kern_time.c revision 1.27 1 /* $NetBSD: kern_time.c,v 1.27 1997/04/16 14:41:29 jtc Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * @(#)kern_time.c 8.1 (Berkeley) 6/10/93
36 */
37
38 #include <sys/param.h>
39 #include <sys/resourcevar.h>
40 #include <sys/kernel.h>
41 #include <sys/systm.h>
42 #include <sys/proc.h>
43 #include <sys/vnode.h>
44 #include <sys/signalvar.h>
45 #include <sys/syslog.h>
46
47 #include <sys/mount.h>
48 #include <sys/syscallargs.h>
49
50 #if defined(NFS) || defined(NFSSERVER)
51 #include <nfs/rpcv2.h>
52 #include <nfs/nfsproto.h>
53 #include <nfs/nfs_var.h>
54 #endif
55
56 #include <machine/cpu.h>
57
58 static void settime __P((struct timeval *));
59
60 /*
61 * Time of day and interval timer support.
62 *
63 * These routines provide the kernel entry points to get and set
64 * the time-of-day and per-process interval timers. Subroutines
65 * here provide support for adding and subtracting timeval structures
66 * and decrementing interval timers, optionally reloading the interval
67 * timers when they expire.
68 */
69
70 /* This function is used by clock_settime and settimeofday */
71 static void
72 settime(tv)
73 struct timeval *tv;
74 {
75 struct timeval delta;
76 int s;
77
78 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
79 s = splclock();
80 timersub(tv, &time, &delta);
81 time = *tv;
82 (void) splsoftclock();
83 timeradd(&boottime, &delta, &boottime);
84 timeradd(&runtime, &delta, &runtime);
85 # if defined(NFS) || defined(NFSSERVER)
86 nqnfs_lease_updatetime(delta.tv_sec);
87 # endif
88 splx(s);
89 resettodr();
90 }
91
92 /* ARGSUSED */
93 int
94 sys_clock_gettime(p, v, retval)
95 struct proc *p;
96 void *v;
97 register_t *retval;
98 {
99 register struct sys_clock_gettime_args /* {
100 syscallarg(clockid_t) clock_id;
101 syscallarg(struct timespec *) tp;
102 } */ *uap = v;
103 clockid_t clock_id;
104 struct timeval atv;
105 struct timespec ats;
106
107 clock_id = SCARG(uap, clock_id);
108 if (clock_id != CLOCK_REALTIME)
109 return (EINVAL);
110
111 microtime(&atv);
112 TIMEVAL_TO_TIMESPEC(&atv,&ats);
113
114 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
115 }
116
117 /* ARGSUSED */
118 int
119 sys_clock_settime(p, v, retval)
120 struct proc *p;
121 void *v;
122 register_t *retval;
123 {
124 register struct sys_clock_settime_args /* {
125 syscallarg(clockid_t) clock_id;
126 syscallarg(const struct timespec *) tp;
127 } */ *uap = v;
128 clockid_t clock_id;
129 struct timeval atv;
130 struct timespec ats;
131 int error;
132
133 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
134 return (error);
135
136 clock_id = SCARG(uap, clock_id);
137 if (clock_id != CLOCK_REALTIME)
138 return (EINVAL);
139
140 if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
141 return (error);
142
143 TIMESPEC_TO_TIMEVAL(&atv,&ats);
144 settime(&atv);
145
146 return 0;
147 }
148
149 int
150 sys_clock_getres(p, v, retval)
151 struct proc *p;
152 void *v;
153 register_t *retval;
154 {
155 register struct sys_clock_getres_args /* {
156 syscallarg(clockid_t) clock_id;
157 syscallarg(struct timespec *) tp;
158 } */ *uap = v;
159 clockid_t clock_id;
160 struct timespec ts;
161 int error = 0;
162
163 clock_id = SCARG(uap, clock_id);
164 if (clock_id != CLOCK_REALTIME)
165 return (EINVAL);
166
167 if (SCARG(uap, tp)) {
168 ts.tv_sec = 0;
169 ts.tv_nsec = 1000000000 / hz;
170
171 error = copyout(&ts, SCARG(uap, tp), sizeof (ts));
172 }
173
174 return error;
175 }
176
177 /* ARGSUSED */
178 int
179 sys_nanosleep(p, v, retval)
180 struct proc *p;
181 void *v;
182 register_t *retval;
183 {
184 static int nanowait;
185 register struct sys_nanosleep_args/* {
186 syscallarg(struct timespec *) rqtp;
187 syscallarg(struct timespec *) rmtp;
