Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.24
      1 /*	$NetBSD: kern_time.c,v 1.24 1996/12/22 10:21:11 cgd Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by the University of
     18  *	California, Berkeley and its contributors.
     19  * 4. Neither the name of the University nor the names of its contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  * SUCH DAMAGE.
     34  *
     35  *	@(#)kern_time.c	8.1 (Berkeley) 6/10/93
     36  */
     37 
     38 #include <sys/param.h>
     39 #include <sys/resourcevar.h>
     40 #include <sys/kernel.h>
     41 #include <sys/systm.h>
     42 #include <sys/proc.h>
     43 #include <sys/vnode.h>
     44 #include <sys/signalvar.h>
     45 
     46 #include <sys/mount.h>
     47 #include <sys/syscallargs.h>
     48 
     49 #if defined(NFSCLIENT) || defined(NFSSERVER)
     50 #include <nfs/rpcv2.h>
     51 #include <nfs/nfsproto.h>
     52 #include <nfs/nfs_var.h>
     53 #endif
     54 
     55 #include <machine/cpu.h>
     56 
     57 static void	settime __P((struct timeval *));
     58 
     59 /*
     60  * Time of day and interval timer support.
     61  *
     62  * These routines provide the kernel entry points to get and set
     63  * the time-of-day and per-process interval timers.  Subroutines
     64  * here provide support for adding and subtracting timeval structures
     65  * and decrementing interval timers, optionally reloading the interval
     66  * timers when they expire.
     67  */
     68 
     69 
     70 /* This function is used by clock_settime and settimeofday */
     71 static void
     72 settime(tv)
     73 	struct timeval *tv;
     74 {
     75 	struct timeval delta;
     76 	int s;
     77 
     78 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
     79 	s = splclock();
     80 	timersub(tv, &time, &delta);
     81 	time = *tv;
     82 	(void) splsoftclock();
     83 	timeradd(&boottime, &delta, &boottime);
     84 	timeradd(&runtime, &delta, &runtime);
     85 #	if defined(NFSCLIENT) || defined(NFSSERVER)
     86 		nqnfs_lease_updatetime(delta.tv_sec);
     87 #	endif
     88 	splx(s);
     89 	resettodr();
     90 }
     91 
     92 /* ARGSUSED */
     93 int
     94 sys_clock_gettime(p, v, retval)
     95 	struct proc *p;
     96 	void *v;
     97 	register_t *retval;
     98 {
     99 	register struct sys_clock_gettime_args /* {
    100 		syscallarg(clockid_t) clock_id;
    101 		syscallarg(struct timespec *) tp;
    102 	} */ *uap = v;
    103 	clockid_t clock_id;
    104 	struct timeval atv;
    105 	struct timespec ats;
    106 
    107 	clock_id = SCARG(uap, clock_id);
    108 	if (clock_id != CLOCK_REALTIME)
    109 		return (EINVAL);
    110 
    111 	microtime(&atv);
    112 	TIMEVAL_TO_TIMESPEC(&atv,&ats);
    113 
    114 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    115 }
    116 
    117 /* ARGSUSED */
    118 int
    119 sys_clock_settime(p, v, retval)
    120 	struct proc *p;
    121 	void *v;
    122 	register_t *retval;
    123 {
    124 	register struct sys_clock_settime_args /* {
    125 		syscallarg(clockid_t) clock_id;
    126 		syscallarg(const struct timespec *) tp;
    127 	} */ *uap = v;
    128 	clockid_t clock_id;
    129 	struct timeval atv;
    130 	struct timespec ats;
    131 	int error;
    132 
    133 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    134 		return (error);
    135 
    136 	clock_id = SCARG(uap, clock_id);
    137 	if (clock_id != CLOCK_REALTIME)
    138 		return (EINVAL);
    139 
    140 	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
    141 		return (error);
    142 
    143 	TIMESPEC_TO_TIMEVAL(&atv,&ats);
    144 	settime(&atv);
    145 
    146 	return 0;
    147 }
    148 
    149 int
    150 sys_clock_getres(p, v, retval)
    151 	struct proc *p;
    152 	void *v;
    153 	register_t *retval;
    154 {
    155 	register struct sys_clock_getres_args /* {
    156 		syscallarg(clockid_t) clock_id;
