Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.25
      1 /*	$NetBSD: kern_time.c,v 1.25 1997/01/15 01:37:53 perry Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by the University of
     18  *	California, Berkeley and its contributors.
     19  * 4. Neither the name of the University nor the names of its contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  * SUCH DAMAGE.
     34  *
     35  *	@(#)kern_time.c	8.1 (Berkeley) 6/10/93
     36  */
     37 
     38 #include <sys/param.h>
     39 #include <sys/resourcevar.h>
     40 #include <sys/kernel.h>
     41 #include <sys/systm.h>
     42 #include <sys/proc.h>
     43 #include <sys/vnode.h>
     44 #include <sys/signalvar.h>
     45 #include <sys/syslog.h>
     46 
     47 #include <sys/mount.h>
     48 #include <sys/syscallargs.h>
     49 
     50 #if defined(NFSCLIENT) || defined(NFSSERVER)
     51 #include <nfs/rpcv2.h>
     52 #include <nfs/nfsproto.h>
     53 #include <nfs/nfs_var.h>
     54 #endif
     55 
     56 #include <machine/cpu.h>
     57 
     58 static void	settime __P((struct timeval *));
     59 
     60 /*
     61  * Time of day and interval timer support.
     62  *
     63  * These routines provide the kernel entry points to get and set
     64  * the time-of-day and per-process interval timers.  Subroutines
     65  * here provide support for adding and subtracting timeval structures
     66  * and decrementing interval timers, optionally reloading the interval
     67  * timers when they expire.
     68  */
     69 
     70 
     71 /* This function is used by clock_settime and settimeofday */
     72 static void
     73 settime(tv)
     74 	struct timeval *tv;
     75 {
     76 	struct timeval delta;
     77 	int s;
     78 
     79 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
     80 	s = splclock();
     81 	timersub(tv, &time, &delta);
     82 	time = *tv;
     83 	(void) splsoftclock();
     84 	timeradd(&boottime, &delta, &boottime);
     85 	timeradd(&runtime, &delta, &runtime);
     86 #	if defined(NFSCLIENT) || defined(NFSSERVER)
     87 		nqnfs_lease_updatetime(delta.tv_sec);
     88 #	endif
     89 	splx(s);
     90 	resettodr();
     91 }
     92 
     93 /* ARGSUSED */
     94 int
     95 sys_clock_gettime(p, v, retval)
     96 	struct proc *p;
     97 	void *v;
     98 	register_t *retval;
     99 {
    100 	register struct sys_clock_gettime_args /* {
    101 		syscallarg(clockid_t) clock_id;
    102 		syscallarg(struct timespec *) tp;
    103 	} */ *uap = v;
    104 	clockid_t clock_id;
    105 	struct timeval atv;
    106 	struct timespec ats;
    107 
    108 	clock_id = SCARG(uap, clock_id);
    109 	if (clock_id != CLOCK_REALTIME)
    110 		return (EINVAL);
    111 
    112 	microtime(&atv);
    113 	TIMEVAL_TO_TIMESPEC(&atv,&ats);
    114 
    115 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    116 }
    117 
    118 /* ARGSUSED */
    119 int
    120 sys_clock_settime(p, v, retval)
    121 	struct proc *p;
    122 	void *v;
    123 	register_t *retval;
    124 {
    125 	register struct sys_clock_settime_args /* {
    126 		syscallarg(clockid_t) clock_id;
    127 		syscallarg(const struct timespec *) tp;
    128 	} */ *uap = v;
    129 	clockid_t clock_id;
    130 	struct timeval atv;
    131 	struct timespec ats;
    132 	int error;
    133 
    134 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    135 		return (error);
    136 
    137 	clock_id = SCARG(uap, clock_id);
    138 	if (clock_id != CLOCK_REALTIME)
    139 		return (EINVAL);
    140 
    141 	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
    142 		return (error);
    143 
    144 	TIMESPEC_TO_TIMEVAL(&atv,&ats);
    145 	settime(&atv);
    146 
    147 	return 0;
    148 }
    149 
    150 int
    151 sys_clock_getres(p, v, retval)
    152 	struct proc *p;
    153 	void *v;
    154 	register_t *retval;
    155 {
    156 	register struct sys_clock_getres_args /* {
    157 		syscallarg(clockid_t) clock_id;
