kern_time.c revision 1.42 1 /* $NetBSD: kern_time.c,v 1.42 2000/02/03 23:04:46 cgd Exp $ */
2
3 /*-
4 * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1989, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by the University of
54 * California, Berkeley and its contributors.
55 * 4. Neither the name of the University nor the names of its contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
72 */
73
74 #include "fs_nfs.h"
75 #include "opt_nfsserver.h"
76
77 #include <sys/param.h>
78 #include <sys/resourcevar.h>
79 #include <sys/kernel.h>
80 #include <sys/systm.h>
81 #include <sys/proc.h>
82 #include <sys/vnode.h>
83 #include <sys/signalvar.h>
84 #include <sys/syslog.h>
85
86 #include <sys/mount.h>
87 #include <sys/syscallargs.h>
88
89 #include <vm/vm.h>
90 #include <uvm/uvm_extern.h>
91
92 #if defined(NFS) || defined(NFSSERVER)
93 #include <nfs/rpcv2.h>
94 #include <nfs/nfsproto.h>
95 #include <nfs/nfs_var.h>
96 #endif
97
98 #include <machine/cpu.h>
99
100 /*
101 * Time of day and interval timer support.
102 *
103 * These routines provide the kernel entry points to get and set
104 * the time-of-day and per-process interval timers. Subroutines
105 * here provide support for adding and subtracting timeval structures
106 * and decrementing interval timers, optionally reloading the interval
107 * timers when they expire.
108 */
109
110 /* This function is used by clock_settime and settimeofday */
111 int
112 settime(tv)
113 struct timeval *tv;
114 {
115 struct timeval delta;
116 int s;
117
118 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
119 s = splclock();
120 timersub(tv, &time, &delta);
121 if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1)
122 return (EPERM);
123 #ifdef notyet
124 if ((delta.tv_sec < 86400) && securelevel > 0)
125 return (EPERM);
126 #endif
127 time = *tv;
128 (void) spllowersoftclock();
129 timeradd(&boottime, &delta, &boottime);
130 timeradd(&runtime, &delta, &runtime);
131 # if defined(NFS) || defined(NFSSERVER)
132 nqnfs_lease_updatetime(delta.tv_sec);
133 # endif
134 splx(s);
135 resettodr();
136 return (0);
137 }
138
139 /* ARGSUSED */
140 int
141 sys_clock_gettime(p, v, retval)
142 struct proc *p;
143 void *v;
144 register_t *retval;
145 {
146 register struct sys_clock_gettime_args /* {
147 syscallarg(clockid_t) clock_id;
148 syscallarg(struct timespec *) tp;
149 } */ *uap = v;
150 clockid_t clock_id;
151 struct timeval atv;
152 struct timespec ats;
153
154 clock_id = SCARG(uap, clock_id);
155 if (clock_id != CLOCK_REALTIME)
156 return (EINVAL);
157
158 microtime(&atv);
159 TIMEVAL_TO_TIMESPEC(&atv,&ats);
160
161 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
162 }
163
164 /* ARGSUSED */
165 int
166 sys_clock_settime(p, v, retval)
167 struct proc *p;
168 void *v;
169 register_t *retval;
170 {
171 register struct sys_clock_settime_args /* {
172 syscallarg(clockid_t) clock_id;
173 syscallarg(const struct timespec *) tp;
174 } */ *uap = v;
175 clockid_t clock_id;
176 struct timeval atv;
177 struct timespec ats;
178 int error;
179
180 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
181 return (error);
182
183 clock_id = SCARG(uap, clock_id);
184 if (clock_id != CLOCK_REALTIME)
185 return (EINVAL);
186
187 if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
188 return (error);
189
190 TIMESPEC_TO_TIMEVAL(&atv,&ats);
191 if ((error = settime(&atv)))
192 return (error);
193
194 return 0;
195 }
196
197 int
198 sys_clock_getres(p, v, retval)
199 struct proc *p;
200 void *v;
201 register_t *retval;
202 {
