Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.29
      1 /*	$NetBSD: kern_time.c,v 1.29 1997/04/26 21:22:57 tls Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by the University of
     18  *	California, Berkeley and its contributors.
     19  * 4. Neither the name of the University nor the names of its contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  * SUCH DAMAGE.
     34  *
     35  *	@(#)kern_time.c	8.1 (Berkeley) 6/10/93
     36  */
     37 
     38 #include <sys/param.h>
     39 #include <sys/resourcevar.h>
     40 #include <sys/kernel.h>
     41 #include <sys/systm.h>
     42 #include <sys/proc.h>
     43 #include <sys/vnode.h>
     44 #include <sys/signalvar.h>
     45 #include <sys/syslog.h>
     46 
     47 #include <sys/mount.h>
     48 #include <sys/syscallargs.h>
     49 
     50 #if defined(NFS) || defined(NFSSERVER)
     51 #include <nfs/rpcv2.h>
     52 #include <nfs/nfsproto.h>
     53 #include <nfs/nfs_var.h>
     54 #endif
     55 
     56 #include <machine/cpu.h>
     57 
     58 static int	settime __P((struct timeval *));
     59 
     60 /*
     61  * Time of day and interval timer support.
     62  *
     63  * These routines provide the kernel entry points to get and set
     64  * the time-of-day and per-process interval timers.  Subroutines
     65  * here provide support for adding and subtracting timeval structures
     66  * and decrementing interval timers, optionally reloading the interval
     67  * timers when they expire.
     68  */
     69 
     70 /* This function is used by clock_settime and settimeofday */
     71 static int
     72 settime(tv)
     73 	struct timeval *tv;
     74 {
     75 	struct timeval delta;
     76 	int s;
     77 
     78 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
     79 	s = splclock();
     80 	timersub(tv, &time, &delta);
     81 	if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1)
     82 		return (EPERM);
     83 #ifdef notyet
     84 	if ((delta.tv_sec < 86400) && securelevel > 0)
     85 		return (EPERM);
     86 #endif
     87 	time = *tv;
     88 	(void) splsoftclock();
     89 	timeradd(&boottime, &delta, &boottime);
     90 	timeradd(&runtime, &delta, &runtime);
     91 #	if defined(NFS) || defined(NFSSERVER)
     92 		nqnfs_lease_updatetime(delta.tv_sec);
     93 #	endif
     94 	splx(s);
     95 	resettodr();
     96 	return (0);
     97 }
     98 
     99 /* ARGSUSED */
    100 int
    101 sys_clock_gettime(p, v, retval)
    102 	struct proc *p;
    103 	void *v;
    104 	register_t *retval;
    105 {
    106 	register struct sys_clock_gettime_args /* {
    107 		syscallarg(clockid_t) clock_id;
    108 		syscallarg(struct timespec *) tp;
    109 	} */ *uap = v;
    110 	clockid_t clock_id;
    111 	struct timeval atv;
    112 	struct timespec ats;
    113 
    114 	clock_id = SCARG(uap, clock_id);
    115 	if (clock_id != CLOCK_REALTIME)
    116 		return (EINVAL);
    117 
    118 	microtime(&atv);
    119 	TIMEVAL_TO_TIMESPEC(&atv,&ats);
    120 
    121 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    122 }
    123 
    124 /* ARGSUSED */
    125 int
    126 sys_clock_settime(p, v, retval)
    127 	struct proc *p;
    128 	void *v;
    129 	register_t *retval;
    130 {
    131 	register struct sys_clock_settime_args /* {
    132 		syscallarg(clockid_t) clock_id;
    133 		syscallarg(const struct timespec *) tp;
    134 	} */ *uap = v;
    135 	clockid_t clock_id;
    136 	struct timeval atv;
    137 	struct timespec ats;
    138 	int error;
    139 
    140 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    141 		return (error);