    158 		syscallarg(struct timespec *) tp;
    159 	} */ *uap = v;
    160 	clockid_t clock_id;
    161 	struct timespec ts;
    162 	int error = 0;
    163 
    164 	clock_id = SCARG(uap, clock_id);
    165 	if (clock_id != CLOCK_REALTIME)
    166 		return (EINVAL);
    167 
    168 	if (SCARG(uap, tp)) {
    169 		ts.tv_sec = 0;
    170 		ts.tv_nsec = 1000000000 / hz;
    171 
    172 		error = copyout(&ts, SCARG(uap, tp), sizeof (ts));
    173 	}
    174 
    175 	return error;
    176 }
    177 
    178 
    179 /* ARGSUSED */
    180 int
    181 sys_gettimeofday(p, v, retval)
    182 	struct proc *p;
    183 	void *v;
    184 	register_t *retval;
    185 {
    186 	register struct sys_gettimeofday_args /* {
    187 		syscallarg(struct timeval *) tp;
    188 		syscallarg(struct timezone *) tzp;
    189 	} */ *uap = v;
    190 	struct timeval atv;
    191 	int error = 0;
    192 	struct timezone tzfake;
    193 
    194 	if (SCARG(uap, tp)) {
    195 		microtime(&atv);
    196 		error = copyout(&atv, SCARG(uap, tp), sizeof (atv));
    197 		if (error)
    198 			return (error);
    199 	}
    200 	if (SCARG(uap, tzp)) {
    201 		/*
    202 		 * NetBSD has no kernel notion of timezone, so we just
    203 		 * fake up a timezone struct and return it if demanded.
    204 		 */
    205 		tzfake.tz_minuteswest = 0;
    206 		tzfake.tz_dsttime = 0;
    207 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof (tzfake));
    208 	}
    209 	return (error);
    210 }
    211 
    212 /* ARGSUSED */
    213 int
    214 sys_settimeofday(p, v, retval)
    215 	struct proc *p;
    216 	void *v;
    217 	register_t *retval;
    218 {
    219 	struct sys_settimeofday_args /* {
    220 		syscallarg(const struct timeval *) tv;
    221 		syscallarg(const struct timezone *) tzp;
    222 	} */ *uap = v;
    223 	struct timeval atv;
    224 	struct timezone atz;
    225 	int error;
    226 
    227 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    228 		return (error);
    229 	/* Verify all parameters before changing time. */
    230 	if (SCARG(uap, tv) && (error = copyin(SCARG(uap, tv),
    231 	    &atv, sizeof(atv))))
    232 		return (error);
    233 	/* XXX since we don't use tz, probably no point in doing copyin. */
    234 	if (SCARG(uap, tzp) && (error = copyin(SCARG(uap, tzp),
    235 	    &atz, sizeof(atz))))
    236 		return (error);
    237 	if (SCARG(uap, tv))
    238 		settime(&atv);
    239 	/*
    240 	 * NetBSD has no kernel notion of timezone, and only an
    241 	 * obsolete program would try to set it, so we log a warning.
    242 	 */
    243 	if (SCARG(uap, tzp))
    244 		log(LOG_WARNING, "pid %d attempted to set the "
    245 		    "(obsolete) kernel timezone.", p->p_pid);
    246 	return (0);
    247 }
    248 
    249 int	tickdelta;			/* current clock skew, us. per tick */
    250 long	timedelta;			/* unapplied time correction, us. */
    251 long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
    252 
    253 /* ARGSUSED */
    254 int
    255 sys_adjtime(p, v, retval)
    256 	struct proc *p;
    257 	void *v;
    258 	register_t *retval;
    259 {
    260 	register struct sys_adjtime_args /* {
    261 		syscallarg(const struct timeval *) delta;
    262 		syscallarg(struct timeval *) olddelta;
    263 	} */ *uap = v;
    264 	struct timeval atv;
    265 	register long ndelta, ntickdelta, odelta;
    266 	int s, error;
    267 
    268 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    269 		return (error);
    270 
    271 	error = copyin(SCARG(uap, delta), &atv, sizeof(struct timeval));
    272 	if (error)
    273 		return (error);
    274 
    275 	/*
    276 	 * Compute the total correction and the rate at which to apply it.
    277 	 * Round the adjustment down to a whole multiple of the per-tick
    278 	 * delta, so that after some number of incremental changes in
    279 	 * hardclock(), tickdelta will become zero, lest the correction
    280 	 * overshoot and start taking us away from the desired final time.
