Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.31
      1 /*	$NetBSD: kern_time.c,v 1.31 1998/02/19 00:51:38 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by the University of
     18  *	California, Berkeley and its contributors.
     19  * 4. Neither the name of the University nor the names of its contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  * SUCH DAMAGE.
     34  *
     35  *	@(#)kern_time.c	8.1 (Berkeley) 6/10/93
     36  */
     37 
     38 #include "fs_nfs.h"
     39 
     40 #include <sys/param.h>
     41 #include <sys/resourcevar.h>
     42 #include <sys/kernel.h>
     43 #include <sys/systm.h>
     44 #include <sys/proc.h>
     45 #include <sys/vnode.h>
     46 #include <sys/signalvar.h>
     47 #include <sys/syslog.h>
     48 
     49 #include <sys/mount.h>
     50 #include <sys/syscallargs.h>
     51 
     52 #if defined(NFS) || defined(NFSSERVER)
     53 #include <nfs/rpcv2.h>
     54 #include <nfs/nfsproto.h>
     55 #include <nfs/nfs_var.h>
     56 #endif
     57 
     58 #include <machine/cpu.h>
     59 
     60 static int	settime __P((struct timeval *));
     61 
     62 /*
     63  * Time of day and interval timer support.
     64  *
     65  * These routines provide the kernel entry points to get and set
     66  * the time-of-day and per-process interval timers.  Subroutines
     67  * here provide support for adding and subtracting timeval structures
     68  * and decrementing interval timers, optionally reloading the interval
     69  * timers when they expire.
     70  */
     71 
     72 /* This function is used by clock_settime and settimeofday */
     73 static int
     74 settime(tv)
     75 	struct timeval *tv;
     76 {
     77 	struct timeval delta;
     78 	int s;
     79 
     80 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
     81 	s = splclock();
     82 	timersub(tv, &time, &delta);
     83 	if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1)
     84 		return (EPERM);
     85 #ifdef notyet
     86 	if ((delta.tv_sec < 86400) && securelevel > 0)
     87 		return (EPERM);
     88 #endif
     89 	time = *tv;
     90 	(void) splsoftclock();
     91 	timeradd(&boottime, &delta, &boottime);
     92 	timeradd(&runtime, &delta, &runtime);
     93 #	if defined(NFS) || defined(NFSSERVER)
     94 		nqnfs_lease_updatetime(delta.tv_sec);
     95 #	endif
     96 	splx(s);
     97 	resettodr();
     98 	return (0);
     99 }
    100 
    101 /* ARGSUSED */
    102 int
    103 sys_clock_gettime(p, v, retval)
    104 	struct proc *p;
    105 	void *v;
    106 	register_t *retval;
    107 {
    108 	register struct sys_clock_gettime_args /* {
    109 		syscallarg(clockid_t) clock_id;
    110 		syscallarg(struct timespec *) tp;
    111 	} */ *uap = v;
    112 	clockid_t clock_id;
    113 	struct timeval atv;
    114 	struct timespec ats;
    115 
    116 	clock_id = SCARG(uap, clock_id);
    117 	if (clock_id != CLOCK_REALTIME)
    118 		return (EINVAL);
    119 
    120 	microtime(&atv);
    121 	TIMEVAL_TO_TIMESPEC(&atv,&ats);
    122 
    123 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    124 }
    125 
    126 /* ARGSUSED */
    127 int
    128 sys_clock_settime(p, v, retval)
    129 	struct proc *p;
    130 	void *v;
    131 	register_t *retval;
    132 {
    133 	register struct sys_clock_settime_args /* {
    134 		syscallarg(clockid_t) clock_id;
    135 		syscallarg(const struct timespec *) tp;
    136 	} */ *uap = v;
    137 	clockid_t clock_id;
    138 	struct timeval atv;
    139 	struct timespec ats;
    140 	int error;
    141 
