Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.27
      1 /*	$NetBSD: kern_time.c,v 1.27 1997/04/16 14:41:29 jtc Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by the University of
     18  *	California, Berkeley and its contributors.
     19  * 4. Neither the name of the University nor the names of its contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  * SUCH DAMAGE.
     34  *
     35  *	@(#)kern_time.c	8.1 (Berkeley) 6/10/93
     36  */
     37 
     38 #include <sys/param.h>
     39 #include <sys/resourcevar.h>
     40 #include <sys/kernel.h>
     41 #include <sys/systm.h>
     42 #include <sys/proc.h>
     43 #include <sys/vnode.h>
     44 #include <sys/signalvar.h>
     45 #include <sys/syslog.h>
     46 
     47 #include <sys/mount.h>
     48 #include <sys/syscallargs.h>
     49 
     50 #if defined(NFS) || defined(NFSSERVER)
     51 #include <nfs/rpcv2.h>
     52 #include <nfs/nfsproto.h>
     53 #include <nfs/nfs_var.h>
     54 #endif
     55 
     56 #include <machine/cpu.h>
     57 
     58 static void	settime __P((struct timeval *));
     59 
     60 /*
     61  * Time of day and interval timer support.
     62  *
     63  * These routines provide the kernel entry points to get and set
     64  * the time-of-day and per-process interval timers.  Subroutines
     65  * here provide support for adding and subtracting timeval structures
     66  * and decrementing interval timers, optionally reloading the interval
     67  * timers when they expire.
     68  */
     69 
     70 /* This function is used by clock_settime and settimeofday */
     71 static void
     72 settime(tv)
     73 	struct timeval *tv;
     74 {
     75 	struct timeval delta;
     76 	int s;
     77 
     78 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
     79 	s = splclock();
     80 	timersub(tv, &time, &delta);
     81 	time = *tv;
     82 	(void) splsoftclock();
     83 	timeradd(&boottime, &delta, &boottime);
     84 	timeradd(&runtime, &delta, &runtime);
     85 #	if defined(NFS) || defined(NFSSERVER)
     86 		nqnfs_lease_updatetime(delta.tv_sec);
     87 #	endif
     88 	splx(s);
     89 	resettodr();
     90 }
     91 
     92 /* ARGSUSED */
     93 int
     94 sys_clock_gettime(p, v, retval)
     95 	struct proc *p;
     96 	void *v;
     97 	register_t *retval;
     98 {
     99 	register struct sys_clock_gettime_args /* {
    100 		syscallarg(clockid_t) clock_id;
    101 		syscallarg(struct timespec *) tp;
    102 	} */ *uap = v;
    103 	clockid_t clock_id;
    104 	struct timeval atv;
    105 	struct timespec ats;
    106 
    107 	clock_id = SCARG(uap, clock_id);
    108 	if (clock_id != CLOCK_REALTIME)
    109 		return (EINVAL);
    110 
    111 	microtime(&atv);
    112 	TIMEVAL_TO_TIMESPEC(&atv,&ats);
    113 
    114 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    115 }
    116 
    117 /* ARGSUSED */
    118 int
    119 sys_clock_settime(p, v, retval)
    120 	struct proc *p;
    121 	void *v;
    122 	register_t *retval;
    123 {
    124 	register struct sys_clock_settime_args /* {
    125 		syscallarg(clockid_t) clock_id;
    126 		syscallarg(const struct timespec *) tp;
    127 	} */ *uap = v;
    128 	clockid_t clock_id;
    129 	struct timeval atv;
    130 	struct timespec ats;
    131 	int error;
    132 
    133 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    134 		return (error);
    135 