    281 	 */
    282 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
    283 	if (ndelta > bigadj)
    284 		ntickdelta = 10 * tickadj;
    285 	else
    286 		ntickdelta = tickadj;
    287 	if (ndelta % ntickdelta)
    288 		ndelta = ndelta / ntickdelta * ntickdelta;
    289 
    290 	/*
    291 	 * To make hardclock()'s job easier, make the per-tick delta negative
    292 	 * if we want time to run slower; then hardclock can simply compute
    293 	 * tick + tickdelta, and subtract tickdelta from timedelta.
    294 	 */
    295 	if (ndelta < 0)
    296 		ntickdelta = -ntickdelta;
    297 	s = splclock();
    298 	odelta = timedelta;
    299 	timedelta = ndelta;
    300 	tickdelta = ntickdelta;
    301 	splx(s);
    302 
    303 	if (SCARG(uap, olddelta)) {
    304 		atv.tv_sec = odelta / 1000000;
    305 		atv.tv_usec = odelta % 1000000;
    306 		(void) copyout(&atv, SCARG(uap, olddelta),
    307 		    sizeof(struct timeval));
    308 	}
    309 	return (0);
    310 }
    311 
    312 /*
    313  * Get value of an interval timer.  The process virtual and
    314  * profiling virtual time timers are kept in the p_stats area, since
    315  * they can be swapped out.  These are kept internally in the
    316  * way they are specified externally: in time until they expire.
    317  *
    318  * The real time interval timer is kept in the process table slot
    319  * for the process, and its value (it_value) is kept as an
    320  * absolute time rather than as a delta, so that it is easy to keep
    321  * periodic real-time signals from drifting.
    322  *
    323  * Virtual time timers are processed in the hardclock() routine of
    324  * kern_clock.c.  The real time timer is processed by a timeout
    325  * routine, called from the softclock() routine.  Since a callout
    326  * may be delayed in real time due to interrupt processing in the system,
    327  * it is possible for the real time timeout routine (realitexpire, given below),
    328  * to be delayed in real time past when it is supposed to occur.  It
    329  * does not suffice, therefore, to reload the real timer .it_value from the
    330  * real time timers .it_interval.  Rather, we compute the next time in
    331  * absolute time the timer should go off.
    332  */
    333 /* ARGSUSED */
    334 int
    335 sys_getitimer(p, v, retval)
    336 	struct proc *p;
    337 	void *v;
    338 	register_t *retval;
    339 {
    340 	register struct sys_getitimer_args /* {
    341 		syscallarg(u_int) which;
    342 		syscallarg(struct itimerval *) itv;
    343 	} */ *uap = v;
    344 	struct itimerval aitv;
    345 	int s;
    346 
    347 	if (SCARG(uap, which) > ITIMER_PROF)
    348 		return (EINVAL);
    349 	s = splclock();
    350 	if (SCARG(uap, which) == ITIMER_REAL) {
    351 		/*
    352 		 * Convert from absolute to relative time in .it_value
    353 		 * part of real time timer.  If time for real time timer
    354 		 * has passed return 0, else return difference between
    355 		 * current time and time for the timer to go off.
    356 		 */
    357 		aitv = p->p_realtimer;
    358 		if (timerisset(&aitv.it_value))
    359 			if (timercmp(&aitv.it_value, &time, <))
    360 				timerclear(&aitv.it_value);
    361 			else
    362 				timersub(&aitv.it_value, &time, &aitv.it_value);
    363 	} else
    364 		aitv = p->p_stats->p_timer[SCARG(uap, which)];
    365 	splx(s);
    366 	return (copyout(&aitv, SCARG(uap, itv), sizeof (struct itimerval)));
    367 }
    368 
    369 /* ARGSUSED */
    370 int
    371 sys_setitimer(p, v, retval)
    372 	struct proc *p;
    373 	register void *v;
    374 	register_t *retval;
    375 {
    376 	register struct sys_setitimer_args /* {
    377 		syscallarg(u_int) which;
    378 		syscallarg(const struct itimerval *) itv;
    379 		syscallarg(struct itimerval *) oitv;
    380 	} */ *uap = v;
    381 	struct sys_getitimer_args getargs;
    382 	struct itimerval aitv;
    383 	register const struct itimerval *itvp;
    384 	int s, error;
    385 
    386 	if (SCARG(uap, which) > ITIMER_PROF)
    387 		return (EINVAL);
    388 	itvp = SCARG(uap, itv);
    389 	if (itvp && (error = copyin(itvp, &aitv, sizeof(struct itimerval))))
    390 		return (error);
    391 	if (SCARG(uap, oitv) != NULL) {
    392 		SCARG(&getargs, which) = SCARG(uap, which);
    393 		SCARG(&getargs, itv) = SCARG(uap, oitv);
    394 		if ((error = sys_getitimer(p, &getargs, retval)) != 0)
    395 			return (error);
    396 	}
    397 	if (itvp == 0)
    398 		return (0);
    399 	if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
    400 		return (EINVAL);
    401 	s = splclock();
    402 	if (SCARG(uap, which) == ITIMER_REAL) {
    403 		untimeout(realitexpire, p);
    404 		if (timerisset(&aitv.it_value)) {
    405 			timeradd(&aitv.it_value, &time, &aitv.it_value);
    406 			timeout(realitexpire, p, hzto(&aitv.it_value));
    407 		}
    408 		p->p_realtimer = aitv;
    409 	} else
    410 		p->p_stats->p_timer[SCARG(uap, which)] = aitv;
    411 	splx(s);
    412 	return (0);
    413 }
    414 
    415 /*
    416  * Real interval timer expired:
    417  * send process whose timer expired an alarm signal.
