Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.23
      1 /*	$NetBSD: kern_time.c,v 1.23 1996/11/15 23:53:32 cgd Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by the University of
     18  *	California, Berkeley and its contributors.
     19  * 4. Neither the name of the University nor the names of its contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  * SUCH DAMAGE.
     34  *
     35  *	@(#)kern_time.c	8.1 (Berkeley) 6/10/93
     36  */
     37 
     38 #include <sys/param.h>
     39 #include <sys/resourcevar.h>
     40 #include <sys/kernel.h>
     41 #include <sys/systm.h>
     42 #include <sys/proc.h>
     43 #include <sys/vnode.h>
     44 #include <sys/signalvar.h>
     45 
     46 #include <sys/mount.h>
     47 #include <sys/syscallargs.h>
     48 
     49 #if defined(NFSCLIENT) || defined(NFSSERVER)
     50 #include <nfs/rpcv2.h>
     51 #include <nfs/nfsproto.h>
     52 #include <nfs/nfs_var.h>
     53 #endif
     54 
     55 #include <machine/cpu.h>
     56 
     57 static void	settime __P((struct timeval *));
     58 
     59 /*
     60  * Time of day and interval timer support.
     61  *
     62  * These routines provide the kernel entry points to get and set
     63  * the time-of-day and per-process interval timers.  Subroutines
     64  * here provide support for adding and subtracting timeval structures
     65  * and decrementing interval timers, optionally reloading the interval
     66  * timers when they expire.
     67  */
     68 
     69 
     70 /* This function is used by clock_settime and settimeofday */
     71 static void
     72 settime(tv)
     73 	struct timeval *tv;
     74 {
     75 	struct timeval delta;
     76 	int s;
     77 
     78 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
     79 	s = splclock();
     80 	timersub(tv, &time, &delta);
     81 	time = *tv;
     82 	(void) splsoftclock();
     83 	timeradd(&boottime, &delta, &boottime);
     84 	timeradd(&runtime, &delta, &runtime);
     85 #	if defined(NFSCLIENT) || defined(NFSSERVER)
     86 		nqnfs_lease_updatetime(delta.tv_sec);
     87 #	endif
     88 	splx(s);
     89 	resettodr();
     90 }
     91 
     92 /* ARGSUSED */
     93 int
     94 sys_clock_gettime(p, v, retval)
     95 	struct proc *p;
     96 	void *v;
     97 	register_t *retval;
     98 {
     99 	register struct sys_clock_gettime_args /* {
    100 		syscallarg(clockid_t) clock_id;
    101 		syscallarg(struct timespec *) tp;
    102 	} */ *uap = v;
    103 	clockid_t clock_id;
    104 	struct timeval atv;
    105 	struct timespec ats;
    106 
    107 	clock_id = SCARG(uap, clock_id);
    108 	if (clock_id != CLOCK_REALTIME)
    109 		return (EINVAL);
    110 
    111 	microtime(&atv);
    112 	TIMEVAL_TO_TIMESPEC(&atv,&ats);
    113 
    114 	return copyout((caddr_t)&ats, SCARG(uap, tp), sizeof(ats));
    115 }
    116 
    117 /* ARGSUSED */
    118 int
    119 sys_clock_settime(p, v, retval)
    120 	struct proc *p;
    121 	void *v;
    122 	register_t *retval;
    123 {
    124 	register struct sys_clock_settime_args /* {
    125 		syscallarg(clockid_t) clock_id;
    126 		syscallarg(const struct timespec *) tp;
    127 	} */ *uap = v;
    128 	clockid_t clock_id;
    129 	struct timeval atv;
    130 	struct timespec ats;
    131 	int error;
    132 
    133 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    134 		return (error);
    135 
    136 	clock_id = SCARG(uap, clock_id);
    137 	if (clock_id != CLOCK_REALTIME)
    138 		return (EINVAL);
    139 
    140 	if ((error = copyin((const char *)SCARG(uap, tp), (caddr_t)&ats,
    141 	    sizeof(ats))) != 0)
    142 		return (error);
    143 
    144 	TIMESPEC_TO_TIMEVAL(&atv,&ats);
    145 	settime(&atv);
    146 
    147 	return 0;
    148 }
    149 
