kern_time.c revision 1.40.2.1 1 /* $NetBSD: kern_time.c,v 1.40.2.1 1999/12/27 18:35:52 wrstuden Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
36 */
37
38 #include "fs_nfs.h"
39 #include "opt_nfsserver.h"
40
41 #include <sys/param.h>
42 #include <sys/resourcevar.h>
43 #include <sys/kernel.h>
44 #include <sys/systm.h>
45 #include <sys/proc.h>
46 #include <sys/vnode.h>
47 #include <sys/signalvar.h>
48 #include <sys/syslog.h>
49
50 #include <sys/mount.h>
51 #include <sys/syscallargs.h>
52
53 #include <vm/vm.h>
54 #include <uvm/uvm_extern.h>
55
56 #if defined(NFS) || defined(NFSSERVER)
57 #include <nfs/rpcv2.h>
58 #include <nfs/nfsproto.h>
59 #include <nfs/nfs_var.h>
60 #endif
61
62 #include <machine/cpu.h>
63
64 /*
65 * Time of day and interval timer support.
66 *
67 * These routines provide the kernel entry points to get and set
68 * the time-of-day and per-process interval timers. Subroutines
69 * here provide support for adding and subtracting timeval structures
70 * and decrementing interval timers, optionally reloading the interval
71 * timers when they expire.
72 */
73
74 /* This function is used by clock_settime and settimeofday */
75 int
76 settime(tv)
77 struct timeval *tv;
78 {
79 struct timeval delta;
80 int s;
81
82 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
83 s = splclock();
84 timersub(tv, &time, &delta);
85 if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1)
86 return (EPERM);
87 #ifdef notyet
88 if ((delta.tv_sec < 86400) && securelevel > 0)
89 return (EPERM);
90 #endif
91 time = *tv;
92 (void) spllowersoftclock();
93 timeradd(&boottime, &delta, &boottime);
94 timeradd(&runtime, &delta, &runtime);
95 # if defined(NFS) || defined(NFSSERVER)
96 nqnfs_lease_updatetime(delta.tv_sec);
97 # endif
98 splx(s);
99 resettodr();
100 return (0);
101 }
102
103 /* ARGSUSED */
104 int
105 sys_clock_gettime(p, v, retval)
106 struct proc *p;
107 void *v;
108 register_t *retval;
109 {
110 register struct sys_clock_gettime_args /* {
111 syscallarg(clockid_t) clock_id;
112 syscallarg(struct timespec *) tp;
113 } */ *uap = v;
114 clockid_t clock_id;
115 struct timeval atv;
116 struct timespec ats;
117
118 clock_id = SCARG(uap, clock_id);
119 if (clock_id != CLOCK_REALTIME)
120 return (EINVAL);
121
122 microtime(&atv);
123 TIMEVAL_TO_TIMESPEC(&atv,&ats);
124
125 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
126 }
127
128 /* ARGSUSED */
129 int
130 sys_clock_settime(p, v, retval)
131 struct proc *p;
132 void *v;
133 register_t *retval;
134 {
135 register struct sys_clock_settime_args /* {
136 syscallarg(clockid_t) clock_id;
137 syscallarg(const struct timespec *) tp;
138 } */ *uap = v;
139 clockid_t clock_id;
140 struct timeval atv;
141 struct timespec ats;
142 int error;
143
144 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
145 return (error);
146
147 clock_id = SCARG(uap, clock_id);
148 if (clock_id != CLOCK_REALTIME)
149 return (EINVAL);
150
151 if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
152 return (error);
153
154 TIMESPEC_TO_TIMEVAL(&atv,&ats);
155 if ((error = settime(&atv)))
156 return (error);
157
158 return 0;
159 }
160
161 int
162 sys_clock_getres(p, v, retval)
163 struct proc *p;
164 void *v;
165 register_t *retval;
166 {
167 register struct sys_clock_getres_args /* {
168 syscallarg(clockid_t) clock_id;
169 syscallarg(struct timespec *) tp;
170 } */ *uap = v;
171 clockid_t clock_id;
172 struct timespec ts;
173 int error = 0;
174
175 clock_id = SCARG(uap, clock_id);
176 if (clock_id != CLOCK_REALTIME)
177 return (EINVAL);
178
179 if (SCARG(uap, tp)) {
180 ts.tv_sec = 0;
181 ts.tv_nsec = 1000000000 / hz;
182
183 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
184 }
185
186 return error;
187 }
188
189 /* ARGSUSED */
190 int
191 sys_nanosleep(p, v, retval)
192 struct proc *p;
193 void *v;
194 register_t *retval;
195 {
196 static int nanowait;
197 register struct sys_nanosleep_args/* {
198 syscallarg(struct timespec *) rqtp;