    142 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    143 		return (error);
    144 
    145 	clock_id = SCARG(uap, clock_id);
    146 	if (clock_id != CLOCK_REALTIME)
    147 		return (EINVAL);
    148 
    149 	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
    150 		return (error);
    151 
    152 	TIMESPEC_TO_TIMEVAL(&atv,&ats);
    153 	if ((error = settime(&atv)))
    154 		return (error);
    155 
    156 	return 0;
    157 }
    158 
    159 int
    160 sys_clock_getres(p, v, retval)
    161 	struct proc *p;
    162 	void *v;
    163 	register_t *retval;
    164 {
    165 	register struct sys_clock_getres_args /* {
    166 		syscallarg(clockid_t) clock_id;
    167 		syscallarg(struct timespec *) tp;
    168 	} */ *uap = v;
    169 	clockid_t clock_id;
    170 	struct timespec ts;
    171 	int error = 0;
    172 
    173 	clock_id = SCARG(uap, clock_id);
    174 	if (clock_id != CLOCK_REALTIME)
    175 		return (EINVAL);
    176 
    177 	if (SCARG(uap, tp)) {
    178 		ts.tv_sec = 0;
    179 		ts.tv_nsec = 1000000000 / hz;
    180 
    181 		error = copyout(&ts, SCARG(uap, tp), sizeof (ts));
    182 	}
    183 
    184 	return error;
    185 }
    186 
    187 /* ARGSUSED */
    188 int
    189 sys_nanosleep(p, v, retval)
    190 	struct proc *p;
    191 	void *v;
    192 	register_t *retval;
    193 {
    194 	static int nanowait;
    195 	register struct sys_nanosleep_args/* {
    196 		syscallarg(struct timespec *) rqtp;
    197 		syscallarg(struct timespec *) rmtp;
    198 	} */ *uap = v;
    199 	struct timespec rqt;
    200 	struct timespec rmt;
    201 	struct timeval atv, utv;
    202 	int error, s, timo;
    203 
    204 	error = copyin((caddr_t)SCARG(uap, rqtp), (caddr_t)&rqt,
    205 		       sizeof(struct timespec));
    206 	if (error)
    207 		return (error);
    208 
    209 	TIMESPEC_TO_TIMEVAL(&atv,&rqt)
    210 	if (itimerfix(&atv))
    211 		return (EINVAL);
    212 
    213 	s = splclock();
    214 	timeradd(&atv,&time,&atv);
    215 	timo = hzto(&atv);
    216 	/*
    217 	 * Avoid inadvertantly sleeping forever
    218 	 */
    219 	if (timo == 0)
    220 		timo = 1;
    221 	splx(s);
    222 
    223 	error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
    224 	if (error == ERESTART)
    225 		error = EINTR;
    226 	if (error == EWOULDBLOCK)
    227 		error = 0;
    228 
    229 	if (SCARG(uap, rmtp)) {
    230 		int error;
    231 
    232 		s = splclock();
    233 		utv = time;
    234 		splx(s);
    235 
    236 		timersub(&atv, &utv, &utv);
    237 		if (utv.tv_sec < 0)
    238 			timerclear(&utv);
    239 
    240 		TIMEVAL_TO_TIMESPEC(&utv,&rmt);
    241 		error = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
    242 			sizeof(rmt));
    243 		if (error)
    244 			return (error);
    245 	}
    246 
    247 	return error;
    248 }
    249 
    250 /* ARGSUSED */
    251 int
    252 sys_gettimeofday(p, v, retval)
    253 	struct proc *p;
    254 	void *v;
    255 	register_t *retval;
    256 {
    257 	register struct sys_gettimeofday_args /* {
    258 		syscallarg(struct timeval *) tp;
    259 		syscallarg(struct timezone *) tzp;
    260 	} */ *uap = v;
    261 	struct timeval atv;
    262 	int error = 0;
    263 	struct timezone tzfake;
    264 
    265 	if (SCARG(uap, tp)) {
    266 		microtime(&atv);
    267 		error = copyout(&atv, SCARG(uap, tp), sizeof (atv));
    268 		if (error)
    269 			return (error);
    270 	}
    271 	if (SCARG(uap, tzp)) {
    272 		/*
    273 		 * NetBSD has no kernel notion of timezone, so we just
    274 		 * fake up a timezone struct and return it if demanded.
