Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.36
      1 /*	$NetBSD: kern_time.c,v 1.36 1998/08/18 06:27:01 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by the University of
     18  *	California, Berkeley and its contributors.
     19  * 4. Neither the name of the University nor the names of its contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  * SUCH DAMAGE.
     34  *
     35  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     36  */
     37 
     38 #include "fs_nfs.h"
     39 #include "opt_nfsserver.h"
     40 
     41 #include <sys/param.h>
     42 #include <sys/resourcevar.h>
     43 #include <sys/kernel.h>
     44 #include <sys/systm.h>
     45 #include <sys/proc.h>
     46 #include <sys/vnode.h>
     47 #include <sys/signalvar.h>
     48 #include <sys/syslog.h>
     49 
     50 #include <sys/mount.h>
     51 #include <sys/syscallargs.h>
     52 
     53 #if defined(NFS) || defined(NFSSERVER)
     54 #include <nfs/rpcv2.h>
     55 #include <nfs/nfsproto.h>
     56 #include <nfs/nfs_var.h>
     57 #endif
     58 
     59 #include <machine/cpu.h>
     60 
     61 static int	settime __P((struct timeval *));
     62 
     63 /*
     64  * Time of day and interval timer support.
     65  *
     66  * These routines provide the kernel entry points to get and set
     67  * the time-of-day and per-process interval timers.  Subroutines
     68  * here provide support for adding and subtracting timeval structures
     69  * and decrementing interval timers, optionally reloading the interval
     70  * timers when they expire.
     71  */
     72 
     73 /* This function is used by clock_settime and settimeofday */
     74 static int
     75 settime(tv)
     76 	struct timeval *tv;
     77 {
     78 	struct timeval delta;
     79 	int s;
     80 
     81 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
     82 	s = splclock();
     83 	timersub(tv, &time, &delta);
     84 	if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1)
     85 		return (EPERM);
     86 #ifdef notyet
     87 	if ((delta.tv_sec < 86400) && securelevel > 0)
     88 		return (EPERM);
     89 #endif
     90 	time = *tv;
     91 	(void) splsoftclock();
     92 	timeradd(&boottime, &delta, &boottime);
     93 	timeradd(&runtime, &delta, &runtime);
     94 #	if defined(NFS) || defined(NFSSERVER)
     95 		nqnfs_lease_updatetime(delta.tv_sec);
     96 #	endif
     97 	splx(s);
     98 	resettodr();
     99 	return (0);
    100 }
    101 
    102 /* ARGSUSED */
    103 int
    104 sys_clock_gettime(p, v, retval)
    105 	struct proc *p;
    106 	void *v;
    107 	register_t *retval;
    108 {
    109 	register struct sys_clock_gettime_args /* {
    110 		syscallarg(clockid_t) clock_id;
    111 		syscallarg(struct timespec *) tp;
    112 	} */ *uap = v;
    113 	clockid_t clock_id;
    114 	struct timeval atv;
    115 	struct timespec ats;
    116 
    117 	clock_id = SCARG(uap, clock_id);
    118 	if (clock_id != CLOCK_REALTIME)
    119 		return (EINVAL);
    120 
    121 	microtime(&atv);
    122 	TIMEVAL_TO_TIMESPEC(&atv,&ats);
    123 
    124 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    125 }
    126 
    127 /* ARGSUSED */
    128 int
    129 sys_clock_settime(p, v, retval)
    130 	struct proc *p;
    131 	void *v;
    132 	register_t *retval;
    133 {
    134 	register struct sys_clock_settime_args /* {
    135 		syscallarg(clockid_t) clock_id;
    136 		syscallarg(const struct timespec *) tp;
    137 	} */ *uap = v;
    138 	clockid_t clock_id;
    139 	struct timeval atv;
    140 	struct timespec ats;
    141 	int error;
    142 
