Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.39
      1 /*	$NetBSD: kern_time.c,v 1.39 1999/08/16 18:42:25 tron Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by the University of
     18  *	California, Berkeley and its contributors.
     19  * 4. Neither the name of the University nor the names of its contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  * SUCH DAMAGE.
     34  *
     35  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     36  */
     37 
     38 #include "fs_nfs.h"
     39 #include "opt_nfsserver.h"
     40 
     41 #include <sys/param.h>
     42 #include <sys/resourcevar.h>
     43 #include <sys/kernel.h>
     44 #include <sys/systm.h>
     45 #include <sys/proc.h>
     46 #include <sys/vnode.h>
     47 #include <sys/signalvar.h>
     48 #include <sys/syslog.h>
     49 
     50 #include <sys/mount.h>
     51 #include <sys/syscallargs.h>
     52 
     53 #include <vm/vm.h>
     54 #include <uvm/uvm_extern.h>
     55 
     56 #if defined(NFS) || defined(NFSSERVER)
     57 #include <nfs/rpcv2.h>
     58 #include <nfs/nfsproto.h>
     59 #include <nfs/nfs_var.h>
     60 #endif
     61 
     62 #include <machine/cpu.h>
     63 
     64 int	settime __P((struct timeval *));
     65 
     66 /*
     67  * Time of day and interval timer support.
     68  *
     69  * These routines provide the kernel entry points to get and set
     70  * the time-of-day and per-process interval timers.  Subroutines
     71  * here provide support for adding and subtracting timeval structures
     72  * and decrementing interval timers, optionally reloading the interval
     73  * timers when they expire.
     74  */
     75 
     76 /* This function is used by clock_settime and settimeofday */
     77 int
     78 settime(tv)
     79 	struct timeval *tv;
     80 {
     81 	struct timeval delta;
     82 	int s;
     83 
     84 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
     85 	s = splclock();
     86 	timersub(tv, &time, &delta);
     87 	if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1)
     88 		return (EPERM);
     89 #ifdef notyet
     90 	if ((delta.tv_sec < 86400) && securelevel > 0)
     91 		return (EPERM);
     92 #endif
     93 	time = *tv;
     94 	(void) spllowersoftclock();
     95 	timeradd(&boottime, &delta, &boottime);
     96 	timeradd(&runtime, &delta, &runtime);
     97 #	if defined(NFS) || defined(NFSSERVER)
     98 		nqnfs_lease_updatetime(delta.tv_sec);
     99 #	endif
    100 	splx(s);
    101 	resettodr();
    102 	return (0);
    103 }
    104 
    105 /* ARGSUSED */
    106 int
    107 sys_clock_gettime(p, v, retval)
    108 	struct proc *p;
    109 	void *v;
    110 	register_t *retval;
    111 {
    112 	register struct sys_clock_gettime_args /* {
    113 		syscallarg(clockid_t) clock_id;
    114 		syscallarg(struct timespec *) tp;
    115 	} */ *uap = v;
    116 	clockid_t clock_id;
    117 	struct timeval atv;
    118 	struct timespec ats;
    119 
    120 	clock_id = SCARG(uap, clock_id);
    121 	if (clock_id != CLOCK_REALTIME)
    122 		return (EINVAL);
    123 
    124 	microtime(&atv);
    125 	TIMEVAL_TO_TIMESPEC(&atv,&ats);
    126 
    127 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    128 }
    129 
    130 /* ARGSUSED */
    131 int
    132 sys_clock_settime(p, v, retval)
    133 	struct proc *p;
    134 	void *v;
    135 	register_t *retval;
    136 {
    137 	register struct sys_clock_settime_args /* {
    138 		syscallarg(clockid_t) clock_id;
    139 		syscallarg(const struct timespec *) tp;
    140 	} */ *uap = v;
    141 	clockid_t clock_id;
    142 	struct timeval atv;
    143 	struct timespec ats;