203 register struct sys_clock_getres_args /* {
204 syscallarg(clockid_t) clock_id;
205 syscallarg(struct timespec *) tp;
206 } */ *uap = v;
207 clockid_t clock_id;
208 struct timespec ts;
209 int error = 0;
210
211 clock_id = SCARG(uap, clock_id);
212 if (clock_id != CLOCK_REALTIME)
213 return (EINVAL);
214
215 if (SCARG(uap, tp)) {
216 ts.tv_sec = 0;
217 ts.tv_nsec = 1000000000 / hz;
218
219 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
220 }
221
222 return error;
223 }
224
225 /* ARGSUSED */
226 int
227 sys_nanosleep(p, v, retval)
228 struct proc *p;
229 void *v;
230 register_t *retval;
231 {
232 static int nanowait;
233 register struct sys_nanosleep_args/* {
234 syscallarg(struct timespec *) rqtp;
235 syscallarg(struct timespec *) rmtp;
236 } */ *uap = v;
237 struct timespec rqt;
238 struct timespec rmt;
239 struct timeval atv, utv;
240 int error, s, timo;
241
242 error = copyin((caddr_t)SCARG(uap, rqtp), (caddr_t)&rqt,
243 sizeof(struct timespec));
244 if (error)
245 return (error);
246
247 TIMESPEC_TO_TIMEVAL(&atv,&rqt)
248 if (itimerfix(&atv))
249 return (EINVAL);
250
251 s = splclock();
252 timeradd(&atv,&time,&atv);
253 timo = hzto(&atv);
254 /*
255 * Avoid inadvertantly sleeping forever
256 */
257 if (timo == 0)
258 timo = 1;
259 splx(s);
260
261 error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
262 if (error == ERESTART)
263 error = EINTR;
264 if (error == EWOULDBLOCK)
265 error = 0;
266
267 if (SCARG(uap, rmtp)) {
268 int error;
269
270 s = splclock();
271 utv = time;
272 splx(s);
273
274 timersub(&atv, &utv, &utv);
275 if (utv.tv_sec < 0)
276 timerclear(&utv);
277
278 TIMEVAL_TO_TIMESPEC(&utv,&rmt);
279 error = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
280 sizeof(rmt));
281 if (error)
282 return (error);
283 }
284
285 return error;
286 }
287
288 /* ARGSUSED */
289 int
290 sys_gettimeofday(p, v, retval)
291 struct proc *p;
292 void *v;
293 register_t *retval;
294 {
295 register struct sys_gettimeofday_args /* {
296 syscallarg(struct timeval *) tp;
297 syscallarg(struct timezone *) tzp;
298 } */ *uap = v;
299 struct timeval atv;
300 int error = 0;
301 struct timezone tzfake;
302
303 if (SCARG(uap, tp)) {
304 microtime(&atv);
305 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
306 if (error)
307 return (error);
308 }
309 if (SCARG(uap, tzp)) {
310 /*
311 * NetBSD has no kernel notion of time zone, so we just
312 * fake up a timezone struct and return it if demanded.
313 */
314 tzfake.tz_minuteswest = 0;
315 tzfake.tz_dsttime = 0;
316 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
317 }
318 return (error);
319 }
320
321 /* ARGSUSED */
322 int
323 sys_settimeofday(p, v, retval)
324 struct proc *p;
325 void *v;
326 register_t *retval;
327 {
328 struct sys_settimeofday_args /* {
329 syscallarg(const struct timeval *) tv;
330 syscallarg(const struct timezone *) tzp;
331 } */ *uap = v;
332 struct timeval atv;
333 struct timezone atz;
334 int error;
335
336 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
337 return (error);
338 /* Verify all parameters before changing time. */
339 if (SCARG(uap, tv) && (error = copyin(SCARG(uap, tv),
340 &atv, sizeof(atv))))
341 return (error);
342 /* XXX since we don't use tz, probably no point in doing copyin. */
343 if (SCARG(uap, tzp) && (error = copyin(SCARG(uap, tzp),
344 &atz, sizeof(atz))))
345 return (error);
346 if (SCARG(uap, tv))
347 if ((error = settime(&atv)))
348 return (error);
349 /*
350 * NetBSD has no kernel notion of time zone, and only an
351 * obsolete program would try to set it, so we log a warning.