    143 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    144 		return (error);
    145 
    146 	clock_id = SCARG(uap, clock_id);
    147 	if (clock_id != CLOCK_REALTIME)
    148 		return (EINVAL);
    149 
    150 	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
    151 		return (error);
    152 
    153 	TIMESPEC_TO_TIMEVAL(&atv,&ats);
    154 	if ((error = settime(&atv)))
    155 		return (error);
    156 
    157 	return 0;
    158 }
    159 
    160 int
    161 sys_clock_getres(p, v, retval)
    162 	struct proc *p;
    163 	void *v;
    164 	register_t *retval;
    165 {
    166 	register struct sys_clock_getres_args /* {
    167 		syscallarg(clockid_t) clock_id;
    168 		syscallarg(struct timespec *) tp;
    169 	} */ *uap = v;
    170 	clockid_t clock_id;
    171 	struct timespec ts;
    172 	int error = 0;
    173 
    174 	clock_id = SCARG(uap, clock_id);
    175 	if (clock_id != CLOCK_REALTIME)
    176 		return (EINVAL);
    177 
    178 	if (SCARG(uap, tp)) {
    179 		ts.tv_sec = 0;
    180 		ts.tv_nsec = 1000000000 / hz;
    181 
    182 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    183 	}
    184 
    185 	return error;
    186 }
    187 
    188 /* ARGSUSED */
    189 int
    190 sys_nanosleep(p, v, retval)
    191 	struct proc *p;
    192 	void *v;
    193 	register_t *retval;
    194 {
    195 	static int nanowait;
    196 	register struct sys_nanosleep_args/* {
    197 		syscallarg(struct timespec *) rqtp;
    198 		syscallarg(struct timespec *) rmtp;
    199 	} */ *uap = v;
    200 	struct timespec rqt;
    201 	struct timespec rmt;
    202 	struct timeval atv, utv;
    203 	int error, s, timo;
    204 
    205 	error = copyin((caddr_t)SCARG(uap, rqtp), (caddr_t)&rqt,
    206 		       sizeof(struct timespec));
    207 	if (error)
    208 		return (error);
    209 
    210 	TIMESPEC_TO_TIMEVAL(&atv,&rqt)
    211 	if (itimerfix(&atv))
    212 		return (EINVAL);
    213 
    214 	s = splclock();
    215 	timeradd(&atv,&time,&atv);
    216 	timo = hzto(&atv);
    217 	/*
    218 	 * Avoid inadvertantly sleeping forever
    219 	 */
    220 	if (timo == 0)
    221 		timo = 1;
    222 	splx(s);
    223 
    224 	error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
    225 	if (error == ERESTART)
    226 		error = EINTR;
    227 	if (error == EWOULDBLOCK)
    228 		error = 0;
    229 
    230 	if (SCARG(uap, rmtp)) {
    231 		int error;
    232 
    233 		s = splclock();
    234 		utv = time;
    235 		splx(s);
    236 
    237 		timersub(&atv, &utv, &utv);
    238 		if (utv.tv_sec < 0)
    239 			timerclear(&utv);
    240 
    241 		TIMEVAL_TO_TIMESPEC(&utv,&rmt);
    242 		error = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
    243 			sizeof(rmt));
    244 		if (error)
    245 			return (error);
    246 	}
    247 
    248 	return error;
    249 }
    250 
    251 /* ARGSUSED */
    252 int
    253 sys_gettimeofday(p, v, retval)
    254 	struct proc *p;
    255 	void *v;
    256 	register_t *retval;
    257 {
    258 	register struct sys_gettimeofday_args /* {
    259 		syscallarg(struct timeval *) tp;
    260 		syscallarg(struct timezone *) tzp;
    261 	} */ *uap = v;
    262 	struct timeval atv;
    263 	int error = 0;
    264 	struct timezone tzfake;
    265 
    266 	if (SCARG(uap, tp)) {
    267 		microtime(&atv);
    268 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    269 		if (error)
    270 			return (error);
    271 	}
    272 	if (SCARG(uap, tzp)) {
    273 		/*
    274 		 * NetBSD has no kernel notion of time zone, so we just
    275 		 * fake up a timezone struct and return it if demanded.