    136 	clock_id = SCARG(uap, clock_id);
    137 	if (clock_id != CLOCK_REALTIME)
    138 		return (EINVAL);
    139 
    140 	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
    141 		return (error);
    142 
    143 	TIMESPEC_TO_TIMEVAL(&atv,&ats);
    144 	settime(&atv);
    145 
    146 	return 0;
    147 }
    148 
    149 int
    150 sys_clock_getres(p, v, retval)
    151 	struct proc *p;
    152 	void *v;
    153 	register_t *retval;
    154 {
    155 	register struct sys_clock_getres_args /* {
    156 		syscallarg(clockid_t) clock_id;
    157 		syscallarg(struct timespec *) tp;
    158 	} */ *uap = v;
    159 	clockid_t clock_id;
    160 	struct timespec ts;
    161 	int error = 0;
    162 
    163 	clock_id = SCARG(uap, clock_id);
    164 	if (clock_id != CLOCK_REALTIME)
    165 		return (EINVAL);
    166 
    167 	if (SCARG(uap, tp)) {
    168 		ts.tv_sec = 0;
    169 		ts.tv_nsec = 1000000000 / hz;
    170 
    171 		error = copyout(&ts, SCARG(uap, tp), sizeof (ts));
    172 	}
    173 
    174 	return error;
    175 }
    176 
    177 /* ARGSUSED */
    178 int
    179 sys_nanosleep(p, v, retval)
    180 	struct proc *p;
    181 	void *v;
    182 	register_t *retval;
    183 {
    184 	static int nanowait;
    185 	register struct sys_nanosleep_args/* {
    186 		syscallarg(struct timespec *) rqtp;
    187 		syscallarg(struct timespec *) rmtp;
    188 	} */ *uap = v;
    189 	struct timespec rqt;
    190 	struct timespec rmt;
    191 	struct timeval atv, utv;
    192 	int error, s, timo;
    193 
    194 	error = copyin((caddr_t)SCARG(uap, rqtp), (caddr_t)&rqt,
    195 		       sizeof(struct timespec));
    196 	if (error)
    197 		return (error);
    198 
    199 	TIMESPEC_TO_TIMEVAL(&atv,&rqt)
    200 	if (itimerfix(&atv))
    201 		return (EINVAL);
    202 
    203 	s = splclock();
    204 	timeradd(&atv,&time,&atv);
    205 	timo = hzto(&atv);
    206 	/*
    207 	 * Avoid inadvertantly sleeping forever
    208 	 */
    209 	if (timo == 0)
    210 		timo = 1;
    211 	splx(s);
    212 
    213 	error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
    214 	if (error == ERESTART)
    215 		error = EINTR;
    216 	if (error == EWOULDBLOCK)
    217 		error = 0;
    218 
    219 	if (SCARG(uap, rmtp)) {
    220 		s = splclock();
    221 		utv = time;
    222 		splx(s);
    223 
    224 		timersub(&atv, &utv, &utv);
    225 		if (utv.tv_sec < 0)
    226 			timerclear(&utv);
    227 
    228 		TIMEVAL_TO_TIMESPEC(&utv,&rmt);
    229 		error = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
    230 			sizeof(rmt));
    231 	}
    232 
    233 	return error;
    234 }
    235 
    236 /* ARGSUSED */
    237 int
    238 sys_gettimeofday(p, v, retval)
    239 	struct proc *p;
    240 	void *v;
    241 	register_t *retval;
    242 {
    243 	register struct sys_gettimeofday_args /* {
    244 		syscallarg(struct timeval *) tp;
    245 		syscallarg(struct timezone *) tzp;
    246 	} */ *uap = v;
    247 	struct timeval atv;
    248 	int error = 0;
    249 	struct timezone tzfake;
    250 
    251 	if (SCARG(uap, tp)) {
    252 		microtime(&atv);
    253 		error = copyout(&atv, SCARG(uap, tp), sizeof (atv));
    254 		if (error)
    255 			return (error);
    256 	}
    257 	if (SCARG(uap, tzp)) {
    258 		/*
    259 		 * NetBSD has no kernel notion of timezone, so we just
    260 		 * fake up a timezone struct and return it if demanded.