    150 int
    151 sys_clock_getres(p, v, retval)
    152 	struct proc *p;
    153 	void *v;
    154 	register_t *retval;
    155 {
    156 	register struct sys_clock_getres_args /* {
    157 		syscallarg(clockid_t) clock_id;
    158 		syscallarg(struct timespec *) tp;
    159 	} */ *uap = v;
    160 	clockid_t clock_id;
    161 	struct timespec ts;
    162 	int error = 0;
    163 
    164 	clock_id = SCARG(uap, clock_id);
    165 	if (clock_id != CLOCK_REALTIME)
    166 		return (EINVAL);
    167 
    168 	if (SCARG(uap, tp)) {
    169 		ts.tv_sec = 0;
    170 		ts.tv_nsec = 1000000000 / hz;
    171 
    172 		error = copyout((caddr_t)&ts, (caddr_t)SCARG(uap, tp),
    173 			sizeof (ts));
    174 	}
    175 
    176 	return error;
    177 }
    178 
    179 
    180 /* ARGSUSED */
    181 int
    182 sys_gettimeofday(p, v, retval)
    183 	struct proc *p;
    184 	void *v;
    185 	register_t *retval;
    186 {
    187 	register struct sys_gettimeofday_args /* {
    188 		syscallarg(struct timeval *) tp;
    189 		syscallarg(struct timezone *) tzp;
    190 	} */ *uap = v;
    191 	struct timeval atv;
    192 	int error = 0;
    193 
    194 	if (SCARG(uap, tp)) {
    195 		microtime(&atv);
    196 		error = copyout((caddr_t)&atv, (caddr_t)SCARG(uap, tp),
    197 				sizeof (atv));
    198 		if (error)
    199 			return (error);
    200 	}
    201 	if (SCARG(uap, tzp))
    202 		error = copyout((caddr_t)&tz, (caddr_t)SCARG(uap, tzp),
    203 		    sizeof (tz));
    204 	return (error);
    205 }
    206 
    207 /* ARGSUSED */
    208 int
    209 sys_settimeofday(p, v, retval)
    210 	struct proc *p;
    211 	void *v;
    212 	register_t *retval;
    213 {
    214 	struct sys_settimeofday_args /* {
    215 		syscallarg(struct timeval *) tv;
    216 		syscallarg(struct timezone *) tzp;
    217 	} */ *uap = v;
    218 	struct timeval atv;
    219 	struct timezone atz;
    220 	int error;
    221 
    222 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    223 		return (error);
    224 	/* Verify all parameters before changing time. */
    225 	if (SCARG(uap, tv) && (error = copyin((caddr_t)SCARG(uap, tv),
    226 	    (caddr_t)&atv, sizeof(atv))))
    227 		return (error);
    228 	if (SCARG(uap, tzp) && (error = copyin((caddr_t)SCARG(uap, tzp),
    229 	    (caddr_t)&atz, sizeof(atz))))
    230 		return (error);
    231 	if (SCARG(uap, tv))
    232 		settime(&atv);
    233 	if (SCARG(uap, tzp))
    234 		tz = atz;
    235 	return (0);
    236 }
    237 
    238 int	tickdelta;			/* current clock skew, us. per tick */
    239 long	timedelta;			/* unapplied time correction, us. */
    240 long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
    241 
    242 /* ARGSUSED */
    243 int
    244 sys_adjtime(p, v, retval)
    245 	struct proc *p;
    246 	void *v;
    247 	register_t *retval;
    248 {
    249 	register struct sys_adjtime_args /* {
    250 		syscallarg(struct timeval *) delta;
    251 		syscallarg(struct timeval *) olddelta;
    252 	} */ *uap = v;
    253 	struct timeval atv;
    254 	register long ndelta, ntickdelta, odelta;
    255 	int s, error;
    256 
    257 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    258 		return (error);
    259 
    260 	error = copyin((caddr_t)SCARG(uap, delta), (caddr_t)&atv,
    261 	    sizeof(struct timeval));
    262 	if (error)
    263 		return (error);
    264 
    265 	/*
    266 	 * Compute the total correction and the rate at which to apply it.
    267 	 * Round the adjustment down to a whole multiple of the per-tick
    268 	 * delta, so that after some number of incremental changes in
    269 	 * hardclock(), tickdelta will become zero, lest the correction
    270 	 * overshoot and start taking us away from the desired final time.