    144 	int error;
    145 
    146 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    147 		return (error);
    148 
    149 	clock_id = SCARG(uap, clock_id);
    150 	if (clock_id != CLOCK_REALTIME)
    151 		return (EINVAL);
    152 
    153 	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
    154 		return (error);
    155 
    156 	TIMESPEC_TO_TIMEVAL(&atv,&ats);
    157 	if ((error = settime(&atv)))
    158 		return (error);
    159 
    160 	return 0;
    161 }
    162 
    163 int
    164 sys_clock_getres(p, v, retval)
    165 	struct proc *p;
    166 	void *v;
    167 	register_t *retval;
    168 {
    169 	register struct sys_clock_getres_args /* {
    170 		syscallarg(clockid_t) clock_id;
    171 		syscallarg(struct timespec *) tp;
    172 	} */ *uap = v;
    173 	clockid_t clock_id;
    174 	struct timespec ts;
    175 	int error = 0;
    176 
    177 	clock_id = SCARG(uap, clock_id);
    178 	if (clock_id != CLOCK_REALTIME)
    179 		return (EINVAL);
    180 
    181 	if (SCARG(uap, tp)) {
    182 		ts.tv_sec = 0;
    183 		ts.tv_nsec = 1000000000 / hz;
    184 
    185 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    186 	}
    187 
    188 	return error;
    189 }
    190 
    191 /* ARGSUSED */
    192 int
    193 sys_nanosleep(p, v, retval)
    194 	struct proc *p;
    195 	void *v;
    196 	register_t *retval;
    197 {
    198 	static int nanowait;
    199 	register struct sys_nanosleep_args/* {
    200 		syscallarg(struct timespec *) rqtp;
    201 		syscallarg(struct timespec *) rmtp;
    202 	} */ *uap = v;
    203 	struct timespec rqt;
    204 	struct timespec rmt;
    205 	struct timeval atv, utv;
    206 	int error, s, timo;
    207 
    208 	error = copyin((caddr_t)SCARG(uap, rqtp), (caddr_t)&rqt,
    209 		       sizeof(struct timespec));
    210 	if (error)
    211 		return (error);
    212 
    213 	TIMESPEC_TO_TIMEVAL(&atv,&rqt)
    214 	if (itimerfix(&atv))
    215 		return (EINVAL);
    216 
    217 	s = splclock();
    218 	timeradd(&atv,&time,&atv);
    219 	timo = hzto(&atv);
    220 	/*
    221 	 * Avoid inadvertantly sleeping forever
    222 	 */
    223 	if (timo == 0)
    224 		timo = 1;
    225 	splx(s);
    226 
    227 	error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
    228 	if (error == ERESTART)
    229 		error = EINTR;
    230 	if (error == EWOULDBLOCK)
    231 		error = 0;
    232 
    233 	if (SCARG(uap, rmtp)) {
    234 		int error;
    235 
    236 		s = splclock();
    237 		utv = time;
    238 		splx(s);
    239 
    240 		timersub(&atv, &utv, &utv);
    241 		if (utv.tv_sec < 0)
    242 			timerclear(&utv);
    243 
    244 		TIMEVAL_TO_TIMESPEC(&utv,&rmt);
    245 		error = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
    246 			sizeof(rmt));
    247 		if (error)
    248 			return (error);
    249 	}
    250 
    251 	return error;
    252 }
    253 
    254 /* ARGSUSED */
    255 int
    256 sys_gettimeofday(p, v, retval)
    257 	struct proc *p;
    258 	void *v;
    259 	register_t *retval;
    260 {
    261 	register struct sys_gettimeofday_args /* {
    262 		syscallarg(struct timeval *) tp;
    263 		syscallarg(struct timezone *) tzp;
    264 	} */ *uap = v;
    265 	struct timeval atv;
    266 	int error = 0;
    267 	struct timezone tzfake;
    268 
    269 	if (SCARG(uap, tp)) {
    270 		microtime(&atv);
    271 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    272 		if (error)
    273 			return (error);
    274 	}
    275 	if (SCARG(uap, tzp)) {
    276 		/*
    277 		 * NetBSD has no kernel notion of time zone, so we just
    278 		 * fake up a timezone struct and return it if demanded.