    261 		 */
    262 		tzfake.tz_minuteswest = 0;
    263 		tzfake.tz_dsttime = 0;
    264 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof (tzfake));
    265 	}
    266 	return (error);
    267 }
    268 
    269 /* ARGSUSED */
    270 int
    271 sys_settimeofday(p, v, retval)
    272 	struct proc *p;
    273 	void *v;
    274 	register_t *retval;
    275 {
    276 	struct sys_settimeofday_args /* {
    277 		syscallarg(const struct timeval *) tv;
    278 		syscallarg(const struct timezone *) tzp;
    279 	} */ *uap = v;
    280 	struct timeval atv;
    281 	struct timezone atz;
    282 	int error;
    283 
    284 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    285 		return (error);
    286 	/* Verify all parameters before changing time. */
    287 	if (SCARG(uap, tv) && (error = copyin(SCARG(uap, tv),
    288 	    &atv, sizeof(atv))))
    289 		return (error);
    290 	/* XXX since we don't use tz, probably no point in doing copyin. */
    291 	if (SCARG(uap, tzp) && (error = copyin(SCARG(uap, tzp),
    292 	    &atz, sizeof(atz))))
    293 		return (error);
    294 	if (SCARG(uap, tv))
    295 		settime(&atv);
    296 	/*
    297 	 * NetBSD has no kernel notion of timezone, and only an
    298 	 * obsolete program would try to set it, so we log a warning.
    299 	 */
    300 	if (SCARG(uap, tzp))
    301 		log(LOG_WARNING, "pid %d attempted to set the "
    302 		    "(obsolete) kernel timezone.", p->p_pid);
    303 	return (0);
    304 }
    305 
    306 int	tickdelta;			/* current clock skew, us. per tick */
    307 long	timedelta;			/* unapplied time correction, us. */
    308 long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
    309 
    310 /* ARGSUSED */
    311 int
    312 sys_adjtime(p, v, retval)
    313 	struct proc *p;
    314 	void *v;
    315 	register_t *retval;
    316 {
    317 	register struct sys_adjtime_args /* {
    318 		syscallarg(const struct timeval *) delta;
    319 		syscallarg(struct timeval *) olddelta;
    320 	} */ *uap = v;
    321 	struct timeval atv;
    322 	register long ndelta, ntickdelta, odelta;
    323 	int s, error;
    324 
    325 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    326 		return (error);
    327 
    328 	error = copyin(SCARG(uap, delta), &atv, sizeof(struct timeval));
    329 	if (error)
    330 		return (error);
    331 
    332 	/*
    333 	 * Compute the total correction and the rate at which to apply it.
    334 	 * Round the adjustment down to a whole multiple of the per-tick
    335 	 * delta, so that after some number of incremental changes in
    336 	 * hardclock(), tickdelta will become zero, lest the correction
    337 	 * overshoot and start taking us away from the desired final time.
    338 	 */
    339 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
    340 	if (ndelta > bigadj)
    341 		ntickdelta = 10 * tickadj;
    342 	else
    343 		ntickdelta = tickadj;
    344 	if (ndelta % ntickdelta)
    345 		ndelta = ndelta / ntickdelta * ntickdelta;
    346 
    347 	/*
    348 	 * To make hardclock()'s job easier, make the per-tick delta negative
    349 	 * if we want time to run slower; then hardclock can simply compute
    350 	 * tick + tickdelta, and subtract tickdelta from timedelta.
    351 	 */
    352 	if (ndelta < 0)
    353 		ntickdelta = -ntickdelta;
    354 	s = splclock();
    355 	odelta = timedelta;
    356 	timedelta = ndelta;
    357 	tickdelta = ntickdelta;
    358 	splx(s);
    359 
    360 	if (SCARG(uap, olddelta)) {
    361 		atv.tv_sec = odelta / 1000000;
    362 		atv.tv_usec = odelta % 1000000;
    363 		(void) copyout(&atv, SCARG(uap, olddelta),
    364 		    sizeof(struct timeval));
    365 	}
    366 	return (0);
    367 }
    368 
    369 /*
    370  * Get value of an interval timer.  The process virtual and
    371  * profiling virtual time timers are kept in the p_stats area, since
    372  * they can be swapped out.  These are kept internally in the
    373  * way they are specified externally: in time until they expire.