188 } */ *uap = v;
189 struct timespec rqt;
190 struct timespec rmt;
191 struct timeval atv, utv;
192 int error, s, timo;
193
194 error = copyin((caddr_t)SCARG(uap, rqtp), (caddr_t)&rqt,
195 sizeof(struct timespec));
196 if (error)
197 return (error);
198
199 TIMESPEC_TO_TIMEVAL(&atv,&rqt)
200 if (itimerfix(&atv))
201 return (EINVAL);
202
203 s = splclock();
204 timeradd(&atv,&time,&atv);
205 timo = hzto(&atv);
206 /*
207 * Avoid inadvertantly sleeping forever
208 */
209 if (timo == 0)
210 timo = 1;
211 splx(s);
212
213 error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
214 if (error == ERESTART)
215 error = EINTR;
216 if (error == EWOULDBLOCK)
217 error = 0;
218
219 if (SCARG(uap, rmtp)) {
220 s = splclock();
221 utv = time;
222 splx(s);
223
224 timersub(&atv, &utv, &utv);
225 if (utv.tv_sec < 0)
226 timerclear(&utv);
227
228 TIMEVAL_TO_TIMESPEC(&utv,&rmt);
229 error = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
230 sizeof(rmt));
231 }
232
233 return error;
234 }
235
236 /* ARGSUSED */
237 int
238 sys_gettimeofday(p, v, retval)
239 struct proc *p;
240 void *v;
241 register_t *retval;
242 {
243 register struct sys_gettimeofday_args /* {
244 syscallarg(struct timeval *) tp;
245 syscallarg(struct timezone *) tzp;
246 } */ *uap = v;
247 struct timeval atv;
248 int error = 0;
249 struct timezone tzfake;
250
251 if (SCARG(uap, tp)) {
252 microtime(&atv);
253 error = copyout(&atv, SCARG(uap, tp), sizeof (atv));
254 if (error)
255 return (error);
256 }
257 if (SCARG(uap, tzp)) {
258 /*
259 * NetBSD has no kernel notion of timezone, so we just
260 * fake up a timezone struct and return it if demanded.
261 */
262 tzfake.tz_minuteswest = 0;
263 tzfake.tz_dsttime = 0;
264 error = copyout(&tzfake, SCARG(uap, tzp), sizeof (tzfake));
265 }
266 return (error);
267 }
268
269 /* ARGSUSED */
270 int
271 sys_settimeofday(p, v, retval)
272 struct proc *p;
273 void *v;
274 register_t *retval;
275 {
276 struct sys_settimeofday_args /* {
277 syscallarg(const struct timeval *) tv;
278 syscallarg(const struct timezone *) tzp;
279 } */ *uap = v;
280 struct timeval atv;
281 struct timezone atz;
282 int error;
283
284 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
285 return (error);
286 /* Verify all parameters before changing time. */
287 if (SCARG(uap, tv) && (error = copyin(SCARG(uap, tv),
288 &atv, sizeof(atv))))
289 return (error);
290 /* XXX since we don't use tz, probably no point in doing copyin. */
291 if (SCARG(uap, tzp) && (error = copyin(SCARG(uap, tzp),
292 &atz, sizeof(atz))))
293 return (error);
294 if (SCARG(uap, tv))
295 settime(&atv);
296 /*
297 * NetBSD has no kernel notion of timezone, and only an
298 * obsolete program would try to set it, so we log a warning.
299 */
300 if (SCARG(uap, tzp))
301 log(LOG_WARNING, "pid %d attempted to set the "
302 "(obsolete) kernel timezone.", p->p_pid);
303 return (0);
304 }
305
306 int tickdelta; /* current clock skew, us. per tick */
307 long timedelta; /* unapplied time correction, us. */
308 long bigadj = 1000000; /* use 10x skew above bigadj us. */
309
310 /* ARGSUSED */
311 int
312 sys_adjtime(p, v, retval)
313 struct proc *p;
314 void *v;
315 register_t *retval;
316 {
317 register struct sys_adjtime_args /* {
318 syscallarg(const struct timeval *) delta;
319 syscallarg(struct timeval *) olddelta;
320 } */ *uap = v;
321 struct timeval atv;
322 register long ndelta, ntickdelta, odelta;
323 int s, error;
324
325 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
326 return (error);
327
328 error = copyin(SCARG(uap, delta), &atv, sizeof(struct timeval));
329 if (error)
330 return (error);
331
332 /*
333 * Compute the total correction and the rate at which to apply it.