    157 		syscallarg(struct timespec *) tp;
    158 	} */ *uap = v;
    159 	clockid_t clock_id;
    160 	struct timespec ts;
    161 	int error = 0;
    162 
    163 	clock_id = SCARG(uap, clock_id);
    164 	if (clock_id != CLOCK_REALTIME)
    165 		return (EINVAL);
    166 
    167 	if (SCARG(uap, tp)) {
    168 		ts.tv_sec = 0;
    169 		ts.tv_nsec = 1000000000 / hz;
    170 
    171 		error = copyout(&ts, SCARG(uap, tp), sizeof (ts));
    172 	}
    173 
    174 	return error;
    175 }
    176 
    177 
    178 /* ARGSUSED */
    179 int
    180 sys_gettimeofday(p, v, retval)
    181 	struct proc *p;
    182 	void *v;
    183 	register_t *retval;
    184 {
    185 	register struct sys_gettimeofday_args /* {
    186 		syscallarg(struct timeval *) tp;
    187 		syscallarg(struct timezone *) tzp;
    188 	} */ *uap = v;
    189 	struct timeval atv;
    190 	int error = 0;
    191 
    192 	if (SCARG(uap, tp)) {
    193 		microtime(&atv);
    194 		error = copyout(&atv, SCARG(uap, tp), sizeof (atv));
    195 		if (error)
    196 			return (error);
    197 	}
    198 	if (SCARG(uap, tzp))
    199 		error = copyout(&tz, SCARG(uap, tzp), sizeof (tz));
    200 	return (error);
    201 }
    202 
    203 /* ARGSUSED */
    204 int
    205 sys_settimeofday(p, v, retval)
    206 	struct proc *p;
    207 	void *v;
    208 	register_t *retval;
    209 {
    210 	struct sys_settimeofday_args /* {
    211 		syscallarg(const struct timeval *) tv;
    212 		syscallarg(const struct timezone *) tzp;
    213 	} */ *uap = v;
    214 	struct timeval atv;
    215 	struct timezone atz;
    216 	int error;
    217 
    218 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    219 		return (error);
    220 	/* Verify all parameters before changing time. */
    221 	if (SCARG(uap, tv) && (error = copyin(SCARG(uap, tv),
    222 	    &atv, sizeof(atv))))
    223 		return (error);
    224 	if (SCARG(uap, tzp) && (error = copyin(SCARG(uap, tzp),
    225 	    &atz, sizeof(atz))))
    226 		return (error);
    227 	if (SCARG(uap, tv))
    228 		settime(&atv);
    229 	if (SCARG(uap, tzp))
    230 		tz = atz;
    231 	return (0);
    232 }
    233 
    234 int	tickdelta;			/* current clock skew, us. per tick */
    235 long	timedelta;			/* unapplied time correction, us. */
    236 long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
    237 
    238 /* ARGSUSED */
    239 int
    240 sys_adjtime(p, v, retval)
    241 	struct proc *p;
    242 	void *v;
    243 	register_t *retval;
    244 {
    245 	register struct sys_adjtime_args /* {
    246 		syscallarg(const struct timeval *) delta;
    247 		syscallarg(struct timeval *) olddelta;
    248 	} */ *uap = v;
    249 	struct timeval atv;
    250 	register long ndelta, ntickdelta, odelta;
    251 	int s, error;
    252 
    253 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    254 		return (error);
    255 
    256 	error = copyin(SCARG(uap, delta), &atv, sizeof(struct timeval));
    257 	if (error)
    258 		return (error);
    259 
    260 	/*
    261 	 * Compute the total correction and the rate at which to apply it.
    262 	 * Round the adjustment down to a whole multiple of the per-tick
    263 	 * delta, so that after some number of incremental changes in
    264 	 * hardclock(), tickdelta will become zero, lest the correction
    265 	 * overshoot and start taking us away from the desired final time.
    266 	 */
    267 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
    268 	if (ndelta > bigadj)
    269 		ntickdelta = 10 * tickadj;
    270 	else
    271 		ntickdelta = tickadj;
    272 	if (ndelta % ntickdelta)
    273 		ndelta = ndelta / ntickdelta * ntickdelta;
    274 
    275 	/*
    276 	 * To make hardclock()'s job easier, make the per-tick delta negative
    277 	 * if we want time to run slower; then hardclock can simply compute
    278 	 * tick + tickdelta, and subtract tickdelta from timedelta.