    279 		 */
    280 		tzfake.tz_minuteswest = 0;
    281 		tzfake.tz_dsttime = 0;
    282 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    283 	}
    284 	return (error);
    285 }
    286 
    287 /* ARGSUSED */
    288 int
    289 sys_settimeofday(p, v, retval)
    290 	struct proc *p;
    291 	void *v;
    292 	register_t *retval;
    293 {
    294 	struct sys_settimeofday_args /* {
    295 		syscallarg(const struct timeval *) tv;
    296 		syscallarg(const struct timezone *) tzp;
    297 	} */ *uap = v;
    298 	struct timeval atv;
    299 	struct timezone atz;
    300 	int error;
    301 
    302 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    303 		return (error);
    304 	/* Verify all parameters before changing time. */
    305 	if (SCARG(uap, tv) && (error = copyin(SCARG(uap, tv),
    306 	    &atv, sizeof(atv))))
    307 		return (error);
    308 	/* XXX since we don't use tz, probably no point in doing copyin. */
    309 	if (SCARG(uap, tzp) && (error = copyin(SCARG(uap, tzp),
    310 	    &atz, sizeof(atz))))
    311 		return (error);
    312 	if (SCARG(uap, tv))
    313 		if ((error = settime(&atv)))
    314 			return (error);
    315 	/*
    316 	 * NetBSD has no kernel notion of time zone, and only an
    317 	 * obsolete program would try to set it, so we log a warning.
    318 	 */
    319 	if (SCARG(uap, tzp))
    320 		log(LOG_WARNING, "pid %d attempted to set the "
    321 		    "(obsolete) kernel time zone\n", p->p_pid);
    322 	return (0);
    323 }
    324 
    325 int	tickdelta;			/* current clock skew, us. per tick */
    326 long	timedelta;			/* unapplied time correction, us. */
    327 long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
    328 
    329 /* ARGSUSED */
    330 int
    331 sys_adjtime(p, v, retval)
    332 	struct proc *p;
    333 	void *v;
    334 	register_t *retval;
    335 {
    336 	register struct sys_adjtime_args /* {
    337 		syscallarg(const struct timeval *) delta;
    338 		syscallarg(struct timeval *) olddelta;
    339 	} */ *uap = v;
    340 	struct timeval atv;
    341 	register long ndelta, ntickdelta, odelta;
    342 	int s, error;
    343 
    344 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    345 		return (error);
    346 
    347 	error = copyin(SCARG(uap, delta), &atv, sizeof(struct timeval));
    348 	if (error)
    349 		return (error);
    350 	if (SCARG(uap, olddelta) != NULL &&
    351 	    uvm_useracc((caddr_t)SCARG(uap, olddelta), sizeof(struct timeval),
    352 	     B_WRITE) == FALSE)
    353 		return (EFAULT);
    354 
    355 	/*
    356 	 * Compute the total correction and the rate at which to apply it.
    357 	 * Round the adjustment down to a whole multiple of the per-tick
    358 	 * delta, so that after some number of incremental changes in
    359 	 * hardclock(), tickdelta will become zero, lest the correction
    360 	 * overshoot and start taking us away from the desired final time.
    361 	 */
    362 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
    363 	if (ndelta > bigadj)
    364 		ntickdelta = 10 * tickadj;
    365 	else
    366 		ntickdelta = tickadj;
    367 	if (ndelta % ntickdelta)
    368 		ndelta = ndelta / ntickdelta * ntickdelta;
    369 
    370 	/*
    371 	 * To make hardclock()'s job easier, make the per-tick delta negative
    372 	 * if we want time to run slower; then hardclock can simply compute
    373 	 * tick + tickdelta, and subtract tickdelta from timedelta.