    142 
    143 	clock_id = SCARG(uap, clock_id);
    144 	if (clock_id != CLOCK_REALTIME)
    145 		return (EINVAL);
    146 
    147 	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
    148 		return (error);
    149 
    150 	TIMESPEC_TO_TIMEVAL(&atv,&ats);
    151 	if ((error = settime(&atv)))
    152 		return (error);
    153 
    154 	return 0;
    155 }
    156 
    157 int
    158 sys_clock_getres(p, v, retval)
    159 	struct proc *p;
    160 	void *v;
    161 	register_t *retval;
    162 {
    163 	register struct sys_clock_getres_args /* {
    164 		syscallarg(clockid_t) clock_id;
    165 		syscallarg(struct timespec *) tp;
    166 	} */ *uap = v;
    167 	clockid_t clock_id;
    168 	struct timespec ts;
    169 	int error = 0;
    170 
    171 	clock_id = SCARG(uap, clock_id);
    172 	if (clock_id != CLOCK_REALTIME)
    173 		return (EINVAL);
    174 
    175 	if (SCARG(uap, tp)) {
    176 		ts.tv_sec = 0;
    177 		ts.tv_nsec = 1000000000 / hz;
    178 
    179 		error = copyout(&ts, SCARG(uap, tp), sizeof (ts));
    180 	}
    181 
    182 	return error;
    183 }
    184 
    185 /* ARGSUSED */
    186 int
    187 sys_nanosleep(p, v, retval)
    188 	struct proc *p;
    189 	void *v;
    190 	register_t *retval;
    191 {
    192 	static int nanowait;
    193 	register struct sys_nanosleep_args/* {
    194 		syscallarg(struct timespec *) rqtp;
    195 		syscallarg(struct timespec *) rmtp;
    196 	} */ *uap = v;
    197 	struct timespec rqt;
    198 	struct timespec rmt;
    199 	struct timeval atv, utv;
    200 	int error, s, timo;
    201 
    202 	error = copyin((caddr_t)SCARG(uap, rqtp), (caddr_t)&rqt,
    203 		       sizeof(struct timespec));
    204 	if (error)
    205 		return (error);
    206 
    207 	TIMESPEC_TO_TIMEVAL(&atv,&rqt)
    208 	if (itimerfix(&atv))
    209 		return (EINVAL);
    210 
    211 	s = splclock();
    212 	timeradd(&atv,&time,&atv);
    213 	timo = hzto(&atv);
    214 	/*
    215 	 * Avoid inadvertantly sleeping forever
    216 	 */
    217 	if (timo == 0)
    218 		timo = 1;
    219 	splx(s);
    220 
    221 	error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
    222 	if (error == ERESTART)
    223 		error = EINTR;
    224 	if (error == EWOULDBLOCK)
    225 		error = 0;
    226 
    227 	if (SCARG(uap, rmtp)) {
    228 		int error;
    229 
    230 		s = splclock();
    231 		utv = time;
    232 		splx(s);
    233 
    234 		timersub(&atv, &utv, &utv);
    235 		if (utv.tv_sec < 0)
    236 			timerclear(&utv);
    237 
    238 		TIMEVAL_TO_TIMESPEC(&utv,&rmt);
    239 		error = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
    240 			sizeof(rmt));
    241 		if (error)
    242 			return (error);
    243 	}
    244 
    245 	return error;
    246 }
    247 
    248 /* ARGSUSED */
    249 int
    250 sys_gettimeofday(p, v, retval)
    251 	struct proc *p;
    252 	void *v;
    253 	register_t *retval;
    254 {
    255 	register struct sys_gettimeofday_args /* {
    256 		syscallarg(struct timeval *) tp;
    257 		syscallarg(struct timezone *) tzp;
    258 	} */ *uap = v;
    259 	struct timeval atv;
    260 	int error = 0;
    261 	struct timezone tzfake;
    262 
    263 	if (SCARG(uap, tp)) {
    264 		microtime(&atv);
    265 		error = copyout(&atv, SCARG(uap, tp), sizeof (atv));
    266 		if (error)
    267 			return (error);
    268 	}
    269 	if (SCARG(uap, tzp)) {
    270 		/*
    271 		 * NetBSD has no kernel notion of timezone, so we just
    272 		 * fake up a timezone struct and return it if demanded.
