763 if (itimer_decr(it, tick * 1000))
1764 (*it->it_ops->ito_fire)(it);
1765 }
1766 itimer_unlock();
1767 }
1768
1769 /*
1770 * ptimer_intr:
1771 *
1772 * Software interrupt handler for processing per-process
1773 * timer expiration.
1774 */
1775 static void
1776 ptimer_intr(void *cookie)
1777 {
1778 ksiginfo_t ksi;
1779 struct itimer *it;
1780 struct ptimer *pt;
1781 proc_t *p;
1782
1783 mutex_enter(&proc_lock);
1784 itimer_lock();
1785 while ((pt = TAILQ_FIRST(&ptimer_queue)) != NULL) {
1786 it = &pt->pt_itimer;
1787
1788 TAILQ_REMOVE(&ptimer_queue, pt, pt_chain);
1789 KASSERT(pt->pt_queued);
1790 pt->pt_queued = false;
1791
1792 p = pt->pt_proc;
1793 if (p->p_timers == NULL) {
1794 /* Process is dying. */
1795 continue;
1796 }
1797 if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
1798 continue;
1799 }
1800 if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
1801 it->it_overruns++;
1802 continue;
1803 }
1804
1805 KSI_INIT(&ksi);
1806 ksi.ksi_signo = pt->pt_ev.sigev_signo;
1807 ksi.ksi_code = SI_TIMER;
1808 ksi.ksi_value = pt->pt_ev.sigev_value;
1809 pt->pt_poverruns = it->it_overruns;
1810 it->it_overruns = 0;
1811 itimer_unlock();
1812 kpsignal(p, &ksi, NULL);
1813 itimer_lock();
1814 }
1815 itimer_unlock();
1816 mutex_exit(&proc_lock);
1817 }
1818