Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.3
      1 /*
      2  * Copyright (c) 1982, 1986, 1989 Regents of the University of California.
      3  * All rights reserved.
      4  *
      5  * Redistribution and use in source and binary forms, with or without
      6  * modification, are permitted provided that the following conditions
      7  * are met:
      8  * 1. Redistributions of source code must retain the above copyright
      9  *    notice, this list of conditions and the following disclaimer.
     10  * 2. Redistributions in binary form must reproduce the above copyright
     11  *    notice, this list of conditions and the following disclaimer in the
     12  *    documentation and/or other materials provided with the distribution.
     13  * 3. All advertising materials mentioning features or use of this software
     14  *    must display the following acknowledgement:
     15  *	This product includes software developed by the University of
     16  *	California, Berkeley and its contributors.
     17  * 4. Neither the name of the University nor the names of its contributors
     18  *    may be used to endorse or promote products derived from this software
     19  *    without specific prior written permission.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     31  * SUCH DAMAGE.
     32  *
     33  *	from: @(#)kern_time.c	7.15 (Berkeley) 3/17/91
     34  *	$Id: kern_time.c,v 1.3 1993/06/27 06:01:48 andrew Exp $
     35  */
     36 
     37 #include "param.h"
     38 #include "systm.h"
     39 #include "resourcevar.h"
     40 #include "kernel.h"
     41 #include "proc.h"
     42 
     43 #include "machine/cpu.h"
     44 
     45 /*
     46  * Time of day and interval timer support.
     47  *
     48  * These routines provide the kernel entry points to get and set
     49  * the time-of-day and per-process interval timers.  Subroutines
     50  * here provide support for adding and subtracting timeval structures
     51  * and decrementing interval timers, optionally reloading the interval
     52  * timers when they expire.
     53  */
     54 
     55 /* ARGSUSED */
     56 int
     57 gettimeofday(p, uap, retval)
     58 	struct proc *p;
     59 	register struct args {
     60 		struct	timeval *tp;
     61 		struct	timezone *tzp;
     62 	} *uap;
     63 	int *retval;
     64 {
     65 	struct timeval atv;
     66 	int error = 0;
     67 
     68 	if (uap->tp) {
     69 		microtime(&atv);
     70 		if (error = copyout((caddr_t)&atv, (caddr_t)uap->tp,
     71 		    sizeof (atv)))
     72 			return (error);
     73 	}
     74 	if (uap->tzp)
     75 		error = copyout((caddr_t)&tz, (caddr_t)uap->tzp,
     76 		    sizeof (tz));
     77 	return (error);
     78 }
     79 
     80 /* ARGSUSED */
     81 int
     82 settimeofday(p, uap, retval)
     83 	struct proc *p;
     84 	struct args {
     85 		struct	timeval *tv;
     86 		struct	timezone *tzp;
     87 	} *uap;
     88 	int *retval;
     89 {
     90 	struct timeval atv;
     91 	struct timezone atz;
     92 	int error, s;
     93 
     94 	if (error = suser(p->p_ucred, &p->p_acflag))
     95 		return (error);
     96 	if (uap->tv) {
     97 		if (error = copyin((caddr_t)uap->tv, (caddr_t)&atv,
     98 		    sizeof (struct timeval)))
     99 			return (error);
    100 		/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    101 		boottime.tv_sec += atv.tv_sec - time.tv_sec;
    102 		s = splhigh(); time = atv; splx(s);
    103 		resettodr();
    104 	}
    105 	if (uap->tzp && (error = copyin((caddr_t)uap->tzp, (caddr_t)&atz,
    106 	    sizeof (atz))) == 0)
    107 		tz = atz;
    108 	return (error);
    109 }
    110 
    111 extern	int tickadj;			/* "standard" clock skew, us./tick */
    112 int	tickdelta;			/* current clock skew, us. per tick */
    113 long	timedelta;			/* unapplied time correction, us. */
    114 long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
    115 
    116 /* ARGSUSED */
    117 int
    118 adjtime(p, uap, retval)
    119 	struct proc *p;
    120 	register struct args {
    121 		struct timeval *delta;
    122 		struct timeval *olddelta;
    123 	} *uap;
    124 	int *retval;
    125 {
    126 	struct timeval atv, oatv;
    127 	register long ndelta;
    128 	int s, error;
    129 
    130 	if (error = suser(p->p_ucred, &p->p_acflag))
    131 		return (error);
    132 	if (error =
    133 	    copyin((caddr_t)uap->delta, (caddr_t)&atv, sizeof (struct timeval)))
    134 		return (error);
    135 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
    136 	if (timedelta == 0)
    137 		if (ndelta > bigadj)
    138 			tickdelta = 10 * tickadj;
    139 		else
    140 			tickdelta = tickadj;
    141 	if (ndelta % tickdelta)
    142 		ndelta = ndelta / tickadj * tickadj;
    143 
    144 	s = splclock();
    145 	if (uap->olddelta) {
    146 		oatv.tv_sec = timedelta / 1000000;
    147 		oatv.tv_usec = timedelta % 1000000;
    148 	}
    149 	timedelta = ndelta;
    150 	splx(s);
    151 
    152 	if (uap->olddelta)
    153 		(void) copyout((caddr_t)&oatv, (caddr_t)uap->olddelta,
    154 			sizeof (struct timeval));
    155 	return (0);
    156 }
    157 
    158 /*
    159  * Get value of an interval timer.  The process virtual and
    160  * profiling virtual time timers are kept in the p_stats area, since
    161  * they can be swapped out.  These are kept internally in the
    162  * way they are specified externally: in time until they expire.