    276 		 */
    277 		tzfake.tz_minuteswest = 0;
    278 		tzfake.tz_dsttime = 0;
    279 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    280 	}
    281 	return (error);
    282 }
    283 
    284 /* ARGSUSED */
    285 int
    286 sys_settimeofday(p, v, retval)
    287 	struct proc *p;
    288 	void *v;
    289 	register_t *retval;
    290 {
    291 	struct sys_settimeofday_args /* {
    292 		syscallarg(const struct timeval *) tv;
    293 		syscallarg(const struct timezone *) tzp;
    294 	} */ *uap = v;
    295 	struct timeval atv;
    296 	struct timezone atz;
    297 	int error;
    298 
    299 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    300 		return (error);
    301 	/* Verify all parameters before changing time. */
    302 	if (SCARG(uap, tv) && (error = copyin(SCARG(uap, tv),
    303 	    &atv, sizeof(atv))))
    304 		return (error);
    305 	/* XXX since we don't use tz, probably no point in doing copyin. */
    306 	if (SCARG(uap, tzp) && (error = copyin(SCARG(uap, tzp),
    307 	    &atz, sizeof(atz))))
    308 		return (error);
    309 	if (SCARG(uap, tv))
    310 		if ((error = settime(&atv)))
    311 			return (error);
    312 	/*
    313 	 * NetBSD has no kernel notion of time zone, and only an
    314 	 * obsolete program would try to set it, so we log a warning.
    315 	 */
    316 	if (SCARG(uap, tzp))
    317 		log(LOG_WARNING, "pid %d attempted to set the "
    318 		    "(obsolete) kernel time zone\n", p->p_pid);
    319 	return (0);
    320 }
    321 
    322 int	tickdelta;			/* current clock skew, us. per tick */
    323 long	timedelta;			/* unapplied time correction, us. */
    324 long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
    325 
    326 /* ARGSUSED */
    327 int
    328 sys_adjtime(p, v, retval)
    329 	struct proc *p;
    330 	void *v;
    331 	register_t *retval;
    332 {
    333 	register struct sys_adjtime_args /* {
    334 		syscallarg(const struct timeval *) delta;
    335 		syscallarg(struct timeval *) olddelta;
    336 	} */ *uap = v;
    337 	struct timeval atv;
    338 	register long ndelta, ntickdelta, odelta;
    339 	int s, error;
    340 
    341 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    342 		return (error);
    343 
    344 	error = copyin(SCARG(uap, delta), &atv, sizeof(struct timeval));
    345 	if (error)
    346 		return (error);
    347 
    348 	/*
    349 	 * Compute the total correction and the rate at which to apply it.
    350 	 * Round the adjustment down to a whole multiple of the per-tick
    351 	 * delta, so that after some number of incremental changes in
    352 	 * hardclock(), tickdelta will become zero, lest the correction
    353 	 * overshoot and start taking us away from the desired final time.
    354 	 */
    355 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
    356 	if (ndelta > bigadj)
    357 		ntickdelta = 10 * tickadj;
    358 	else
    359 		ntickdelta = tickadj;
    360 	if (ndelta % ntickdelta)
    361 		ndelta = ndelta / ntickdelta * ntickdelta;
    362 
    363 	/*
    364 	 * To make hardclock()'s job easier, make the per-tick delta negative
    365 	 * if we want time to run slower; then hardclock can simply compute
    366 	 * tick + tickdelta, and subtract tickdelta from timedelta.