    273 		 */
    274 		tzfake.tz_minuteswest = 0;
    275 		tzfake.tz_dsttime = 0;
    276 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof (tzfake));
    277 	}
    278 	return (error);
    279 }
    280 
    281 /* ARGSUSED */
    282 int
    283 sys_settimeofday(p, v, retval)
    284 	struct proc *p;
    285 	void *v;
    286 	register_t *retval;
    287 {
    288 	struct sys_settimeofday_args /* {
    289 		syscallarg(const struct timeval *) tv;
    290 		syscallarg(const struct timezone *) tzp;
    291 	} */ *uap = v;
    292 	struct timeval atv;
    293 	struct timezone atz;
    294 	int error;
    295 
    296 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    297 		return (error);
    298 	/* Verify all parameters before changing time. */
    299 	if (SCARG(uap, tv) && (error = copyin(SCARG(uap, tv),
    300 	    &atv, sizeof(atv))))
    301 		return (error);
    302 	/* XXX since we don't use tz, probably no point in doing copyin. */
    303 	if (SCARG(uap, tzp) && (error = copyin(SCARG(uap, tzp),
    304 	    &atz, sizeof(atz))))
    305 		return (error);
    306 	if (SCARG(uap, tv))
    307 		if ((error = settime(&atv)))
    308 			return (error);
    309 	/*
    310 	 * NetBSD has no kernel notion of timezone, and only an
    311 	 * obsolete program would try to set it, so we log a warning.
    312 	 */
    313 	if (SCARG(uap, tzp))
    314 		log(LOG_WARNING, "pid %d attempted to set the "
    315 		    "(obsolete) kernel timezone.", p->p_pid);
    316 	return (0);
    317 }
    318 
    319 int	tickdelta;			/* current clock skew, us. per tick */
    320 long	timedelta;			/* unapplied time correction, us. */
    321 long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
    322 
    323 /* ARGSUSED */
    324 int
    325 sys_adjtime(p, v, retval)
    326 	struct proc *p;
    327 	void *v;
    328 	register_t *retval;
    329 {
    330 	register struct sys_adjtime_args /* {
    331 		syscallarg(const struct timeval *) delta;
    332 		syscallarg(struct timeval *) olddelta;
    333 	} */ *uap = v;
    334 	struct timeval atv;
    335 	register long ndelta, ntickdelta, odelta;
    336 	int s, error;
    337 
    338 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    339 		return (error);
    340 
    341 	error = copyin(SCARG(uap, delta), &atv, sizeof(struct timeval));
    342 	if (error)
    343 		return (error);
    344 
    345 	/*
    346 	 * Compute the total correction and the rate at which to apply it.
    347 	 * Round the adjustment down to a whole multiple of the per-tick
    348 	 * delta, so that after some number of incremental changes in
    349 	 * hardclock(), tickdelta will become zero, lest the correction
    350 	 * overshoot and start taking us away from the desired final time.
    351 	 */
    352 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
    353 	if (ndelta > bigadj)
    354 		ntickdelta = 10 * tickadj;
    355 	else
    356 		ntickdelta = tickadj;
    357 	if (ndelta % ntickdelta)
    358 		ndelta = ndelta / ntickdelta * ntickdelta;
    359 
    360 	/*
    361 	 * To make hardclock()'s job easier, make the per-tick delta negative
    362 	 * if we want time to run slower; then hardclock can simply compute
    363 	 * tick + tickdelta, and subtract tickdelta from timedelta.