352 */
353 if (SCARG(uap, tzp))
354 log(LOG_WARNING, "pid %d attempted to set the "
355 "(obsolete) kernel time zone\n", p->p_pid);
356 return (0);
357 }
358
359 int tickdelta; /* current clock skew, us. per tick */
360 long timedelta; /* unapplied time correction, us. */
361 long bigadj = 1000000; /* use 10x skew above bigadj us. */
362
363 /* ARGSUSED */
364 int
365 sys_adjtime(p, v, retval)
366 struct proc *p;
367 void *v;
368 register_t *retval;
369 {
370 register struct sys_adjtime_args /* {
371 syscallarg(const struct timeval *) delta;
372 syscallarg(struct timeval *) olddelta;
373 } */ *uap = v;
374 struct timeval atv;
375 register long ndelta, ntickdelta, odelta;
376 int s, error;
377
378 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
379 return (error);
380
381 error = copyin(SCARG(uap, delta), &atv, sizeof(struct timeval));
382 if (error)
383 return (error);
384 if (SCARG(uap, olddelta) != NULL &&
385 uvm_useracc((caddr_t)SCARG(uap, olddelta), sizeof(struct timeval),
386 B_WRITE) == FALSE)
387 return (EFAULT);
388
389 /*
390 * Compute the total correction and the rate at which to apply it.
391 * Round the adjustment down to a whole multiple of the per-tick
392 * delta, so that after some number of incremental changes in
393 * hardclock(), tickdelta will become zero, lest the correction
394 * overshoot and start taking us away from the desired final time.
395 */
396 ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
397 if (ndelta > bigadj || ndelta < -bigadj)
398 ntickdelta = 10 * tickadj;
399 else
400 ntickdelta = tickadj;
401 if (ndelta % ntickdelta)
402 ndelta = ndelta / ntickdelta * ntickdelta;
403
404 /*
405 * To make hardclock()'s job easier, make the per-tick delta negative
406 * if we want time to run slower; then hardclock can simply compute
407 * tick + tickdelta, and subtract tickdelta from timedelta.
408 */
409 if (ndelta < 0)
410 ntickdelta = -ntickdelta;
411 s = splclock();
412 odelta = timedelta;
413 timedelta = ndelta;
414 tickdelta = ntickdelta;
415 splx(s);
416
417 if (SCARG(uap, olddelta)) {
418 atv.tv_sec = odelta / 1000000;
419 atv.tv_usec = odelta % 1000000;
420 (void) copyout(&atv, SCARG(uap, olddelta),
421 sizeof(struct timeval));
422 }
423 return (0);
424 }
425
426 /*
427 * Get value of an interval timer. The process virtual and
428 * profiling virtual time timers are kept in the p_stats area, since
429 * they can be swapped out. These are kept internally in the
430 * way they are specified externally: in time until they expire.
431 *
432 * The real time interval timer is kept in the process table slot
433 * for the process, and its value (it_value) is kept as an
434 * absolute time rather than as a delta, so that it is easy to keep
435 * periodic real-time signals from drifting.
436 *
437 * Virtual time timers are processed in the hardclock() routine of
438 * kern_clock.c. The real time timer is processed by a timeout
439 * routine, called from the softclock() routine. Since a callout
440 * may be delayed in real time due to interrupt processing in the system,
441 * it is possible for the real time timeout routine (realitexpire, given below),
442 * to be delayed in real time past when it is supposed to occur. It
443 * does not suffice, therefore, to reload the real timer .it_value from the
444 * real time timers .it_interval. Rather, we compute the next time in
445 * absolute time the timer should go off.