    374  *
    375  * The real time interval timer is kept in the process table slot
    376  * for the process, and its value (it_value) is kept as an
    377  * absolute time rather than as a delta, so that it is easy to keep
    378  * periodic real-time signals from drifting.
    379  *
    380  * Virtual time timers are processed in the hardclock() routine of
    381  * kern_clock.c.  The real time timer is processed by a timeout
    382  * routine, called from the softclock() routine.  Since a callout
    383  * may be delayed in real time due to interrupt processing in the system,
    384  * it is possible for the real time timeout routine (realitexpire, given below),
    385  * to be delayed in real time past when it is supposed to occur.  It
    386  * does not suffice, therefore, to reload the real timer .it_value from the
    387  * real time timers .it_interval.  Rather, we compute the next time in
    388  * absolute time the timer should go off.
    389  */
    390 /* ARGSUSED */
    391 int
    392 sys_getitimer(p, v, retval)
    393 	struct proc *p;
    394 	void *v;
    395 	register_t *retval;
    396 {
    397 	register struct sys_getitimer_args /* {
    398 		syscallarg(u_int) which;
    399 		syscallarg(struct itimerval *) itv;
    400 	} */ *uap = v;
    401 	struct itimerval aitv;
    402 	int s;
    403 
    404 	if (SCARG(uap, which) > ITIMER_PROF)
    405 		return (EINVAL);
    406 	s = splclock();
    407 	if (SCARG(uap, which) == ITIMER_REAL) {
    408 		/*
    409 		 * Convert from absolute to relative time in .it_value
    410 		 * part of real time timer.  If time for real time timer
    411 		 * has passed return 0, else return difference between
    412 		 * current time and time for the timer to go off.
    413 		 */
    414 		aitv = p->p_realtimer;
    415 		if (timerisset(&aitv.it_value))
    416 			if (timercmp(&aitv.it_value, &time, <))
    417 				timerclear(&aitv.it_value);
    418 			else
    419 				timersub(&aitv.it_value, &time, &aitv.it_value);
    420 	} else
    421 		aitv = p->p_stats->p_timer[SCARG(uap, which)];
    422 	splx(s);
    423 	return (copyout(&aitv, SCARG(uap, itv), sizeof (struct itimerval)));
    424 }
    425 
    426 /* ARGSUSED */
    427 int
    428 sys_setitimer(p, v, retval)
    429 	struct proc *p;
    430 	register void *v;
    431 	register_t *retval;
    432 {
    433 	register struct sys_setitimer_args /* {
    434 		syscallarg(u_int) which;
    435 		syscallarg(const struct itimerval *) itv;
    436 		syscallarg(struct itimerval *) oitv;
    437 	} */ *uap = v;
    438 	struct sys_getitimer_args getargs;
    439 	struct itimerval aitv;
    440 	register const struct itimerval *itvp;
    441 	int s, error;
    442 
    443 	if (SCARG(uap, which) > ITIMER_PROF)
    444 		return (EINVAL);
    445 	itvp = SCARG(uap, itv);
    446 	if (itvp && (error = copyin(itvp, &aitv, sizeof(struct itimerval))))
    447 		return (error);
    448 	if (SCARG(uap, oitv) != NULL) {
    449 		SCARG(&getargs, which) = SCARG(uap, which);
    450 		SCARG(&getargs, itv) = SCARG(uap, oitv);
    451 		if ((error = sys_getitimer(p, &getargs, retval)) != 0)
    452 			return (error);
    453 	}
    454 	if (itvp == 0)
    455 		return (0);
    456 	if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
    457 		return (EINVAL);
    458 	s = splclock();
    459 	if (SCARG(uap, which) == ITIMER_REAL) {
    460 		untimeout(realitexpire, p);
    461 		if (timerisset(&aitv.it_value)) {
    462 			timeradd(&aitv.it_value, &time, &aitv.it_value);
    463 			timeout(realitexpire, p, hzto(&aitv.it_value));
    464 		}
    465 		p->p_realtimer = aitv;
    466 	} else
    467 		p->p_stats->p_timer[SCARG(uap, which)] = aitv;
    468 	splx(s);
    469 	return (0);
    470 }
    471 
    472 /*
    473  * Real interval timer expired:
    474  * send process whose timer expired an alarm signal.