    367 	 */
    368 	if (ndelta < 0)
    369 		ntickdelta = -ntickdelta;
    370 	s = splclock();
    371 	odelta = timedelta;
    372 	timedelta = ndelta;
    373 	tickdelta = ntickdelta;
    374 	splx(s);
    375 
    376 	if (SCARG(uap, olddelta)) {
    377 		atv.tv_sec = odelta / 1000000;
    378 		atv.tv_usec = odelta % 1000000;
    379 		(void) copyout(&atv, SCARG(uap, olddelta),
    380 		    sizeof(struct timeval));
    381 	}
    382 	return (0);
    383 }
    384 
    385 /*
    386  * Get value of an interval timer.  The process virtual and
    387  * profiling virtual time timers are kept in the p_stats area, since
    388  * they can be swapped out.  These are kept internally in the
    389  * way they are specified externally: in time until they expire.
    390  *
    391  * The real time interval timer is kept in the process table slot
    392  * for the process, and its value (it_value) is kept as an
    393  * absolute time rather than as a delta, so that it is easy to keep
    394  * periodic real-time signals from drifting.
    395  *
    396  * Virtual time timers are processed in the hardclock() routine of
    397  * kern_clock.c.  The real time timer is processed by a timeout
    398  * routine, called from the softclock() routine.  Since a callout
    399  * may be delayed in real time due to interrupt processing in the system,
    400  * it is possible for the real time timeout routine (realitexpire, given below),
    401  * to be delayed in real time past when it is supposed to occur.  It
    402  * does not suffice, therefore, to reload the real timer .it_value from the
    403  * real time timers .it_interval.  Rather, we compute the next time in
    404  * absolute time the timer should go off.
    405  */
    406 /* ARGSUSED */
    407 int
    408 sys_getitimer(p, v, retval)
    409 	struct proc *p;
    410 	void *v;
    411 	register_t *retval;
    412 {
    413 	register struct sys_getitimer_args /* {
    414 		syscallarg(int) which;
    415 		syscallarg(struct itimerval *) itv;
    416 	} */ *uap = v;
    417 	int which = SCARG(uap, which);
    418 	struct itimerval aitv;
    419 	int s;
    420 
    421 	if ((u_int)which > ITIMER_PROF)
    422 		return (EINVAL);
    423 	s = splclock();
    424 	if (which == ITIMER_REAL) {
    425 		/*
    426 		 * Convert from absolute to relative time in .it_value
    427 		 * part of real time timer.  If time for real time timer
    428 		 * has passed return 0, else return difference between
    429 		 * current time and time for the timer to go off.
    430 		 */
    431 		aitv = p->p_realtimer;
    432 		if (timerisset(&aitv.it_value)) {
    433 			if (timercmp(&aitv.it_value, &time, <))
    434 				timerclear(&aitv.it_value);
    435 			else
    436 				timersub(&aitv.it_value, &time, &aitv.it_value);
    437 		}
    438 	} else
    439 		aitv = p->p_stats->p_timer[which];
    440 	splx(s);
    441 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
    442 }
    443 
    444 /* ARGSUSED */
    445 int
    446 sys_setitimer(p, v, retval)
    447 	struct proc *p;
    448 	register void *v;
    449 	register_t *retval;
    450 {
    451 	register struct sys_setitimer_args /* {
    452 		syscallarg(int) which;
    453 		syscallarg(const struct itimerval *) itv;
    454 		syscallarg(struct itimerval *) oitv;
    455 	} */ *uap = v;
    456 	int which = SCARG(uap, which);
    457 	struct sys_getitimer_args getargs;
    458 	struct itimerval aitv;
    459 	register const struct itimerval *itvp;
    460 	int s, error;
    461 
    462 	if ((u_int)which > ITIMER_PROF)
    463 		return (EINVAL);
    464 	itvp = SCARG(uap, itv);
    465 	if (itvp && (error = copyin(itvp, &aitv, sizeof(struct itimerval))))
    466 		return (error);
    467 	if (SCARG(uap, oitv) != NULL) {
    468 		SCARG(&getargs, which) = which;
    469 		SCARG(&getargs, itv) = SCARG(uap, oitv);
    470 		if ((error = sys_getitimer(p, &getargs, retval)) != 0)
    471 			return (error);
    472 	}
    473 	if (itvp == 0)
    474 		return (0);
    475 	if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
    476 		return (EINVAL);
    477 	s = splclock();
    478 	if (which == ITIMER_REAL) {
    479 		untimeout(realitexpire, p);
    480 		if (timerisset(&aitv.it_value)) {
    481 			timeradd(&aitv.it_value, &time, &aitv.it_value);
    482 			timeout(realitexpire, p, hzto(&aitv.it_value));
    483 		}
    484 		p->p_realtimer = aitv;
    485 	} else
    486 		p->p_stats->p_timer[which] = aitv;
    487 	splx(s);
    488 	return (0);
    489 }
    490 
    491 /*
    492  * Real interval timer expired:
    493  * send process whose timer expired an alarm signal.