    275 		 */
    276 		tzfake.tz_minuteswest = 0;
    277 		tzfake.tz_dsttime = 0;
    278 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof (tzfake));
    279 	}
    280 	return (error);
    281 }
    282 
    283 /* ARGSUSED */
    284 int
    285 sys_settimeofday(p, v, retval)
    286 	struct proc *p;
    287 	void *v;
    288 	register_t *retval;
    289 {
    290 	struct sys_settimeofday_args /* {
    291 		syscallarg(const struct timeval *) tv;
    292 		syscallarg(const struct timezone *) tzp;
    293 	} */ *uap = v;
    294 	struct timeval atv;
    295 	struct timezone atz;
    296 	int error;
    297 
    298 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    299 		return (error);
    300 	/* Verify all parameters before changing time. */
    301 	if (SCARG(uap, tv) && (error = copyin(SCARG(uap, tv),
    302 	    &atv, sizeof(atv))))
    303 		return (error);
    304 	/* XXX since we don't use tz, probably no point in doing copyin. */
    305 	if (SCARG(uap, tzp) && (error = copyin(SCARG(uap, tzp),
    306 	    &atz, sizeof(atz))))
    307 		return (error);
    308 	if (SCARG(uap, tv))
    309 		if ((error = settime(&atv)))
    310 			return (error);
    311 	/*
    312 	 * NetBSD has no kernel notion of timezone, and only an
    313 	 * obsolete program would try to set it, so we log a warning.
    314 	 */
    315 	if (SCARG(uap, tzp))
    316 		log(LOG_WARNING, "pid %d attempted to set the "
    317 		    "(obsolete) kernel timezone.", p->p_pid);
    318 	return (0);
    319 }
    320 
    321 int	tickdelta;			/* current clock skew, us. per tick */
    322 long	timedelta;			/* unapplied time correction, us. */
    323 long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
    324 
    325 /* ARGSUSED */
    326 int
    327 sys_adjtime(p, v, retval)
    328 	struct proc *p;
    329 	void *v;
    330 	register_t *retval;
    331 {
    332 	register struct sys_adjtime_args /* {
    333 		syscallarg(const struct timeval *) delta;
    334 		syscallarg(struct timeval *) olddelta;
    335 	} */ *uap = v;
    336 	struct timeval atv;
    337 	register long ndelta, ntickdelta, odelta;
    338 	int s, error;
    339 
    340 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    341 		return (error);
    342 
    343 	error = copyin(SCARG(uap, delta), &atv, sizeof(struct timeval));
    344 	if (error)
    345 		return (error);
    346 
    347 	/*
    348 	 * Compute the total correction and the rate at which to apply it.
    349 	 * Round the adjustment down to a whole multiple of the per-tick
    350 	 * delta, so that after some number of incremental changes in
    351 	 * hardclock(), tickdelta will become zero, lest the correction
    352 	 * overshoot and start taking us away from the desired final time.
    353 	 */
    354 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
    355 	if (ndelta > bigadj)
    356 		ntickdelta = 10 * tickadj;
    357 	else
    358 		ntickdelta = tickadj;
    359 	if (ndelta % ntickdelta)
    360 		ndelta = ndelta / ntickdelta * ntickdelta;
    361 
    362 	/*
    363 	 * To make hardclock()'s job easier, make the per-tick delta negative
    364 	 * if we want time to run slower; then hardclock can simply compute
    365 	 * tick + tickdelta, and subtract tickdelta from timedelta.