    271 	 */
    272 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
    273 	if (ndelta > bigadj)
    274 		ntickdelta = 10 * tickadj;
    275 	else
    276 		ntickdelta = tickadj;
    277 	if (ndelta % ntickdelta)
    278 		ndelta = ndelta / ntickdelta * ntickdelta;
    279 
    280 	/*
    281 	 * To make hardclock()'s job easier, make the per-tick delta negative
    282 	 * if we want time to run slower; then hardclock can simply compute
    283 	 * tick + tickdelta, and subtract tickdelta from timedelta.
    284 	 */
    285 	if (ndelta < 0)
    286 		ntickdelta = -ntickdelta;
    287 	s = splclock();
    288 	odelta = timedelta;
    289 	timedelta = ndelta;
    290 	tickdelta = ntickdelta;
    291 	splx(s);
    292 
    293 	if (SCARG(uap, olddelta)) {
    294 		atv.tv_sec = odelta / 1000000;
    295 		atv.tv_usec = odelta % 1000000;
    296 		(void) copyout((caddr_t)&atv, (caddr_t)SCARG(uap, olddelta),
    297 		    sizeof(struct timeval));
    298 	}
    299 	return (0);
    300 }
    301 
    302 /*
    303  * Get value of an interval timer.  The process virtual and
    304  * profiling virtual time timers are kept in the p_stats area, since
    305  * they can be swapped out.  These are kept internally in the
    306  * way they are specified externally: in time until they expire.
    307  *
    308  * The real time interval timer is kept in the process table slot
    309  * for the process, and its value (it_value) is kept as an
    310  * absolute time rather than as a delta, so that it is easy to keep
    311  * periodic real-time signals from drifting.
    312  *
    313  * Virtual time timers are processed in the hardclock() routine of
    314  * kern_clock.c.  The real time timer is processed by a timeout
    315  * routine, called from the softclock() routine.  Since a callout
    316  * may be delayed in real time due to interrupt processing in the system,
    317  * it is possible for the real time timeout routine (realitexpire, given below),
    318  * to be delayed in real time past when it is supposed to occur.  It
    319  * does not suffice, therefore, to reload the real timer .it_value from the
    320  * real time timers .it_interval.  Rather, we compute the next time in
    321  * absolute time the timer should go off.
    322  */
    323 /* ARGSUSED */
    324 int
    325 sys_getitimer(p, v, retval)
    326 	struct proc *p;
    327 	void *v;
    328 	register_t *retval;
    329 {
    330 	register struct sys_getitimer_args /* {
    331 		syscallarg(u_int) which;
    332 		syscallarg(struct itimerval *) itv;
    333 	} */ *uap = v;
    334 	struct itimerval aitv;
    335 	int s;
    336 
    337 	if (SCARG(uap, which) > ITIMER_PROF)
    338 		return (EINVAL);
    339 	s = splclock();
    340 	if (SCARG(uap, which) == ITIMER_REAL) {
    341 		/*
    342 		 * Convert from absolute to relative time in .it_value
    343 		 * part of real time timer.  If time for real time timer
    344 		 * has passed return 0, else return difference between
    345 		 * current time and time for the timer to go off.
    346 		 */
    347 		aitv = p->p_realtimer;
    348 		if (timerisset(&aitv.it_value))
    349 			if (timercmp(&aitv.it_value, &time, <))
    350 				timerclear(&aitv.it_value);
    351 			else
    352 				timersub(&aitv.it_value, &time, &aitv.it_value);
    353 	} else
    354 		aitv = p->p_stats->p_timer[SCARG(uap, which)];
    355 	splx(s);
    356 	return (copyout((caddr_t)&aitv, (caddr_t)SCARG(uap, itv),
    357 	    sizeof (struct itimerval)));
    358 }
    359 
    360 /* ARGSUSED */
    361 int
    362 sys_setitimer(p, v, retval)
    363 	struct proc *p;
    364 	register void *v;
    365 	register_t *retval;
    366 {
    367 	register struct sys_setitimer_args /* {
    368 		syscallarg(u_int) which;
    369 		syscallarg(struct itimerval *) itv;
    370 		syscallarg(struct itimerval *) oitv;
    371 	} */ *uap = v;
    372 	struct sys_getitimer_args getargs;
    373 	struct itimerval aitv;
    374 	register struct itimerval *itvp;
    375 	int s, error;
    376 
    377 	if (SCARG(uap, which) > ITIMER_PROF)
    378 		return (EINVAL);
    379 	itvp = SCARG(uap, itv);
    380 	if (itvp && (error = copyin((caddr_t)itvp, (caddr_t)&aitv,
    381 	    sizeof(struct itimerval))))
    382 		return (error);
    383 	if (SCARG(uap, oitv) != NULL) {
    384 		SCARG(&getargs, which) = SCARG(uap, which);
    385 		SCARG(&getargs, itv) = SCARG(uap, oitv);
    386 		if ((error = sys_getitimer(p, &getargs, retval)) != 0)
    387 			return (error);
    388 	}
    389 	if (itvp == 0)
    390 		return (0);
    391 	if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
    392 		return (EINVAL);
    393 	s = splclock();
    394 	if (SCARG(uap, which) == ITIMER_REAL) {
    395 		untimeout(realitexpire, p);
    396 		if (timerisset(&aitv.it_value)) {
    397 			timeradd(&aitv.it_value, &time, &aitv.it_value);
    398 			timeout(realitexpire, p, hzto(&aitv.it_value));
    399 		}
    400 		p->p_realtimer = aitv;
    401 	} else
    402 		p->p_stats->p_timer[SCARG(uap, which)] = aitv;
    403 	splx(s);
    404 	return (0);
    405 }
    406 
    407 /*
    408  * Real interval timer expired:
    409  * send process whose timer expired an alarm signal.
