Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.36.6.3
      1 /*	$NetBSD: kern_time.c,v 1.36.6.3 2000/02/18 20:25:34 he Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Christopher G. Demetriou.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Copyright (c) 1982, 1986, 1989, 1993
     41  *	The Regents of the University of California.  All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. All advertising materials mentioning features or use of this software
     52  *    must display the following acknowledgement:
     53  *	This product includes software developed by the University of
     54  *	California, Berkeley and its contributors.
     55  * 4. Neither the name of the University nor the names of its contributors
     56  *    may be used to endorse or promote products derived from this software
     57  *    without specific prior written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     69  * SUCH DAMAGE.
     70  *
     71  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     72  */
     73 
     74 #include "fs_nfs.h"
     75 #include "opt_nfsserver.h"
     76 
     77 #include <sys/param.h>
     78 #include <sys/resourcevar.h>
     79 #include <sys/kernel.h>
     80 #include <sys/systm.h>
     81 #include <sys/proc.h>
     82 #include <sys/vnode.h>
     83 #include <sys/signalvar.h>
     84 #include <sys/syslog.h>
     85 
     86 #include <sys/mount.h>
     87 #include <sys/syscallargs.h>
     88 
     89 #include <vm/vm.h>
     90 #include <uvm/uvm_extern.h>
     91 
     92 #if defined(NFS) || defined(NFSSERVER)
     93 #include <nfs/rpcv2.h>
     94 #include <nfs/nfsproto.h>
     95 #include <nfs/nfs_var.h>
     96 #endif
     97 
     98 #include <machine/cpu.h>
     99 
    100 static int	settime __P((struct timeval *));
    101 
    102 /*
    103  * Time of day and interval timer support.
    104  *
    105  * These routines provide the kernel entry points to get and set
    106  * the time-of-day and per-process interval timers.  Subroutines
    107  * here provide support for adding and subtracting timeval structures
    108  * and decrementing interval timers, optionally reloading the interval
    109  * timers when they expire.
    110  */
    111 
    112 /* This function is used by clock_settime and settimeofday */
    113 static int
    114 settime(tv)
    115 	struct timeval *tv;
    116 {
    117 	struct timeval delta;
    118 	int s;
    119 
    120 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    121 	s = splclock();
    122 	timersub(tv, &time, &delta);
    123 	if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1)
    124 		return (EPERM);
    125 #ifdef notyet
    126 	if ((delta.tv_sec < 86400) && securelevel > 0)
    127 		return (EPERM);
    128 #endif
    129 	time = *tv;
    130 	(void) splsoftclock();
    131 	timeradd(&boottime, &delta, &boottime);
    132 	timeradd(&runtime, &delta, &runtime);
    133 #	if defined(NFS) || defined(NFSSERVER)
    134 		nqnfs_lease_updatetime(delta.tv_sec);
    135 #	endif
    136 	splx(s);
    137 	resettodr();
    138 	return (0);
    139 }
    140 
    141 /* ARGSUSED */
    142 int
    143 sys_clock_gettime(p, v, retval)
    144 	struct proc *p;
    145 	void *v;
    146 	register_t *retval;
    147 {
    148 	register struct sys_clock_gettime_args /* {
    149 		syscallarg(clockid_t) clock_id;
    150 		syscallarg(struct timespec *) tp;
    151 	} */ *uap = v;
    152 	clockid_t clock_id;
    153 	struct timeval atv;
    154 	struct timespec ats;
    155 
    156 	clock_id = SCARG(uap, clock_id);
    157 	if (clock_id != CLOCK_REALTIME)
    158 		return (EINVAL);
    159 
    160 	microtime(&atv);
    161 	TIMEVAL_TO_TIMESPEC(&atv,&ats);
    162 
    163 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    164 }
    165 
    166 /* ARGSUSED */
    167 int
    168 sys_clock_settime(p, v, retval)
    169 	struct proc *p;
    170 	void *v;