    366 	 */
    367 	if (ndelta < 0)
    368 		ntickdelta = -ntickdelta;
    369 	s = splclock();
    370 	odelta = timedelta;
    371 	timedelta = ndelta;
    372 	tickdelta = ntickdelta;
    373 	splx(s);
    374 
    375 	if (SCARG(uap, olddelta)) {
    376 		atv.tv_sec = odelta / 1000000;
    377 		atv.tv_usec = odelta % 1000000;
    378 		(void) copyout(&atv, SCARG(uap, olddelta),
    379 		    sizeof(struct timeval));
    380 	}
    381 	return (0);
    382 }
    383 
    384 /*
    385  * Get value of an interval timer.  The process virtual and
    386  * profiling virtual time timers are kept in the p_stats area, since
    387  * they can be swapped out.  These are kept internally in the
    388  * way they are specified externally: in time until they expire.
    389  *
    390  * The real time interval timer is kept in the process table slot
    391  * for the process, and its value (it_value) is kept as an
    392  * absolute time rather than as a delta, so that it is easy to keep
    393  * periodic real-time signals from drifting.
    394  *
    395  * Virtual time timers are processed in the hardclock() routine of
    396  * kern_clock.c.  The real time timer is processed by a timeout
    397  * routine, called from the softclock() routine.  Since a callout
    398  * may be delayed in real time due to interrupt processing in the system,
    399  * it is possible for the real time timeout routine (realitexpire, given below),
    400  * to be delayed in real time past when it is supposed to occur.  It
    401  * does not suffice, therefore, to reload the real timer .it_value from the
    402  * real time timers .it_interval.  Rather, we compute the next time in
    403  * absolute time the timer should go off.
    404  */
    405 /* ARGSUSED */
    406 int
    407 sys_getitimer(p, v, retval)
    408 	struct proc *p;
    409 	void *v;
    410 	register_t *retval;
    411 {
    412 	register struct sys_getitimer_args /* {
    413 		syscallarg(int) which;
    414 		syscallarg(struct itimerval *) itv;
    415 	} */ *uap = v;
    416 	int which = SCARG(uap, which);
    417 	struct itimerval aitv;
    418 	int s;
    419 
    420 	if ((u_int)which > ITIMER_PROF)
    421 		return (EINVAL);
    422 	s = splclock();
    423 	if (which == ITIMER_REAL) {
    424 		/*
    425 		 * Convert from absolute to relative time in .it_value
    426 		 * part of real time timer.  If time for real time timer
    427 		 * has passed return 0, else return difference between
    428 		 * current time and time for the timer to go off.
    429 		 */
    430 		aitv = p->p_realtimer;
    431 		if (timerisset(&aitv.it_value))
    432 			if (timercmp(&aitv.it_value, &time, <))
    433 				timerclear(&aitv.it_value);
    434 			else
    435 				timersub(&aitv.it_value, &time, &aitv.it_value);
    436 	} else
    437 		aitv = p->p_stats->p_timer[which];
    438 	splx(s);
    439 	return (copyout(&aitv, SCARG(uap, itv), sizeof (struct itimerval)));
    440 }
    441 
    442 /* ARGSUSED */
    443 int
    444 sys_setitimer(p, v, retval)
    445 	struct proc *p;
    446 	register void *v;
    447 	register_t *retval;
    448 {
    449 	register struct sys_setitimer_args /* {
    450 		syscallarg(int) which;
    451 		syscallarg(const struct itimerval *) itv;
    452 		syscallarg(struct itimerval *) oitv;
    453 	} */ *uap = v;
    454 	int which = SCARG(uap, which);
    455 	struct sys_getitimer_args getargs;
    456 	struct itimerval aitv;
    457 	register const struct itimerval *itvp;
    458 	int s, error;
    459 
    460 	if ((u_int)which > ITIMER_PROF)
    461 		return (EINVAL);
    462 	itvp = SCARG(uap, itv);
    463 	if (itvp && (error = copyin(itvp, &aitv, sizeof(struct itimerval))))
    464 		return (error);
    465 	if (SCARG(uap, oitv) != NULL) {
    466 		SCARG(&getargs, which) = which;
    467 		SCARG(&getargs, itv) = SCARG(uap, oitv);
    468 		if ((error = sys_getitimer(p, &getargs, retval)) != 0)
    469 			return (error);
    470 	}
    471 	if (itvp == 0)
    472 		return (0);
    473 	if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
    474 		return (EINVAL);
    475 	s = splclock();
    476 	if (which == ITIMER_REAL) {
    477 		untimeout(realitexpire, p);
    478 		if (timerisset(&aitv.it_value)) {
    479 			timeradd(&aitv.it_value, &time, &aitv.it_value);
    480 			timeout(realitexpire, p, hzto(&aitv.it_value));
    481 		}
    482 		p->p_realtimer = aitv;
    483 	} else
    484 		p->p_stats->p_timer[which] = aitv;
    485 	splx(s);
    486 	return (0);
    487 }
    488 
    489 /*
    490  * Real interval timer expired:
    491  * send process whose timer expired an alarm signal.