199 syscallarg(struct timespec *) rmtp;
200 } */ *uap = v;
201 struct timespec rqt;
202 struct timespec rmt;
203 struct timeval atv, utv;
204 int error, s, timo;
205
206 error = copyin((caddr_t)SCARG(uap, rqtp), (caddr_t)&rqt,
207 sizeof(struct timespec));
208 if (error)
209 return (error);
210
211 TIMESPEC_TO_TIMEVAL(&atv,&rqt)
212 if (itimerfix(&atv))
213 return (EINVAL);
214
215 s = splclock();
216 timeradd(&atv,&time,&atv);
217 timo = hzto(&atv);
218 /*
219 * Avoid inadvertantly sleeping forever
220 */
221 if (timo == 0)
222 timo = 1;
223 splx(s);
224
225 error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
226 if (error == ERESTART)
227 error = EINTR;
228 if (error == EWOULDBLOCK)
229 error = 0;
230
231 if (SCARG(uap, rmtp)) {
232 int error;
233
234 s = splclock();
235 utv = time;
236 splx(s);
237
238 timersub(&atv, &utv, &utv);
239 if (utv.tv_sec < 0)
240 timerclear(&utv);
241
242 TIMEVAL_TO_TIMESPEC(&utv,&rmt);
243 error = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
244 sizeof(rmt));
245 if (error)
246 return (error);
247 }
248
249 return error;
250 }
251
252 /* ARGSUSED */
253 int
254 sys_gettimeofday(p, v, retval)
255 struct proc *p;
256 void *v;
257 register_t *retval;
258 {
259 register struct sys_gettimeofday_args /* {
260 syscallarg(struct timeval *) tp;
261 syscallarg(struct timezone *) tzp;
262 } */ *uap = v;
263 struct timeval atv;
264 int error = 0;
265 struct timezone tzfake;
266
267 if (SCARG(uap, tp)) {
268 microtime(&atv);
269 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
270 if (error)
271 return (error);
272 }
273 if (SCARG(uap, tzp)) {
274 /*
275 * NetBSD has no kernel notion of time zone, so we just
276 * fake up a timezone struct and return it if demanded.
277 */
278 tzfake.tz_minuteswest = 0;
279 tzfake.tz_dsttime = 0;
280 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
281 }
282 return (error);
283 }
284
285 /* ARGSUSED */
286 int
287 sys_settimeofday(p, v, retval)
288 struct proc *p;
289 void *v;
290 register_t *retval;
291 {
292 struct sys_settimeofday_args /* {
293 syscallarg(const struct timeval *) tv;
294 syscallarg(const struct timezone *) tzp;
295 } */ *uap = v;
296 struct timeval atv;
297 struct timezone atz;
298 int error;
299
300 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
301 return (error);
302 /* Verify all parameters before changing time. */
303 if (SCARG(uap, tv) && (error = copyin(SCARG(uap, tv),
304 &atv, sizeof(atv))))
305 return (error);
306 /* XXX since we don't use tz, probably no point in doing copyin. */
307 if (SCARG(uap, tzp) && (error = copyin(SCARG(uap, tzp),
308 &atz, sizeof(atz))))
309 return (error);
310 if (SCARG(uap, tv))
311 if ((error = settime(&atv)))
312 return (error);
313 /*
314 * NetBSD has no kernel notion of time zone, and only an
315 * obsolete program would try to set it, so we log a warning.
316 */
317 if (SCARG(uap, tzp))
318 log(LOG_WARNING, "pid %d attempted to set the "
319 "(obsolete) kernel time zone\n", p->p_pid);
320 return (0);
321 }
322
323 int tickdelta; /* current clock skew, us. per tick */
324 long timedelta; /* unapplied time correction, us. */
325 long bigadj = 1000000; /* use 10x skew above bigadj us. */
326
327 /* ARGSUSED */
328 int
329 sys_adjtime(p, v, retval)
330 struct proc *p;
331 void *v;
332 register_t *retval;
333 {
334 register struct sys_adjtime_args /* {
335 syscallarg(const struct timeval *) delta;
336 syscallarg(struct timeval *) olddelta;
337 } */ *uap = v;
338 struct timeval atv;
339 register long ndelta, ntickdelta, odelta;
340 int s, error;
341
342 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
343 return (error);
344
345 error = copyin(SCARG(uap, delta), &atv, sizeof(struct timeval));
346 if (error)
347 return (error);
348 if (SCARG(uap, olddelta) != NULL &&
349 uvm_useracc((caddr_t)SCARG(uap, olddelta), sizeof(struct timeval),
350 B_WRITE) == FALSE)
351 return (EFAULT);
352
353 /*
354 * Compute the total correction and the rate at which to apply it.