    171 	register_t *retval;
    172 {
    173 	register struct sys_clock_settime_args /* {
    174 		syscallarg(clockid_t) clock_id;
    175 		syscallarg(const struct timespec *) tp;
    176 	} */ *uap = v;
    177 	clockid_t clock_id;
    178 	struct timeval atv;
    179 	struct timespec ats;
    180 	int error;
    181 
    182 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    183 		return (error);
    184 
    185 	clock_id = SCARG(uap, clock_id);
    186 	if (clock_id != CLOCK_REALTIME)
    187 		return (EINVAL);
    188 
    189 	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
    190 		return (error);
    191 
    192 	TIMESPEC_TO_TIMEVAL(&atv,&ats);
    193 	if ((error = settime(&atv)))
    194 		return (error);
    195 
    196 	return 0;
    197 }
    198 
    199 int
    200 sys_clock_getres(p, v, retval)
    201 	struct proc *p;
    202 	void *v;
    203 	register_t *retval;
    204 {
    205 	register struct sys_clock_getres_args /* {
    206 		syscallarg(clockid_t) clock_id;
    207 		syscallarg(struct timespec *) tp;
    208 	} */ *uap = v;
    209 	clockid_t clock_id;
    210 	struct timespec ts;
    211 	int error = 0;
    212 
    213 	clock_id = SCARG(uap, clock_id);
    214 	if (clock_id != CLOCK_REALTIME)
    215 		return (EINVAL);
    216 
    217 	if (SCARG(uap, tp)) {
    218 		ts.tv_sec = 0;
    219 		ts.tv_nsec = 1000000000 / hz;
    220 
    221 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    222 	}
    223 
    224 	return error;
    225 }
    226 
    227 /* ARGSUSED */
    228 int
    229 sys_nanosleep(p, v, retval)
    230 	struct proc *p;
    231 	void *v;
    232 	register_t *retval;
    233 {
    234 	static int nanowait;
    235 	register struct sys_nanosleep_args/* {
    236 		syscallarg(struct timespec *) rqtp;
    237 		syscallarg(struct timespec *) rmtp;
    238 	} */ *uap = v;
    239 	struct timespec rqt;
    240 	struct timespec rmt;
    241 	struct timeval atv, utv;
    242 	int error, s, timo;
    243 
    244 	error = copyin((caddr_t)SCARG(uap, rqtp), (caddr_t)&rqt,
    245 		       sizeof(struct timespec));
    246 	if (error)
    247 		return (error);
    248 
    249 	TIMESPEC_TO_TIMEVAL(&atv,&rqt)
    250 	if (itimerfix(&atv))
    251 		return (EINVAL);
    252 
    253 	s = splclock();
    254 	timeradd(&atv,&time,&atv);
    255 	timo = hzto(&atv);
    256 	/*
    257 	 * Avoid inadvertantly sleeping forever
    258 	 */
    259 	if (timo == 0)
    260 		timo = 1;
    261 	splx(s);
    262 
    263 	error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
    264 	if (error == ERESTART)
    265 		error = EINTR;
    266 	if (error == EWOULDBLOCK)
    267 		error = 0;
    268 
    269 	if (SCARG(uap, rmtp)) {
    270 		int error;
    271 
    272 		s = splclock();
    273 		utv = time;
    274 		splx(s);
    275 
    276 		timersub(&atv, &utv, &utv);
    277 		if (utv.tv_sec < 0)
    278 			timerclear(&utv);
    279 
    280 		TIMEVAL_TO_TIMESPEC(&utv,&rmt);
    281 		error = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
    282 			sizeof(rmt));
    283 		if (error)
    284 			return (error);
    285 	}
    286 
    287 	return error;
    288 }
    289 
    290 /* ARGSUSED */
    291 int
    292 sys_gettimeofday(p, v, retval)
    293 	struct proc *p;
    294 	void *v;
    295 	register_t *retval;
    296 {
    297 	register struct sys_gettimeofday_args /* {
    298 		syscallarg(struct timeval *) tp;
    299 		syscallarg(struct timezone *) tzp;
    300 	} */ *uap = v;
    301 	struct timeval atv;
    302 	int error = 0;
    303 	struct timezone tzfake;
    304 
    305 	if (SCARG(uap, tp)) {
    306 		microtime(&atv);
    307 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    308 		if (error)
    309 			return (error);
    310 	}
    311 	if (SCARG(uap, tzp)) {
    312 		/*
    313 		 * NetBSD has no kernel notion of time zone, so we just
    314 		 * fake up a timezone struct and return it if demanded.