334 * Round the adjustment down to a whole multiple of the per-tick
335 * delta, so that after some number of incremental changes in
336 * hardclock(), tickdelta will become zero, lest the correction
337 * overshoot and start taking us away from the desired final time.
338 */
339 ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
340 if (ndelta > bigadj)
341 ntickdelta = 10 * tickadj;
342 else
343 ntickdelta = tickadj;
344 if (ndelta % ntickdelta)
345 ndelta = ndelta / ntickdelta * ntickdelta;
346
347 /*
348 * To make hardclock()'s job easier, make the per-tick delta negative
349 * if we want time to run slower; then hardclock can simply compute
350 * tick + tickdelta, and subtract tickdelta from timedelta.
351 */
352 if (ndelta < 0)
353 ntickdelta = -ntickdelta;
354 s = splclock();
355 odelta = timedelta;
356 timedelta = ndelta;
357 tickdelta = ntickdelta;
358 splx(s);
359
360 if (SCARG(uap, olddelta)) {
361 atv.tv_sec = odelta / 1000000;
362 atv.tv_usec = odelta % 1000000;
363 (void) copyout(&atv, SCARG(uap, olddelta),
364 sizeof(struct timeval));
365 }
366 return (0);
367 }
368
369 /*
370 * Get value of an interval timer. The process virtual and
371 * profiling virtual time timers are kept in the p_stats area, since
372 * they can be swapped out. These are kept internally in the
373 * way they are specified externally: in time until they expire.
374 *
375 * The real time interval timer is kept in the process table slot
376 * for the process, and its value (it_value) is kept as an
377 * absolute time rather than as a delta, so that it is easy to keep
378 * periodic real-time signals from drifting.
379 *
380 * Virtual time timers are processed in the hardclock() routine of
381 * kern_clock.c. The real time timer is processed by a timeout
382 * routine, called from the softclock() routine. Since a callout
383 * may be delayed in real time due to interrupt processing in the system,
384 * it is possible for the real time timeout routine (realitexpire, given below),
385 * to be delayed in real time past when it is supposed to occur. It
386 * does not suffice, therefore, to reload the real timer .it_value from the
387 * real time timers .it_interval. Rather, we compute the next time in
388 * absolute time the timer should go off.
389 */
390 /* ARGSUSED */
391 int
392 sys_getitimer(p, v, retval)
393 struct proc *p;
394 void *v;
395 register_t *retval;
396 {
397 register struct sys_getitimer_args /* {
398 syscallarg(u_int) which;
399 syscallarg(struct itimerval *) itv;
400 } */ *uap = v;
401 struct itimerval aitv;
402 int s;
403
404 if (SCARG(uap, which) > ITIMER_PROF)
405 return (EINVAL);
406 s = splclock();
407 if (SCARG(uap, which) == ITIMER_REAL) {
408 /*
409 * Convert from absolute to relative time in .it_value
410 * part of real time timer. If time for real time timer
411 * has passed return 0, else return difference between
412 * current time and time for the timer to go off.