    410  * If time is not set up to reload, then just return.
    411  * Else compute next time timer should go off which is > current time.
    412  * This is where delay in processing this timeout causes multiple
    413  * SIGALRM calls to be compressed into one.
    414  */
    415 void
    416 realitexpire(arg)
    417 	void *arg;
    418 {
    419 	register struct proc *p;
    420 	int s;
    421 
    422 	p = (struct proc *)arg;
    423 	psignal(p, SIGALRM);
    424 	if (!timerisset(&p->p_realtimer.it_interval)) {
    425 		timerclear(&p->p_realtimer.it_value);
    426 		return;
    427 	}
    428 	for (;;) {
    429 		s = splclock();
    430 		timeradd(&p->p_realtimer.it_value,
    431 		    &p->p_realtimer.it_interval, &p->p_realtimer.it_value);
    432 		if (timercmp(&p->p_realtimer.it_value, &time, >)) {
    433 			timeout(realitexpire, p,
    434 			    hzto(&p->p_realtimer.it_value));
    435 			splx(s);
    436 			return;
    437 		}
    438 		splx(s);
    439 	}
    440 }
    441 
    442 /*
    443  * Check that a proposed value to load into the .it_value or
    444  * .it_interval part of an interval timer is acceptable, and
    445  * fix it to have at least minimal value (i.e. if it is less
    446  * than the resolution of the clock, round it up.)
    447  */
    448 int
    449 itimerfix(tv)
    450 	struct timeval *tv;
    451 {
    452 
    453 	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
    454 	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
    455 		return (EINVAL);
    456 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
    457 		tv->tv_usec = tick;
    458 	return (0);
    459 }
    460 
    461 /*
    462  * Decrement an interval timer by a specified number
    463  * of microseconds, which must be less than a second,
    464  * i.e. < 1000000.  If the timer expires, then reload
    465  * it.  In this case, carry over (usec - old value) to
    466  * reduce the value reloaded into the timer so that
    467  * the timer does not drift.  This routine assumes
    468  * that it is called in a context where the timers
    469  * on which it is operating cannot change in value.
    470  */
    471 int
    472 itimerdecr(itp, usec)
    473 	register struct itimerval *itp;
    474 	int usec;
    475 {
    476 
    477 	if (itp->it_value.tv_usec < usec) {
    478 		if (itp->it_value.tv_sec == 0) {
    479 			/* expired, and already in next interval */
    480 			usec -= itp->it_value.tv_usec;
    481 			goto expire;
    482 		}
    483 		itp->it_value.tv_usec += 1000000;
    484 		itp->it_value.tv_sec--;
    485 	}
    486 	itp->it_value.tv_usec -= usec;
    487 	usec = 0;
    488 	if (timerisset(&itp->it_value))
    489 		return (1);
    490 	/* expired, exactly at end of interval */
    491 expire:
    492 	if (timerisset(&itp->it_interval)) {
    493 		itp->it_value = itp->it_interval;
    494 		itp->it_value.tv_usec -= usec;
    495 		if (itp->it_value.tv_usec < 0) {
    496 			itp->it_value.tv_usec += 1000000;
    497 			itp->it_value.tv_sec--;
    498 		}
    499 	} else
    500 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
    501 	return (0);
    502 }
    503