    315 		 */
    316 		tzfake.tz_minuteswest = 0;
    317 		tzfake.tz_dsttime = 0;
    318 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    319 	}
    320 	return (error);
    321 }
    322 
    323 /* ARGSUSED */
    324 int
    325 sys_settimeofday(p, v, retval)
    326 	struct proc *p;
    327 	void *v;
    328 	register_t *retval;
    329 {
    330 	struct sys_settimeofday_args /* {
    331 		syscallarg(const struct timeval *) tv;
    332 		syscallarg(const struct timezone *) tzp;
    333 	} */ *uap = v;
    334 	struct timeval atv;
    335 	struct timezone atz;
    336 	int error;
    337 
    338 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    339 		return (error);
    340 	/* Verify all parameters before changing time. */
    341 	if (SCARG(uap, tv) && (error = copyin(SCARG(uap, tv),
    342 	    &atv, sizeof(atv))))
    343 		return (error);
    344 	/* XXX since we don't use tz, probably no point in doing copyin. */
    345 	if (SCARG(uap, tzp) && (error = copyin(SCARG(uap, tzp),
    346 	    &atz, sizeof(atz))))
    347 		return (error);
    348 	if (SCARG(uap, tv))
    349 		if ((error = settime(&atv)))
    350 			return (error);
    351 	/*
    352 	 * NetBSD has no kernel notion of time zone, and only an
    353 	 * obsolete program would try to set it, so we log a warning.
    354 	 */
    355 	if (SCARG(uap, tzp))
    356 		log(LOG_WARNING, "pid %d attempted to set the "
    357 		    "(obsolete) kernel time zone\n", p->p_pid);
    358 	return (0);
    359 }
    360 
    361 int	tickdelta;			/* current clock skew, us. per tick */
    362 long	timedelta;			/* unapplied time correction, us. */
    363 long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
    364 
    365 /* ARGSUSED */
    366 int
    367 sys_adjtime(p, v, retval)
    368 	struct proc *p;
    369 	void *v;
    370 	register_t *retval;
    371 {
    372 	register struct sys_adjtime_args /* {
    373 		syscallarg(const struct timeval *) delta;
    374 		syscallarg(struct timeval *) olddelta;
    375 	} */ *uap = v;
    376 	struct timeval atv;
    377 	register long ndelta, ntickdelta, odelta;
    378 	int s, error;
    379 
    380 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    381 		return (error);
    382 
    383 	error = copyin(SCARG(uap, delta), &atv, sizeof(struct timeval));
    384 	if (error)
    385 		return (error);
    386 	if (SCARG(uap, olddelta) != NULL &&
    387 	    uvm_useracc((caddr_t)SCARG(uap, olddelta), sizeof(struct timeval),
    388 	     B_WRITE) == FALSE)
    389 		return (EFAULT);
    390 
    391 	/*
    392 	 * Compute the total correction and the rate at which to apply it.
    393 	 * Round the adjustment down to a whole multiple of the per-tick
    394 	 * delta, so that after some number of incremental changes in
    395 	 * hardclock(), tickdelta will become zero, lest the correction
    396 	 * overshoot and start taking us away from the desired final time.
    397 	 */
    398 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
    399 	if (ndelta > bigadj || ndelta < -bigadj)
    400 		ntickdelta = 10 * tickadj;
    401 	else
    402 		ntickdelta = tickadj;
    403 	if (ndelta % ntickdelta)
    404 		ndelta = ndelta / ntickdelta * ntickdelta;
    405 
    406 	/*
    407 	 * To make hardclock()'s job easier, make the per-tick delta negative
    408 	 * if we want time to run slower; then hardclock can simply compute
    409 	 * tick + tickdelta, and subtract tickdelta from timedelta.
    410 	 */
    411 	if (ndelta < 0)
    412 		ntickdelta = -ntickdelta;
    413 	s = splclock();
    414 	odelta = timedelta;
    415 	timedelta = ndelta;
    416 	tickdelta = ntickdelta;
    417 	splx(s);
    418 
    419 	if (SCARG(uap, olddelta)) {
    420 		atv.tv_sec = odelta / 1000000;
    421 		atv.tv_usec = odelta % 1000000;
    422 		(void) copyout(&atv, SCARG(uap, olddelta),
    423 		    sizeof(struct timeval));
    424 	}
    425 	return (0);
    426 }
    427 
    428 /*
    429  * Get value of an interval timer.  The process virtual and
    430  * profiling virtual time timers are kept in the p_stats area, since
    431  * they can be swapped out.  These are kept internally in the
    432  * way they are specified externally: in time until they expire.