    492  * If time is not set up to reload, then just return.
    493  * Else compute next time timer should go off which is > current time.
    494  * This is where delay in processing this timeout causes multiple
    495  * SIGALRM calls to be compressed into one.
    496  */
    497 void
    498 realitexpire(arg)
    499 	void *arg;
    500 {
    501 	register struct proc *p;
    502 	int s;
    503 
    504 	p = (struct proc *)arg;
    505 	psignal(p, SIGALRM);
    506 	if (!timerisset(&p->p_realtimer.it_interval)) {
    507 		timerclear(&p->p_realtimer.it_value);
    508 		return;
    509 	}
    510 	for (;;) {
    511 		s = splclock();
    512 		timeradd(&p->p_realtimer.it_value,
    513 		    &p->p_realtimer.it_interval, &p->p_realtimer.it_value);
    514 		if (timercmp(&p->p_realtimer.it_value, &time, >)) {
    515 			timeout(realitexpire, p,
    516 			    hzto(&p->p_realtimer.it_value));
    517 			splx(s);
    518 			return;
    519 		}
    520 		splx(s);
    521 	}
    522 }
    523 
    524 /*
    525  * Check that a proposed value to load into the .it_value or
    526  * .it_interval part of an interval timer is acceptable, and
    527  * fix it to have at least minimal value (i.e. if it is less
    528  * than the resolution of the clock, round it up.)
    529  */
    530 int
    531 itimerfix(tv)
    532 	struct timeval *tv;
    533 {
    534 
    535 	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
    536 	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
    537 		return (EINVAL);
    538 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
    539 		tv->tv_usec = tick;
    540 	return (0);
    541 }
    542 
    543 /*
    544  * Decrement an interval timer by a specified number
    545  * of microseconds, which must be less than a second,
    546  * i.e. < 1000000.  If the timer expires, then reload
    547  * it.  In this case, carry over (usec - old value) to
    548  * reduce the value reloaded into the timer so that
    549  * the timer does not drift.  This routine assumes
    550  * that it is called in a context where the timers
    551  * on which it is operating cannot change in value.
    552  */
    553 int
    554 itimerdecr(itp, usec)
    555 	register struct itimerval *itp;
    556 	int usec;
    557 {
    558 
    559 	if (itp->it_value.tv_usec < usec) {
    560 		if (itp->it_value.tv_sec == 0) {
    561 			/* expired, and already in next interval */
    562 			usec -= itp->it_value.tv_usec;
    563 			goto expire;
    564 		}
    565 		itp->it_value.tv_usec += 1000000;
    566 		itp->it_value.tv_sec--;
    567 	}
    568 	itp->it_value.tv_usec -= usec;
    569 	usec = 0;
    570 	if (timerisset(&itp->it_value))
    571 		return (1);
    572 	/* expired, exactly at end of interval */
    573 expire:
    574 	if (timerisset(&itp->it_interval)) {
    575 		itp->it_value = itp->it_interval;
    576 		itp->it_value.tv_usec -= usec;
    577 		if (itp->it_value.tv_usec < 0) {
    578 			itp->it_value.tv_usec += 1000000;
    579 			itp->it_value.tv_sec--;
    580 		}
    581 	} else
    582 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
    583 	return (0);
    584 }
    585