    163  *
    164  * The real time interval timer is kept in the process table slot
    165  * for the process, and its value (it_value) is kept as an
    166  * absolute time rather than as a delta, so that it is easy to keep
    167  * periodic real-time signals from drifting.
    168  *
    169  * Virtual time timers are processed in the hardclock() routine of
    170  * kern_clock.c.  The real time timer is processed by a timeout
    171  * routine, called from the softclock() routine.  Since a callout
    172  * may be delayed in real time due to interrupt processing in the system,
    173  * it is possible for the real time timeout routine (realitexpire, given below),
    174  * to be delayed in real time past when it is supposed to occur.  It
    175  * does not suffice, therefore, to reload the real timer .it_value from the
    176  * real time timers .it_interval.  Rather, we compute the next time in
    177  * absolute time the timer should go off.
    178  */
    179 /* ARGSUSED */
    180 int
    181 getitimer(p, uap, retval)
    182 	struct proc *p;
    183 	register struct args {
    184 		u_int	which;
    185 		struct	itimerval *itv;
    186 	} *uap;
    187 	int *retval;
    188 {
    189 	struct itimerval aitv;
    190 	int s;
    191 
    192 	if (uap->which > ITIMER_PROF)
    193 		return (EINVAL);
    194 	s = splclock();
    195 	if (uap->which == ITIMER_REAL) {
    196 		/*
    197 		 * Convert from absoulte to relative time in .it_value
    198 		 * part of real time timer.  If time for real time timer
    199 		 * has passed return 0, else return difference between
    200 		 * current time and time for the timer to go off.
    201 		 */
    202 		aitv = p->p_realtimer;
    203 		if (timerisset(&aitv.it_value))
    204 			if (timercmp(&aitv.it_value, &time, <))
    205 				timerclear(&aitv.it_value);
    206 			else
    207 				timevalsub(&aitv.it_value, &time);
    208 	} else
    209 		aitv = p->p_stats->p_timer[uap->which];
    210 	splx(s);
    211 	return (copyout((caddr_t)&aitv, (caddr_t)uap->itv,
    212 	    sizeof (struct itimerval)));
    213 }
    214 
    215 /* ARGSUSED */
    216 int
    217 setitimer(p, uap, retval)
    218 	struct proc *p;
    219 	register struct args {
    220 		u_int	which;
    221 		struct	itimerval *itv, *oitv;
    222 	} *uap;
    223 	int *retval;
    224 {
    225 	struct itimerval aitv;
    226 	register struct itimerval *itvp;
    227 	int s, error;
    228 
    229 	if (uap->which > ITIMER_PROF)
    230 		return (EINVAL);
    231 	itvp = uap->itv;
    232 	if (itvp && (error = copyin((caddr_t)itvp, (caddr_t)&aitv,
    233 	    sizeof(struct itimerval))))
    234 		return (error);
    235 	if ((uap->itv = uap->oitv) && (error = getitimer(p, uap, retval)))
    236 		return (error);
    237 	if (itvp == 0)
    238 		return (0);
    239 	if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
    240 		return (EINVAL);
    241 	s = splclock();
    242 	if (uap->which == ITIMER_REAL) {
    243 		untimeout((timeout_t)realitexpire, (caddr_t)p);
    244 		if (timerisset(&aitv.it_value)) {
    245 			timevaladd(&aitv.it_value, &time);
    246 			timeout((timeout_t)realitexpire, (caddr_t)p, hzto(&aitv.it_value));
    247 		}
    248 		p->p_realtimer = aitv;
    249 	} else
    250 		p->p_stats->p_timer[uap->which] = aitv;
    251 	splx(s);
    252 	return (0);
    253 }
    254 
    255 /*
    256  * Real interval timer expired:
    257  * send process whose timer expired an alarm signal.