    364 	 */
    365 	if (ndelta < 0)
    366 		ntickdelta = -ntickdelta;
    367 	s = splclock();
    368 	odelta = timedelta;
    369 	timedelta = ndelta;
    370 	tickdelta = ntickdelta;
    371 	splx(s);
    372 
    373 	if (SCARG(uap, olddelta)) {
    374 		atv.tv_sec = odelta / 1000000;
    375 		atv.tv_usec = odelta % 1000000;
    376 		(void) copyout(&atv, SCARG(uap, olddelta),
    377 		    sizeof(struct timeval));
    378 	}
    379 	return (0);
    380 }
    381 
    382 /*
    383  * Get value of an interval timer.  The process virtual and
    384  * profiling virtual time timers are kept in the p_stats area, since
    385  * they can be swapped out.  These are kept internally in the
    386  * way they are specified externally: in time until they expire.
    387  *
    388  * The real time interval timer is kept in the process table slot
    389  * for the process, and its value (it_value) is kept as an
    390  * absolute time rather than as a delta, so that it is easy to keep
    391  * periodic real-time signals from drifting.
    392  *
    393  * Virtual time timers are processed in the hardclock() routine of
    394  * kern_clock.c.  The real time timer is processed by a timeout
    395  * routine, called from the softclock() routine.  Since a callout
    396  * may be delayed in real time due to interrupt processing in the system,
    397  * it is possible for the real time timeout routine (realitexpire, given below),
    398  * to be delayed in real time past when it is supposed to occur.  It
    399  * does not suffice, therefore, to reload the real timer .it_value from the
    400  * real time timers .it_interval.  Rather, we compute the next time in
    401  * absolute time the timer should go off.
    402  */
    403 /* ARGSUSED */
    404 int
    405 sys_getitimer(p, v, retval)
    406 	struct proc *p;
    407 	void *v;
    408 	register_t *retval;
    409 {
    410 	register struct sys_getitimer_args /* {
    411 		syscallarg(u_int) which;
    412 		syscallarg(struct itimerval *) itv;
    413 	} */ *uap = v;
    414 	struct itimerval aitv;
    415 	int s;
    416 
    417 	if (SCARG(uap, which) > ITIMER_PROF)
    418 		return (EINVAL);
    419 	s = splclock();
    420 	if (SCARG(uap, which) == ITIMER_REAL) {
    421 		/*
    422 		 * Convert from absolute to relative time in .it_value
    423 		 * part of real time timer.  If time for real time timer
    424 		 * has passed return 0, else return difference between
    425 		 * current time and time for the timer to go off.
    426 		 */
    427 		aitv = p->p_realtimer;
    428 		if (timerisset(&aitv.it_value))
    429 			if (timercmp(&aitv.it_value, &time, <))
    430 				timerclear(&aitv.it_value);
    431 			else
    432 				timersub(&aitv.it_value, &time, &aitv.it_value);
    433 	} else
    434 		aitv = p->p_stats->p_timer[SCARG(uap, which)];
    435 	splx(s);
    436 	return (copyout(&aitv, SCARG(uap, itv), sizeof (struct itimerval)));
    437 }
    438 
    439 /* ARGSUSED */
    440 int
    441 sys_setitimer(p, v, retval)
    442 	struct proc *p;
    443 	register void *v;
    444 	register_t *retval;
    445 {
    446 	register struct sys_setitimer_args /* {
    447 		syscallarg(u_int) which;
    448 		syscallarg(const struct itimerval *) itv;
    449 		syscallarg(struct itimerval *) oitv;
    450 	} */ *uap = v;
    451 	struct sys_getitimer_args getargs;
    452 	struct itimerval aitv;
    453 	register const struct itimerval *itvp;
    454 	int s, error;
    455 
    456 	if (SCARG(uap, which) > ITIMER_PROF)
    457 		return (EINVAL);
    458 	itvp = SCARG(uap, itv);
    459 	if (itvp && (error = copyin(itvp, &aitv, sizeof(struct itimerval))))
    460 		return (error);
    461 	if (SCARG(uap, oitv) != NULL) {
    462 		SCARG(&getargs, which) = SCARG(uap, which);
    463 		SCARG(&getargs, itv) = SCARG(uap, oitv);
    464 		if ((error = sys_getitimer(p, &getargs, retval)) != 0)
    465 			return (error);
    466 	}
    467 	if (itvp == 0)
    468 		return (0);
    469 	if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
    470 		return (EINVAL);
    471 	s = splclock();
    472 	if (SCARG(uap, which) == ITIMER_REAL) {
    473 		untimeout(realitexpire, p);
    474 		if (timerisset(&aitv.it_value)) {
    475 			timeradd(&aitv.it_value, &time, &aitv.it_value);
    476 			timeout(realitexpire, p, hzto(&aitv.it_value));
    477 		}
    478 		p->p_realtimer = aitv;
    479 	} else
    480 		p->p_stats->p_timer[SCARG(uap, which)] = aitv;
    481 	splx(s);
    482 	return (0);
    483 }
    484 
    485 /*
    486  * Real interval timer expired:
    487  * send process whose timer expired an alarm signal.