355 * Round the adjustment down to a whole multiple of the per-tick
356 * delta, so that after some number of incremental changes in
357 * hardclock(), tickdelta will become zero, lest the correction
358 * overshoot and start taking us away from the desired final time.
359 */
360 ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
361 if (ndelta > bigadj || ndelta < -bigadj)
362 ntickdelta = 10 * tickadj;
363 else
364 ntickdelta = tickadj;
365 if (ndelta % ntickdelta)
366 ndelta = ndelta / ntickdelta * ntickdelta;
367
368 /*
369 * To make hardclock()'s job easier, make the per-tick delta negative
370 * if we want time to run slower; then hardclock can simply compute
371 * tick + tickdelta, and subtract tickdelta from timedelta.
372 */
373 if (ndelta < 0)
374 ntickdelta = -ntickdelta;
375 s = splclock();
376 odelta = timedelta;
377 timedelta = ndelta;
378 tickdelta = ntickdelta;
379 splx(s);
380
381 if (SCARG(uap, olddelta)) {
382 atv.tv_sec = odelta / 1000000;
383 atv.tv_usec = odelta % 1000000;
384 (void) copyout(&atv, SCARG(uap, olddelta),
385 sizeof(struct timeval));
386 }
387 return (0);
388 }
389
390 /*
391 * Get value of an interval timer. The process virtual and
392 * profiling virtual time timers are kept in the p_stats area, since
393 * they can be swapped out. These are kept internally in the
394 * way they are specified externally: in time until they expire.
395 *
396 * The real time interval timer is kept in the process table slot
397 * for the process, and its value (it_value) is kept as an
398 * absolute time rather than as a delta, so that it is easy to keep
399 * periodic real-time signals from drifting.
400 *
401 * Virtual time timers are processed in the hardclock() routine of
402 * kern_clock.c. The real time timer is processed by a timeout
403 * routine, called from the softclock() routine. Since a callout
404 * may be delayed in real time due to interrupt processing in the system,
405 * it is possible for the real time timeout routine (realitexpire, given below),
406 * to be delayed in real time past when it is supposed to occur. It
407 * does not suffice, therefore, to reload the real timer .it_value from the
408 * real time timers .it_interval. Rather, we compute the next time in
409 * absolute time the timer should go off.
410 */
411 /* ARGSUSED */
412 int
413 sys_getitimer(p, v, retval)
414 struct proc *p;
415 void *v;
416 register_t *retval;
417 {
418 register struct sys_getitimer_args /* {
419 syscallarg(int) which;
420 syscallarg(struct itimerval *) itv;
421 } */ *uap = v;
422 int which = SCARG(uap, which);
423 struct itimerval aitv;
424 int s;
425
426 if ((u_int)which > ITIMER_PROF)
427 return (EINVAL);
428 s = splclock();
429 if (which == ITIMER_REAL) {
430 /*
431 * Convert from absolute to relative time in .it_value
432 * part of real time timer. If time for real time timer
433 * has passed return 0, else return difference between
434 * current time and time for the timer to go off.