    475  * If time is not set up to reload, then just return.
    476  * Else compute next time timer should go off which is > current time.
    477  * This is where delay in processing this timeout causes multiple
    478  * SIGALRM calls to be compressed into one.
    479  */
    480 void
    481 realitexpire(arg)
    482 	void *arg;
    483 {
    484 	register struct proc *p;
    485 	int s;
    486 
    487 	p = (struct proc *)arg;
    488 	psignal(p, SIGALRM);
    489 	if (!timerisset(&p->p_realtimer.it_interval)) {
    490 		timerclear(&p->p_realtimer.it_value);
    491 		return;
    492 	}
    493 	for (;;) {
    494 		s = splclock();
    495 		timeradd(&p->p_realtimer.it_value,
    496 		    &p->p_realtimer.it_interval, &p->p_realtimer.it_value);
    497 		if (timercmp(&p->p_realtimer.it_value, &time, >)) {
    498 			timeout(realitexpire, p,
    499 			    hzto(&p->p_realtimer.it_value));
    500 			splx(s);
    501 			return;
    502 		}
    503 		splx(s);
    504 	}
    505 }
    506 
    507 /*
    508  * Check that a proposed value to load into the .it_value or
    509  * .it_interval part of an interval timer is acceptable, and
    510  * fix it to have at least minimal value (i.e. if it is less
    511  * than the resolution of the clock, round it up.)
    512  */
    513 int
    514 itimerfix(tv)
    515 	struct timeval *tv;
    516 {
    517 
    518 	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
    519 	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
    520 		return (EINVAL);
    521 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
    522 		tv->tv_usec = tick;
    523 	return (0);
    524 }
    525 
    526 /*
    527  * Decrement an interval timer by a specified number
    528  * of microseconds, which must be less than a second,
    529  * i.e. < 1000000.  If the timer expires, then reload
    530  * it.  In this case, carry over (usec - old value) to
    531  * reduce the value reloaded into the timer so that
    532  * the timer does not drift.  This routine assumes
    533  * that it is called in a context where the timers
    534  * on which it is operating cannot change in value.
    535  */
    536 int
    537 itimerdecr(itp, usec)
    538 	register struct itimerval *itp;
    539 	int usec;
    540 {
    541 
    542 	if (itp->it_value.tv_usec < usec) {
    543 		if (itp->it_value.tv_sec == 0) {
    544 			/* expired, and already in next interval */
    545 			usec -= itp->it_value.tv_usec;
    546 			goto expire;
    547 		}
    548 		itp->it_value.tv_usec += 1000000;
    549 		itp->it_value.tv_sec--;
    550 	}
    551 	itp->it_value.tv_usec -= usec;
    552 	usec = 0;
    553 	if (timerisset(&itp->it_value))
    554 		return (1);
    555 	/* expired, exactly at end of interval */
    556 expire:
    557 	if (timerisset(&itp->it_interval)) {
    558 		itp->it_value = itp->it_interval;
    559 		itp->it_value.tv_usec -= usec;
    560 		if (itp->it_value.tv_usec < 0) {
    561 			itp->it_value.tv_usec += 1000000;
    562 			itp->it_value.tv_sec--;
    563 		}
    564 	} else
    565 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
    566 	return (0);
    567 }
    568