    433  *
    434  * The real time interval timer is kept in the process table slot
    435  * for the process, and its value (it_value) is kept as an
    436  * absolute time rather than as a delta, so that it is easy to keep
    437  * periodic real-time signals from drifting.
    438  *
    439  * Virtual time timers are processed in the hardclock() routine of
    440  * kern_clock.c.  The real time timer is processed by a timeout
    441  * routine, called from the softclock() routine.  Since a callout
    442  * may be delayed in real time due to interrupt processing in the system,
    443  * it is possible for the real time timeout routine (realitexpire, given below),
    444  * to be delayed in real time past when it is supposed to occur.  It
    445  * does not suffice, therefore, to reload the real timer .it_value from the
    446  * real time timers .it_interval.  Rather, we compute the next time in
    447  * absolute time the timer should go off.
    448  */
    449 /* ARGSUSED */
    450 int
    451 sys_getitimer(p, v, retval)
    452 	struct proc *p;
    453 	void *v;
    454 	register_t *retval;
    455 {
    456 	register struct sys_getitimer_args /* {
    457 		syscallarg(int) which;
    458 		syscallarg(struct itimerval *) itv;
    459 	} */ *uap = v;
    460 	int which = SCARG(uap, which);
    461 	struct itimerval aitv;
    462 	int s;
    463 
    464 	if ((u_int)which > ITIMER_PROF)
    465 		return (EINVAL);
    466 	s = splclock();
    467 	if (which == ITIMER_REAL) {
    468 		/*
    469 		 * Convert from absolute to relative time in .it_value
    470 		 * part of real time timer.  If time for real time timer
    471 		 * has passed return 0, else return difference between
    472 		 * current time and time for the timer to go off.
    473 		 */
    474 		aitv = p->p_realtimer;
    475 		if (timerisset(&aitv.it_value)) {
    476 			if (timercmp(&aitv.it_value, &time, <))
    477 				timerclear(&aitv.it_value);
    478 			else
    479 				timersub(&aitv.it_value, &time, &aitv.it_value);
    480 		}
    481 	} else
    482 		aitv = p->p_stats->p_timer[which];
    483 	splx(s);
    484 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
    485 }
    486 
    487 /* ARGSUSED */
    488 int
    489 sys_setitimer(p, v, retval)
    490 	struct proc *p;
    491 	register void *v;
    492 	register_t *retval;
    493 {
    494 	register struct sys_setitimer_args /* {
    495 		syscallarg(int) which;
    496 		syscallarg(const struct itimerval *) itv;
    497 		syscallarg(struct itimerval *) oitv;
    498 	} */ *uap = v;
    499 	int which = SCARG(uap, which);
    500 	struct sys_getitimer_args getargs;
    501 	struct itimerval aitv;
    502 	register const struct itimerval *itvp;
    503 	int s, error;
    504 
    505 	if ((u_int)which > ITIMER_PROF)
    506 		return (EINVAL);
    507 	itvp = SCARG(uap, itv);
    508 	if (itvp && (error = copyin(itvp, &aitv, sizeof(struct itimerval))))
    509 		return (error);
    510 	if (SCARG(uap, oitv) != NULL) {
    511 		SCARG(&getargs, which) = which;
    512 		SCARG(&getargs, itv) = SCARG(uap, oitv);
    513 		if ((error = sys_getitimer(p, &getargs, retval)) != 0)
    514 			return (error);
    515 	}
    516 	if (itvp == 0)
    517 		return (0);
    518 	if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
    519 		return (EINVAL);
    520 	s = splclock();
    521 	if (which == ITIMER_REAL) {
    522 		untimeout(realitexpire, p);
    523 		if (timerisset(&aitv.it_value)) {
    524 			timeradd(&aitv.it_value, &time, &aitv.it_value);
    525 			timeout(realitexpire, p, hzto(&aitv.it_value));
    526 		}
    527 		p->p_realtimer = aitv;
    528 	} else
    529 		p->p_stats->p_timer[which] = aitv;
    530 	splx(s);
    531 	return (0);
    532 }
    533 
    534 /*
    535  * Real interval timer expired:
    536  * send process whose timer expired an alarm signal.