    488  * If time is not set up to reload, then just return.
    489  * Else compute next time timer should go off which is > current time.
    490  * This is where delay in processing this timeout causes multiple
    491  * SIGALRM calls to be compressed into one.
    492  */
    493 void
    494 realitexpire(arg)
    495 	void *arg;
    496 {
    497 	register struct proc *p;
    498 	int s;
    499 
    500 	p = (struct proc *)arg;
    501 	psignal(p, SIGALRM);
    502 	if (!timerisset(&p->p_realtimer.it_interval)) {
    503 		timerclear(&p->p_realtimer.it_value);
    504 		return;
    505 	}
    506 	for (;;) {
    507 		s = splclock();
    508 		timeradd(&p->p_realtimer.it_value,
    509 		    &p->p_realtimer.it_interval, &p->p_realtimer.it_value);
    510 		if (timercmp(&p->p_realtimer.it_value, &time, >)) {
    511 			timeout(realitexpire, p,
    512 			    hzto(&p->p_realtimer.it_value));
    513 			splx(s);
    514 			return;
    515 		}
    516 		splx(s);
    517 	}
    518 }
    519 
    520 /*
    521  * Check that a proposed value to load into the .it_value or
    522  * .it_interval part of an interval timer is acceptable, and
    523  * fix it to have at least minimal value (i.e. if it is less
    524  * than the resolution of the clock, round it up.)
    525  */
    526 int
    527 itimerfix(tv)
    528 	struct timeval *tv;
    529 {
    530 
    531 	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
    532 	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
    533 		return (EINVAL);
    534 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
    535 		tv->tv_usec = tick;
    536 	return (0);
    537 }
    538 
    539 /*
    540  * Decrement an interval timer by a specified number
    541  * of microseconds, which must be less than a second,
    542  * i.e. < 1000000.  If the timer expires, then reload
    543  * it.  In this case, carry over (usec - old value) to
    544  * reduce the value reloaded into the timer so that
    545  * the timer does not drift.  This routine assumes
    546  * that it is called in a context where the timers
    547  * on which it is operating cannot change in value.
    548  */
    549 int
    550 itimerdecr(itp, usec)
    551 	register struct itimerval *itp;
    552 	int usec;
    553 {
    554 
    555 	if (itp->it_value.tv_usec < usec) {
    556 		if (itp->it_value.tv_sec == 0) {
    557 			/* expired, and already in next interval */
    558 			usec -= itp->it_value.tv_usec;
    559 			goto expire;
    560 		}
    561 		itp->it_value.tv_usec += 1000000;
    562 		itp->it_value.tv_sec--;
    563 	}
    564 	itp->it_value.tv_usec -= usec;
    565 	usec = 0;
    566 	if (timerisset(&itp->it_value))
    567 		return (1);
    568 	/* expired, exactly at end of interval */
    569 expire:
    570 	if (timerisset(&itp->it_interval)) {
    571 		itp->it_value = itp->it_interval;
    572 		itp->it_value.tv_usec -= usec;
    573 		if (itp->it_value.tv_usec < 0) {
    574 			itp->it_value.tv_usec += 1000000;
    575 			itp->it_value.tv_sec--;
    576 		}
    577 	} else
    578 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
    579 	return (0);
    580 }
    581