    279 	 */
    280 	if (ndelta < 0)
    281 		ntickdelta = -ntickdelta;
    282 	s = splclock();
    283 	odelta = timedelta;
    284 	timedelta = ndelta;
    285 	tickdelta = ntickdelta;
    286 	splx(s);
    287 
    288 	if (SCARG(uap, olddelta)) {
    289 		atv.tv_sec = odelta / 1000000;
    290 		atv.tv_usec = odelta % 1000000;
    291 		(void) copyout(&atv, SCARG(uap, olddelta),
    292 		    sizeof(struct timeval));
    293 	}
    294 	return (0);
    295 }
    296 
    297 /*
    298  * Get value of an interval timer.  The process virtual and
    299  * profiling virtual time timers are kept in the p_stats area, since
    300  * they can be swapped out.  These are kept internally in the
    301  * way they are specified externally: in time until they expire.
    302  *
    303  * The real time interval timer is kept in the process table slot
    304  * for the process, and its value (it_value) is kept as an
    305  * absolute time rather than as a delta, so that it is easy to keep
    306  * periodic real-time signals from drifting.
    307  *
    308  * Virtual time timers are processed in the hardclock() routine of
    309  * kern_clock.c.  The real time timer is processed by a timeout
    310  * routine, called from the softclock() routine.  Since a callout
    311  * may be delayed in real time due to interrupt processing in the system,
    312  * it is possible for the real time timeout routine (realitexpire, given below),
    313  * to be delayed in real time past when it is supposed to occur.  It
    314  * does not suffice, therefore, to reload the real timer .it_value from the
    315  * real time timers .it_interval.  Rather, we compute the next time in
    316  * absolute time the timer should go off.
    317  */
    318 /* ARGSUSED */
    319 int
    320 sys_getitimer(p, v, retval)
    321 	struct proc *p;
    322 	void *v;
    323 	register_t *retval;
    324 {
    325 	register struct sys_getitimer_args /* {
    326 		syscallarg(u_int) which;
    327 		syscallarg(struct itimerval *) itv;
    328 	} */ *uap = v;
    329 	struct itimerval aitv;
    330 	int s;
    331 
    332 	if (SCARG(uap, which) > ITIMER_PROF)
    333 		return (EINVAL);
    334 	s = splclock();
    335 	if (SCARG(uap, which) == ITIMER_REAL) {
    336 		/*
    337 		 * Convert from absolute to relative time in .it_value
    338 		 * part of real time timer.  If time for real time timer
    339 		 * has passed return 0, else return difference between
    340 		 * current time and time for the timer to go off.
    341 		 */
    342 		aitv = p->p_realtimer;
    343 		if (timerisset(&aitv.it_value))
    344 			if (timercmp(&aitv.it_value, &time, <))
    345 				timerclear(&aitv.it_value);
    346 			else
    347 				timersub(&aitv.it_value, &time, &aitv.it_value);
    348 	} else
    349 		aitv = p->p_stats->p_timer[SCARG(uap, which)];
    350 	splx(s);
    351 	return (copyout(&aitv, SCARG(uap, itv), sizeof (struct itimerval)));
    352 }
    353 
    354 /* ARGSUSED */
    355 int
    356 sys_setitimer(p, v, retval)
    357 	struct proc *p;
    358 	register void *v;
    359 	register_t *retval;
    360 {
    361 	register struct sys_setitimer_args /* {
    362 		syscallarg(u_int) which;
    363 		syscallarg(const struct itimerval *) itv;
    364 		syscallarg(struct itimerval *) oitv;
    365 	} */ *uap = v;
    366 	struct sys_getitimer_args getargs;
    367 	struct itimerval aitv;
    368 	register const struct itimerval *itvp;
    369 	int s, error;
    370 
    371 	if (SCARG(uap, which) > ITIMER_PROF)
    372 		return (EINVAL);
    373 	itvp = SCARG(uap, itv);
    374 	if (itvp && (error = copyin(itvp, &aitv, sizeof(struct itimerval))))
    375 		return (error);
    376 	if (SCARG(uap, oitv) != NULL) {
    377 		SCARG(&getargs, which) = SCARG(uap, which);
    378 		SCARG(&getargs, itv) = SCARG(uap, oitv);
    379 		if ((error = sys_getitimer(p, &getargs, retval)) != 0)
    380 			return (error);
    381 	}
    382 	if (itvp == 0)
    383 		return (0);
    384 	if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
    385 		return (EINVAL);
    386 	s = splclock();
    387 	if (SCARG(uap, which) == ITIMER_REAL) {
    388 		untimeout(realitexpire, p);
    389 		if (timerisset(&aitv.it_value)) {
    390 			timeradd(&aitv.it_value, &time, &aitv.it_value);
    391 			timeout(realitexpire, p, hzto(&aitv.it_value));
    392 		}
    393 		p->p_realtimer = aitv;
    394 	} else
    395 		p->p_stats->p_timer[SCARG(uap, which)] = aitv;
    396 	splx(s);
    397 	return (0);
    398 }
    399 
    400 /*
    401  * Real interval timer expired:
    402  * send process whose timer expired an alarm signal.