    258  * If time is not set up to reload, then just return.
    259  * Else compute next time timer should go off which is > current time.
    260  * This is where delay in processing this timeout causes multiple
    261  * SIGALRM calls to be compressed into one.
    262  */
    263 void
    264 realitexpire(p)
    265 	register struct proc *p;
    266 {
    267 	int s;
    268 
    269 	psignal(p, SIGALRM);
    270 	if (!timerisset(&p->p_realtimer.it_interval)) {
    271 		timerclear(&p->p_realtimer.it_value);
    272 		return;
    273 	}
    274 	for (;;) {
    275 		s = splclock();
    276 		timevaladd(&p->p_realtimer.it_value,
    277 		    &p->p_realtimer.it_interval);
    278 		if (timercmp(&p->p_realtimer.it_value, &time, >)) {
    279 			timeout((timeout_t)realitexpire, (caddr_t)p,
    280 			    hzto(&p->p_realtimer.it_value));
    281 			splx(s);
    282 			return;
    283 		}
    284 		splx(s);
    285 	}
    286 }
    287 
    288 /*
    289  * Check that a proposed value to load into the .it_value or
    290  * .it_interval part of an interval timer is acceptable, and
    291  * fix it to have at least minimal value (i.e. if it is less
    292  * than the resolution of the clock, round it up.)
    293  */
    294 int
    295 itimerfix(tv)
    296 	struct timeval *tv;
    297 {
    298 
    299 	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
    300 	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
    301 		return (EINVAL);
    302 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
    303 		tv->tv_usec = tick;
    304 	return (0);
    305 }
    306 
    307 /*
    308  * Decrement an interval timer by a specified number
    309  * of microseconds, which must be less than a second,
    310  * i.e. < 1000000.  If the timer expires, then reload
    311  * it.  In this case, carry over (usec - old value) to
    312  * reducint the value reloaded into the timer so that
    313  * the timer does not drift.  This routine assumes
    314  * that it is called in a context where the timers
    315  * on which it is operating cannot change in value.
    316  */
    317 int
    318 itimerdecr(itp, usec)
    319 	register struct itimerval *itp;
    320 	int usec;
    321 {
    322 
    323 	if (itp->it_value.tv_usec < usec) {
    324 		if (itp->it_value.tv_sec == 0) {
    325 			/* expired, and already in next interval */
    326 			usec -= itp->it_value.tv_usec;
    327 			goto expire;
    328 		}
    329 		itp->it_value.tv_usec += 1000000;
    330 		itp->it_value.tv_sec--;
    331 	}
    332 	itp->it_value.tv_usec -= usec;
    333 	usec = 0;
    334 	if (timerisset(&itp->it_value))
    335 		return (1);
    336 	/* expired, exactly at end of interval */
    337 expire:
    338 	if (timerisset(&itp->it_interval)) {
    339 		itp->it_value = itp->it_interval;
    340 		itp->it_value.tv_usec -= usec;
    341 		if (itp->it_value.tv_usec < 0) {
    342 			itp->it_value.tv_usec += 1000000;
    343 			itp->it_value.tv_sec--;
    344 		}
    345 	} else
    346 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
    347 	return (0);
    348 }
    349 
    350 /*
    351  * Add and subtract routines for timevals.
    352  * N.B.: subtract routine doesn't deal with
    353  * results which are before the beginning,
    354  * it just gets very confused in this case.
    355  * Caveat emptor.
    356  */
    357 void
    358 timevaladd(t1, t2)
    359 	struct timeval *t1, *t2;
    360 {
    361 
    362 	t1->tv_sec += t2->tv_sec;
    363 	t1->tv_usec += t2->tv_usec;
    364 	timevalfix(t1);
    365 }
    366 
    367 void
    368 timevalsub(t1, t2)
    369 	struct timeval *t1, *t2;
    370 {
    371 
    372 	t1->tv_sec -= t2->tv_sec;
    373 	t1->tv_usec -= t2->tv_usec;
    374 	timevalfix(t1);
    375 }
    376 
    377 void
    378 timevalfix(t1)
    379 	struct timeval *t1;
    380 {
    381 
    382 	if (t1->tv_usec < 0) {
    383 		t1->tv_sec--;
    384 		t1->tv_usec += 1000000;
    385 	}
    386 	if (t1->tv_usec >= 1000000) {
    387 		t1->tv_sec++;
    388 		t1->tv_usec -= 1000000;
    389 	}
    390 }
    391