    494  * If time is not set up to reload, then just return.
    495  * Else compute next time timer should go off which is > current time.
    496  * This is where delay in processing this timeout causes multiple
    497  * SIGALRM calls to be compressed into one.
    498  */
    499 void
    500 realitexpire(arg)
    501 	void *arg;
    502 {
    503 	register struct proc *p;
    504 	int s;
    505 
    506 	p = (struct proc *)arg;
    507 	psignal(p, SIGALRM);
    508 	if (!timerisset(&p->p_realtimer.it_interval)) {
    509 		timerclear(&p->p_realtimer.it_value);
    510 		return;
    511 	}
    512 	for (;;) {
    513 		s = splclock();
    514 		timeradd(&p->p_realtimer.it_value,
    515 		    &p->p_realtimer.it_interval, &p->p_realtimer.it_value);
    516 		if (timercmp(&p->p_realtimer.it_value, &time, >)) {
    517 			timeout(realitexpire, p,
    518 			    hzto(&p->p_realtimer.it_value));
    519 			splx(s);
    520 			return;
    521 		}
    522 		splx(s);
    523 	}
    524 }
    525 
    526 /*
    527  * Check that a proposed value to load into the .it_value or
    528  * .it_interval part of an interval timer is acceptable, and
    529  * fix it to have at least minimal value (i.e. if it is less
    530  * than the resolution of the clock, round it up.)
    531  */
    532 int
    533 itimerfix(tv)
    534 	struct timeval *tv;
    535 {
    536 
    537 	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
    538 	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
    539 		return (EINVAL);
    540 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
    541 		tv->tv_usec = tick;
    542 	return (0);
    543 }
    544 
    545 /*
    546  * Decrement an interval timer by a specified number
    547  * of microseconds, which must be less than a second,
    548  * i.e. < 1000000.  If the timer expires, then reload
    549  * it.  In this case, carry over (usec - old value) to
    550  * reduce the value reloaded into the timer so that
    551  * the timer does not drift.  This routine assumes
    552  * that it is called in a context where the timers
    553  * on which it is operating cannot change in value.
    554  */
    555 int
    556 itimerdecr(itp, usec)
    557 	register struct itimerval *itp;
    558 	int usec;
    559 {
    560 
    561 	if (itp->it_value.tv_usec < usec) {
    562 		if (itp->it_value.tv_sec == 0) {
    563 			/* expired, and already in next interval */
    564 			usec -= itp->it_value.tv_usec;
    565 			goto expire;
    566 		}
    567 		itp->it_value.tv_usec += 1000000;
    568 		itp->it_value.tv_sec--;
    569 	}
    570 	itp->it_value.tv_usec -= usec;
    571 	usec = 0;
    572 	if (timerisset(&itp->it_value))
    573 		return (1);
    574 	/* expired, exactly at end of interval */
    575 expire:
    576 	if (timerisset(&itp->it_interval)) {
    577 		itp->it_value = itp->it_interval;
    578 		itp->it_value.tv_usec -= usec;
    579 		if (itp->it_value.tv_usec < 0) {
    580 			itp->it_value.tv_usec += 1000000;
    581 			itp->it_value.tv_sec--;
    582 		}
    583 	} else
    584 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
    585 	return (0);
    586 }
    587