    403  * If time is not set up to reload, then just return.
    404  * Else compute next time timer should go off which is > current time.
    405  * This is where delay in processing this timeout causes multiple
    406  * SIGALRM calls to be compressed into one.
    407  */
    408 void
    409 realitexpire(arg)
    410 	void *arg;
    411 {
    412 	register struct proc *p;
    413 	int s;
    414 
    415 	p = (struct proc *)arg;
    416 	psignal(p, SIGALRM);
    417 	if (!timerisset(&p->p_realtimer.it_interval)) {
    418 		timerclear(&p->p_realtimer.it_value);
    419 		return;
    420 	}
    421 	for (;;) {
    422 		s = splclock();
    423 		timeradd(&p->p_realtimer.it_value,
    424 		    &p->p_realtimer.it_interval, &p->p_realtimer.it_value);
    425 		if (timercmp(&p->p_realtimer.it_value, &time, >)) {
    426 			timeout(realitexpire, p,
    427 			    hzto(&p->p_realtimer.it_value));
    428 			splx(s);
    429 			return;
    430 		}
    431 		splx(s);
    432 	}
    433 }
    434 
    435 /*
    436  * Check that a proposed value to load into the .it_value or
    437  * .it_interval part of an interval timer is acceptable, and
    438  * fix it to have at least minimal value (i.e. if it is less
    439  * than the resolution of the clock, round it up.)
    440  */
    441 int
    442 itimerfix(tv)
    443 	struct timeval *tv;
    444 {
    445 
    446 	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
    447 	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
    448 		return (EINVAL);
    449 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
    450 		tv->tv_usec = tick;
    451 	return (0);
    452 }
    453 
    454 /*
    455  * Decrement an interval timer by a specified number
    456  * of microseconds, which must be less than a second,
    457  * i.e. < 1000000.  If the timer expires, then reload
    458  * it.  In this case, carry over (usec - old value) to
    459  * reduce the value reloaded into the timer so that
    460  * the timer does not drift.  This routine assumes
    461  * that it is called in a context where the timers
    462  * on which it is operating cannot change in value.
    463  */
    464 int
    465 itimerdecr(itp, usec)
    466 	register struct itimerval *itp;
    467 	int usec;
    468 {
    469 
    470 	if (itp->it_value.tv_usec < usec) {
    471 		if (itp->it_value.tv_sec == 0) {
    472 			/* expired, and already in next interval */
    473 			usec -= itp->it_value.tv_usec;
    474 			goto expire;
    475 		}
    476 		itp->it_value.tv_usec += 1000000;
    477 		itp->it_value.tv_sec--;
    478 	}
    479 	itp->it_value.tv_usec -= usec;
    480 	usec = 0;
    481 	if (timerisset(&itp->it_value))
    482 		return (1);
    483 	/* expired, exactly at end of interval */
    484 expire:
    485 	if (timerisset(&itp->it_interval)) {
    486 		itp->it_value = itp->it_interval;
    487 		itp->it_value.tv_usec -= usec;
    488 		if (itp->it_value.tv_usec < 0) {
    489 			itp->it_value.tv_usec += 1000000;
    490 			itp->it_value.tv_sec--;
    491 		}
    492 	} else
    493 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
    494 	return (0);
    495 }
    496