    374 	 */
    375 	if (ndelta < 0)
    376 		ntickdelta = -ntickdelta;
    377 	s = splclock();
    378 	odelta = timedelta;
    379 	timedelta = ndelta;
    380 	tickdelta = ntickdelta;
    381 	splx(s);
    382 
    383 	if (SCARG(uap, olddelta)) {
    384 		atv.tv_sec = odelta / 1000000;
    385 		atv.tv_usec = odelta % 1000000;
    386 		(void) copyout(&atv, SCARG(uap, olddelta),
    387 		    sizeof(struct timeval));
    388 	}
    389 	return (0);
    390 }
    391 
    392 /*
    393  * Get value of an interval timer.  The process virtual and
    394  * profiling virtual time timers are kept in the p_stats area, since
    395  * they can be swapped out.  These are kept internally in the
    396  * way they are specified externally: in time until they expire.
    397  *
    398  * The real time interval timer is kept in the process table slot
    399  * for the process, and its value (it_value) is kept as an
    400  * absolute time rather than as a delta, so that it is easy to keep
    401  * periodic real-time signals from drifting.
    402  *
    403  * Virtual time timers are processed in the hardclock() routine of
    404  * kern_clock.c.  The real time timer is processed by a timeout
    405  * routine, called from the softclock() routine.  Since a callout
    406  * may be delayed in real time due to interrupt processing in the system,
    407  * it is possible for the real time timeout routine (realitexpire, given below),
    408  * to be delayed in real time past when it is supposed to occur.  It
    409  * does not suffice, therefore, to reload the real timer .it_value from the
    410  * real time timers .it_interval.  Rather, we compute the next time in
    411  * absolute time the timer should go off.
    412  */
    413 /* ARGSUSED */
    414 int
    415 sys_getitimer(p, v, retval)
    416 	struct proc *p;
    417 	void *v;
    418 	register_t *retval;
    419 {
    420 	register struct sys_getitimer_args /* {
    421 		syscallarg(int) which;
    422 		syscallarg(struct itimerval *) itv;
    423 	} */ *uap = v;
    424 	int which = SCARG(uap, which);
    425 	struct itimerval aitv;
    426 	int s;
    427 
    428 	if ((u_int)which > ITIMER_PROF)
    429 		return (EINVAL);
    430 	s = splclock();
    431 	if (which == ITIMER_REAL) {
    432 		/*
    433 		 * Convert from absolute to relative time in .it_value
    434 		 * part of real time timer.  If time for real time timer
    435 		 * has passed return 0, else return difference between
    436 		 * current time and time for the timer to go off.
    437 		 */
    438 		aitv = p->p_realtimer;
    439 		if (timerisset(&aitv.it_value)) {
    440 			if (timercmp(&aitv.it_value, &time, <))
    441 				timerclear(&aitv.it_value);
    442 			else
    443 				timersub(&aitv.it_value, &time, &aitv.it_value);
    444 		}
    445 	} else
    446 		aitv = p->p_stats->p_timer[which];
    447 	splx(s);
    448 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
    449 }
    450 
    451 /* ARGSUSED */
    452 int
    453 sys_setitimer(p, v, retval)
    454 	struct proc *p;
    455 	register void *v;
    456 	register_t *retval;
    457 {
    458 	register struct sys_setitimer_args /* {
    459 		syscallarg(int) which;
    460 		syscallarg(const struct itimerval *) itv;
    461 		syscallarg(struct itimerval *) oitv;
    462 	} */ *uap = v;
    463 	int which = SCARG(uap, which);
    464 	struct sys_getitimer_args getargs;
    465 	struct itimerval aitv;
    466 	register const struct itimerval *itvp;
    467 	int s, error;
    468 
    469 	if ((u_int)which > ITIMER_PROF)
    470 		return (EINVAL);
    471 	itvp = SCARG(uap, itv);
    472 	if (itvp && (error = copyin(itvp, &aitv, sizeof(struct itimerval))))
    473 		return (error);
    474 	if (SCARG(uap, oitv) != NULL) {
    475 		SCARG(&getargs, which) = which;
    476 		SCARG(&getargs, itv) = SCARG(uap, oitv);
    477 		if ((error = sys_getitimer(p, &getargs, retval)) != 0)
    478 			return (error);
    479 	}
    480 	if (itvp == 0)
    481 		return (0);
    482 	if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
    483 		return (EINVAL);
    484 	s = splclock();
    485 	if (which == ITIMER_REAL) {
    486 		untimeout(realitexpire, p);
    487 		if (timerisset(&aitv.it_value)) {
    488 			timeradd(&aitv.it_value, &time, &aitv.it_value);
    489 			timeout(realitexpire, p, hzto(&aitv.it_value));
    490 		}
    491 		p->p_realtimer = aitv;
    492 	} else
    493 		p->p_stats->p_timer[which] = aitv;
    494 	splx(s);
    495 	return (0);
    496 }
    497 
    498 /*
    499  * Real interval timer expired:
    500  * send process whose timer expired an alarm signal.