413 */
414 aitv = p->p_realtimer;
415 if (timerisset(&aitv.it_value))
416 if (timercmp(&aitv.it_value, &time, <))
417 timerclear(&aitv.it_value);
418 else
419 timersub(&aitv.it_value, &time, &aitv.it_value);
420 } else
421 aitv = p->p_stats->p_timer[SCARG(uap, which)];
422 splx(s);
423 return (copyout(&aitv, SCARG(uap, itv), sizeof (struct itimerval)));
424 }
425
426 /* ARGSUSED */
427 int
428 sys_setitimer(p, v, retval)
429 struct proc *p;
430 register void *v;
431 register_t *retval;
432 {
433 register struct sys_setitimer_args /* {
434 syscallarg(u_int) which;
435 syscallarg(const struct itimerval *) itv;
436 syscallarg(struct itimerval *) oitv;
437 } */ *uap = v;
438 struct sys_getitimer_args getargs;
439 struct itimerval aitv;
440 register const struct itimerval *itvp;
441 int s, error;
442
443 if (SCARG(uap, which) > ITIMER_PROF)
444 return (EINVAL);
445 itvp = SCARG(uap, itv);
446 if (itvp && (error = copyin(itvp, &aitv, sizeof(struct itimerval))))
447 return (error);
448 if (SCARG(uap, oitv) != NULL) {
449 SCARG(&getargs, which) = SCARG(uap, which);
450 SCARG(&getargs, itv) = SCARG(uap, oitv);
451 if ((error = sys_getitimer(p, &getargs, retval)) != 0)
452 return (error);
453 }
454 if (itvp == 0)
455 return (0);
456 if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
457 return (EINVAL);
458 s = splclock();
459 if (SCARG(uap, which) == ITIMER_REAL) {
460 untimeout(realitexpire, p);
461 if (timerisset(&aitv.it_value)) {
462 timeradd(&aitv.it_value, &time, &aitv.it_value);
463 timeout(realitexpire, p, hzto(&aitv.it_value));
464 }
465 p->p_realtimer = aitv;
466 } else
467 p->p_stats->p_timer[SCARG(uap, which)] = aitv;
468 splx(s);
469 return (0);
470 }
471
472 /*
473 * Real interval timer expired:
474 * send process whose timer expired an alarm signal.
475 * If time is not set up to reload, then just return.
476 * Else compute next time timer should go off which is > current time.
477 * This is where delay in processing this timeout causes multiple
478 * SIGALRM calls to be compressed into one.
479 */
480 void
481 realitexpire(arg)
482 void *arg;
483 {
484 register struct proc *p;
485 int s;
486
487 p = (struct proc *)arg;
488 psignal(p, SIGALRM);
489 if (!timerisset(&p->p_realtimer.it_interval)) {
490 timerclear(&p->p_realtimer.it_value);
491 return;
492 }
493 for (;;) {
494 s = splclock();
495 timeradd(&p->p_realtimer.it_value,
496 &p->p_realtimer.it_interval, &p->p_realtimer.it_value);
497 if (timercmp(&p->p_realtimer.it_value, &time, >)) {
498 timeout(realitexpire, p,
499 hzto(&p->p_realtimer.it_value));
500 splx(s);
501 return;
502 }
503 splx(s);
504 }
505 }
506
507 /*
508 * Check that a proposed value to load into the .it_value or
509 * .it_interval part of an interval timer is acceptable, and
510 * fix it to have at least minimal value (i.e. if it is less
511 * than the resolution of the clock, round it up.)
512 */
513 int
514 itimerfix(tv)
515 struct timeval *tv;
516 {
517
518 if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
519 tv->tv_usec < 0 || tv->tv_usec >= 1000000)
520 return (EINVAL);
521 if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
522 tv->tv_usec = tick;
523 return (0);
524 }
525
526 /*
527 * Decrement an interval timer by a specified number
528 * of microseconds, which must be less than a second,
529 * i.e. < 1000000. If the timer expires, then reload
530 * it. In this case, carry over (usec - old value) to
531 * reduce the value reloaded into the timer so that
532 * the timer does not drift. This routine assumes
533 * that it is called in a context where the timers
534 * on which it is operating cannot change in value.
535 */
536 int
537 itimerdecr(itp, usec)
538 register struct itimerval *itp;
539 int usec;
540 {
541
542 if (itp->it_value.tv_usec < usec) {
543 if (itp->it_value.tv_sec == 0) {
544 /* expired, and already in next interval */
545 usec -= itp->it_value.tv_usec;
546 goto expire;
547 }
548 itp->it_value.tv_usec += 1000000;
549 itp->it_value.tv_sec--;
550 }
551 itp->it_value.tv_usec -= usec;
552 usec = 0;
553 if (timerisset(&itp->it_value))
554 return (1);
555 /* expired, exactly at end of interval */
556 expire:
557 if (timerisset(&itp->it_interval)) {
558 itp->it_value = itp->it_interval;
559 itp->it_value.tv_usec -= usec;
560 if (itp->it_value.tv_usec < 0) {
561 itp->it_value.tv_usec += 1000000;
562 itp->it_value.tv_sec--;
563 }
564 } else
565 itp->it_value.tv_usec = 0; /* sec is already 0 */
566 return (0);
567 }
568