    418  * If time is not set up to reload, then just return.
    419  * Else compute next time timer should go off which is > current time.
    420  * This is where delay in processing this timeout causes multiple
    421  * SIGALRM calls to be compressed into one.
    422  */
    423 void
    424 realitexpire(arg)
    425 	void *arg;
    426 {
    427 	register struct proc *p;
    428 	int s;
    429 
    430 	p = (struct proc *)arg;
    431 	psignal(p, SIGALRM);
    432 	if (!timerisset(&p->p_realtimer.it_interval)) {
    433 		timerclear(&p->p_realtimer.it_value);
    434 		return;
    435 	}
    436 	for (;;) {
    437 		s = splclock();
    438 		timeradd(&p->p_realtimer.it_value,
    439 		    &p->p_realtimer.it_interval, &p->p_realtimer.it_value);
    440 		if (timercmp(&p->p_realtimer.it_value, &time, >)) {
    441 			timeout(realitexpire, p,
    442 			    hzto(&p->p_realtimer.it_value));
    443 			splx(s);
    444 			return;
    445 		}
    446 		splx(s);
    447 	}
    448 }
    449 
    450 /*
    451  * Check that a proposed value to load into the .it_value or
    452  * .it_interval part of an interval timer is acceptable, and
    453  * fix it to have at least minimal value (i.e. if it is less
    454  * than the resolution of the clock, round it up.)
    455  */
    456 int
    457 itimerfix(tv)
    458 	struct timeval *tv;
    459 {
    460 
    461 	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
    462 	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
    463 		return (EINVAL);
    464 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
    465 		tv->tv_usec = tick;
    466 	return (0);
    467 }
    468 
    469 /*
    470  * Decrement an interval timer by a specified number
    471  * of microseconds, which must be less than a second,
    472  * i.e. < 1000000.  If the timer expires, then reload
    473  * it.  In this case, carry over (usec - old value) to
    474  * reduce the value reloaded into the timer so that
    475  * the timer does not drift.  This routine assumes
    476  * that it is called in a context where the timers
    477  * on which it is operating cannot change in value.
    478  */
    479 int
    480 itimerdecr(itp, usec)
    481 	register struct itimerval *itp;
    482 	int usec;
    483 {
    484 
    485 	if (itp->it_value.tv_usec < usec) {
    486 		if (itp->it_value.tv_sec == 0) {
    487 			/* expired, and already in next interval */
    488 			usec -= itp->it_value.tv_usec;
    489 			goto expire;
    490 		}
    491 		itp->it_value.tv_usec += 1000000;
    492 		itp->it_value.tv_sec--;
    493 	}
    494 	itp->it_value.tv_usec -= usec;
    495 	usec = 0;
    496 	if (timerisset(&itp->it_value))
    497 		return (1);
    498 	/* expired, exactly at end of interval */
    499 expire:
    500 	if (timerisset(&itp->it_interval)) {
    501 		itp->it_value = itp->it_interval;
    502 		itp->it_value.tv_usec -= usec;
    503 		if (itp->it_value.tv_usec < 0) {
    504 			itp->it_value.tv_usec += 1000000;
    505 			itp->it_value.tv_sec--;
    506 		}
    507 	} else
    508 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
    509 	return (0);
    510 }
    511