    501  * If time is not set up to reload, then just return.
    502  * Else compute next time timer should go off which is > current time.
    503  * This is where delay in processing this timeout causes multiple
    504  * SIGALRM calls to be compressed into one.
    505  */
    506 void
    507 realitexpire(arg)
    508 	void *arg;
    509 {
    510 	register struct proc *p;
    511 	int s;
    512 
    513 	p = (struct proc *)arg;
    514 	psignal(p, SIGALRM);
    515 	if (!timerisset(&p->p_realtimer.it_interval)) {
    516 		timerclear(&p->p_realtimer.it_value);
    517 		return;
    518 	}
    519 	for (;;) {
    520 		s = splclock();
    521 		timeradd(&p->p_realtimer.it_value,
    522 		    &p->p_realtimer.it_interval, &p->p_realtimer.it_value);
    523 		if (timercmp(&p->p_realtimer.it_value, &time, >)) {
    524 			timeout(realitexpire, p,
    525 			    hzto(&p->p_realtimer.it_value));
    526 			splx(s);
    527 			return;
    528 		}
    529 		splx(s);
    530 	}
    531 }
    532 
    533 /*
    534  * Check that a proposed value to load into the .it_value or
    535  * .it_interval part of an interval timer is acceptable, and
    536  * fix it to have at least minimal value (i.e. if it is less
    537  * than the resolution of the clock, round it up.)
    538  */
    539 int
    540 itimerfix(tv)
    541 	struct timeval *tv;
    542 {
    543 
    544 	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
    545 	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
    546 		return (EINVAL);
    547 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
    548 		tv->tv_usec = tick;
    549 	return (0);
    550 }
    551 
    552 /*
    553  * Decrement an interval timer by a specified number
    554  * of microseconds, which must be less than a second,
    555  * i.e. < 1000000.  If the timer expires, then reload
    556  * it.  In this case, carry over (usec - old value) to
    557  * reduce the value reloaded into the timer so that
    558  * the timer does not drift.  This routine assumes
    559  * that it is called in a context where the timers
    560  * on which it is operating cannot change in value.
    561  */
    562 int
    563 itimerdecr(itp, usec)
    564 	register struct itimerval *itp;
    565 	int usec;
    566 {
    567 
    568 	if (itp->it_value.tv_usec < usec) {
    569 		if (itp->it_value.tv_sec == 0) {
    570 			/* expired, and already in next interval */
    571 			usec -= itp->it_value.tv_usec;
    572 			goto expire;
    573 		}
    574 		itp->it_value.tv_usec += 1000000;
    575 		itp->it_value.tv_sec--;
    576 	}
    577 	itp->it_value.tv_usec -= usec;
    578 	usec = 0;
    579 	if (timerisset(&itp->it_value))
    580 		return (1);
    581 	/* expired, exactly at end of interval */
    582 expire:
    583 	if (timerisset(&itp->it_interval)) {
    584 		itp->it_value = itp->it_interval;
    585 		itp->it_value.tv_usec -= usec;
    586 		if (itp->it_value.tv_usec < 0) {
    587 			itp->it_value.tv_usec += 1000000;
    588 			itp->it_value.tv_sec--;
    589 		}
    590 	} else
    591 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
    592 	return (0);
    593 }
    594