435 */
436 aitv = p->p_realtimer;
437 if (timerisset(&aitv.it_value)) {
438 if (timercmp(&aitv.it_value, &time, <))
439 timerclear(&aitv.it_value);
440 else
441 timersub(&aitv.it_value, &time, &aitv.it_value);
442 }
443 } else
444 aitv = p->p_stats->p_timer[which];
445 splx(s);
446 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
447 }
448
449 /* ARGSUSED */
450 int
451 sys_setitimer(p, v, retval)
452 struct proc *p;
453 register void *v;
454 register_t *retval;
455 {
456 register struct sys_setitimer_args /* {
457 syscallarg(int) which;
458 syscallarg(const struct itimerval *) itv;
459 syscallarg(struct itimerval *) oitv;
460 } */ *uap = v;
461 int which = SCARG(uap, which);
462 struct sys_getitimer_args getargs;
463 struct itimerval aitv;
464 register const struct itimerval *itvp;
465 int s, error;
466
467 if ((u_int)which > ITIMER_PROF)
468 return (EINVAL);
469 itvp = SCARG(uap, itv);
470 if (itvp && (error = copyin(itvp, &aitv, sizeof(struct itimerval))))
471 return (error);
472 if (SCARG(uap, oitv) != NULL) {
473 SCARG(&getargs, which) = which;
474 SCARG(&getargs, itv) = SCARG(uap, oitv);
475 if ((error = sys_getitimer(p, &getargs, retval)) != 0)
476 return (error);
477 }
478 if (itvp == 0)
479 return (0);
480 if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
481 return (EINVAL);
482 s = splclock();
483 if (which == ITIMER_REAL) {
484 untimeout(realitexpire, p);
485 if (timerisset(&aitv.it_value)) {
486 timeradd(&aitv.it_value, &time, &aitv.it_value);
487 timeout(realitexpire, p, hzto(&aitv.it_value));
488 }
489 p->p_realtimer = aitv;
490 } else
491 p->p_stats->p_timer[which] = aitv;
492 splx(s);
493 return (0);
494 }
495
496 /*
497 * Real interval timer expired:
498 * send process whose timer expired an alarm signal.
499 * If time is not set up to reload, then just return.
500 * Else compute next time timer should go off which is > current time.
501 * This is where delay in processing this timeout causes multiple
502 * SIGALRM calls to be compressed into one.
503 */
504 void
505 realitexpire(arg)
506 void *arg;
507 {
508 register struct proc *p;
509 int s;
510
511 p = (struct proc *)arg;
512 psignal(p, SIGALRM);
513 if (!timerisset(&p->p_realtimer.it_interval)) {
514 timerclear(&p->p_realtimer.it_value);
515 return;
516 }
517 for (;;) {
518 s = splclock();
519 timeradd(&p->p_realtimer.it_value,
520 &p->p_realtimer.it_interval, &p->p_realtimer.it_value);
521 if (timercmp(&p->p_realtimer.it_value, &time, >)) {
522 timeout(realitexpire, p,
523 hzto(&p->p_realtimer.it_value));
524 splx(s);
525 return;
526 }
527 splx(s);
528 }
529 }
530
531 /*
532 * Check that a proposed value to load into the .it_value or
533 * .it_interval part of an interval timer is acceptable, and
534 * fix it to have at least minimal value (i.e. if it is less
535 * than the resolution of the clock, round it up.)
536 */
537 int
538 itimerfix(tv)
539 struct timeval *tv;
540 {
541
542 if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
543 tv->tv_usec < 0 || tv->tv_usec >= 1000000)
544 return (EINVAL);
545 if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
546 tv->tv_usec = tick;
547 return (0);
548 }
549
550 /*
551 * Decrement an interval timer by a specified number
552 * of microseconds, which must be less than a second,
553 * i.e. < 1000000. If the timer expires, then reload
554 * it. In this case, carry over (usec - old value) to
555 * reduce the value reloaded into the timer so that
556 * the timer does not drift. This routine assumes
557 * that it is called in a context where the timers
558 * on which it is operating cannot change in value.
559 */
560 int
561 itimerdecr(itp, usec)
562 register struct itimerval *itp;
563 int usec;
564 {
565
566 if (itp->it_value.tv_usec < usec) {
567 if (itp->it_value.tv_sec == 0) {
568 /* expired, and already in next interval */
569 usec -= itp->it_value.tv_usec;
570 goto expire;
571 }
572 itp->it_value.tv_usec += 1000000;
573 itp->it_value.tv_sec--;
574 }
575 itp->it_value.tv_usec -= usec;
576 usec = 0;
577 if (timerisset(&itp->it_value))
578 return (1);
579 /* expired, exactly at end of interval */
580 expire:
581 if (timerisset(&itp->it_interval)) {
582 itp->it_value = itp->it_interval;
583 itp->it_value.tv_usec -= usec;
584 if (itp->it_value.tv_usec < 0) {
585 itp->it_value.tv_usec += 1000000;
586 itp->it_value.tv_sec--;
587 }
588 } else
589 itp->it_value.tv_usec = 0; /* sec is already 0 */
590 return (0);
591 }
592