    537  * If time is not set up to reload, then just return.
    538  * Else compute next time timer should go off which is > current time.
    539  * This is where delay in processing this timeout causes multiple
    540  * SIGALRM calls to be compressed into one.
    541  */
    542 void
    543 realitexpire(arg)
    544 	void *arg;
    545 {
    546 	register struct proc *p;
    547 	int s;
    548 
    549 	p = (struct proc *)arg;
    550 	psignal(p, SIGALRM);
    551 	if (!timerisset(&p->p_realtimer.it_interval)) {
    552 		timerclear(&p->p_realtimer.it_value);
    553 		return;
    554 	}
    555 	for (;;) {
    556 		s = splclock();
    557 		timeradd(&p->p_realtimer.it_value,
    558 		    &p->p_realtimer.it_interval, &p->p_realtimer.it_value);
    559 		if (timercmp(&p->p_realtimer.it_value, &time, >)) {
    560 			timeout(realitexpire, p,
    561 			    hzto(&p->p_realtimer.it_value));
    562 			splx(s);
    563 			return;
    564 		}
    565 		splx(s);
    566 	}
    567 }
    568 
    569 /*
    570  * Check that a proposed value to load into the .it_value or
    571  * .it_interval part of an interval timer is acceptable, and
    572  * fix it to have at least minimal value (i.e. if it is less
    573  * than the resolution of the clock, round it up.)
    574  */
    575 int
    576 itimerfix(tv)
    577 	struct timeval *tv;
    578 {
    579 
    580 	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
    581 	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
    582 		return (EINVAL);
    583 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
    584 		tv->tv_usec = tick;
    585 	return (0);
    586 }
    587 
    588 /*
    589  * Decrement an interval timer by a specified number
    590  * of microseconds, which must be less than a second,
    591  * i.e. < 1000000.  If the timer expires, then reload
    592  * it.  In this case, carry over (usec - old value) to
    593  * reduce the value reloaded into the timer so that
    594  * the timer does not drift.  This routine assumes
    595  * that it is called in a context where the timers
    596  * on which it is operating cannot change in value.
    597  */
    598 int
    599 itimerdecr(itp, usec)
    600 	register struct itimerval *itp;
    601 	int usec;
    602 {
    603 
    604 	if (itp->it_value.tv_usec < usec) {
    605 		if (itp->it_value.tv_sec == 0) {
    606 			/* expired, and already in next interval */
    607 			usec -= itp->it_value.tv_usec;
    608 			goto expire;
    609 		}
    610 		itp->it_value.tv_usec += 1000000;
    611 		itp->it_value.tv_sec--;
    612 	}
    613 	itp->it_value.tv_usec -= usec;
    614 	usec = 0;
    615 	if (timerisset(&itp->it_value))
    616 		return (1);
    617 	/* expired, exactly at end of interval */
    618 expire:
    619 	if (timerisset(&itp->it_interval)) {
    620 		itp->it_value = itp->it_interval;
    621 		itp->it_value.tv_usec -= usec;
    622 		if (itp->it_value.tv_usec < 0) {
    623 			itp->it_value.tv_usec += 1000000;
    624 			itp->it_value.tv_sec--;
    625 		}
    626 	} else
    627 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
    628 	return (0);
    629 }
    630 
    631 /*
    632  * ratecheck(): simple time-based rate-limit checking.  see ratecheck(9)
    633  * for usage and rationale.
    634  */
    635 int
    636 ratecheck(lasttime, mininterval)
    637 	struct timeval *lasttime;
    638 	const struct timeval *mininterval;
    639 {
    640 	struct timeval delta;
    641 	int s, rv = 0;
    642 
    643 	s = splclock();
    644 	timersub(&mono_time, lasttime, &delta);
    645 
    646 	/*
    647 	 * check for 0,0 is so that the message will be seen at least once,
    648 	 * even if interval is huge.
    649 	 */
    650 	if (timercmp(&delta, mininterval, >=) ||
    651 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
    652 		*lasttime = mono_time;
    653 		rv = 1;
    654 	}
    655 	splx(s);
    656 
    657 	return (rv);
    658 }
    659