446 */
447 /* ARGSUSED */
448 int
449 sys_getitimer(p, v, retval)
450 struct proc *p;
451 void *v;
452 register_t *retval;
453 {
454 register struct sys_getitimer_args /* {
455 syscallarg(int) which;
456 syscallarg(struct itimerval *) itv;
457 } */ *uap = v;
458 int which = SCARG(uap, which);
459 struct itimerval aitv;
460 int s;
461
462 if ((u_int)which > ITIMER_PROF)
463 return (EINVAL);
464 s = splclock();
465 if (which == ITIMER_REAL) {
466 /*
467 * Convert from absolute to relative time in .it_value
468 * part of real time timer. If time for real time timer
469 * has passed return 0, else return difference between
470 * current time and time for the timer to go off.
471 */
472 aitv = p->p_realtimer;
473 if (timerisset(&aitv.it_value)) {
474 if (timercmp(&aitv.it_value, &time, <))
475 timerclear(&aitv.it_value);
476 else
477 timersub(&aitv.it_value, &time, &aitv.it_value);
478 }
479 } else
480 aitv = p->p_stats->p_timer[which];
481 splx(s);
482 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
483 }
484
485 /* ARGSUSED */
486 int
487 sys_setitimer(p, v, retval)
488 struct proc *p;
489 register void *v;
490 register_t *retval;
491 {
492 register struct sys_setitimer_args /* {
493 syscallarg(int) which;
494 syscallarg(const struct itimerval *) itv;
495 syscallarg(struct itimerval *) oitv;
496 } */ *uap = v;
497 int which = SCARG(uap, which);
498 struct sys_getitimer_args getargs;
499 struct itimerval aitv;
500 register const struct itimerval *itvp;
501 int s, error;
502
503 if ((u_int)which > ITIMER_PROF)
504 return (EINVAL);
505 itvp = SCARG(uap, itv);
506 if (itvp && (error = copyin(itvp, &aitv, sizeof(struct itimerval))))
507 return (error);
508 if (SCARG(uap, oitv) != NULL) {
509 SCARG(&getargs, which) = which;
510 SCARG(&getargs, itv) = SCARG(uap, oitv);
511 if ((error = sys_getitimer(p, &getargs, retval)) != 0)
512 return (error);
513 }
514 if (itvp == 0)
515 return (0);
516 if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
517 return (EINVAL);
518 s = splclock();
519 if (which == ITIMER_REAL) {
520 untimeout(realitexpire, p);
521 if (timerisset(&aitv.it_value)) {
522 timeradd(&aitv.it_value, &time, &aitv.it_value);
523 timeout(realitexpire, p, hzto(&aitv.it_value));
524 }
525 p->p_realtimer = aitv;
526 } else
527 p->p_stats->p_timer[which] = aitv;
528 splx(s);
529 return (0);
530 }
531
532 /*
533 * Real interval timer expired:
534 * send process whose timer expired an alarm signal.
535 * If time is not set up to reload, then just return.
536 * Else compute next time timer should go off which is > current time.
537 * This is where delay in processing this timeout causes multiple
538 * SIGALRM calls to be compressed into one.
539 */
540 void
541 realitexpire(arg)
542 void *arg;
543 {
544 register struct proc *p;
545 int s;
546
547 p = (struct proc *)arg;
548 psignal(p, SIGALRM);
549 if (!timerisset(&p->p_realtimer.it_interval)) {
550 timerclear(&p->p_realtimer.it_value);
551 return;
552 }
553 for (;;) {
554 s = splclock();
555 timeradd(&p->p_realtimer.it_value,
556 &p->p_realtimer.it_interval, &p->p_realtimer.it_value);
557 if (timercmp(&p->p_realtimer.it_value, &time, >)) {
558 timeout(realitexpire, p,
559 hzto(&p->p_realtimer.it_value));
560 splx(s);
561 return;
562 }
563 splx(s);
564 }
565 }
566
567 /*
568 * Check that a proposed value to load into the .it_value or
569 * .it_interval part of an interval timer is acceptable, and
570 * fix it to have at least minimal value (i.e. if it is less
571 * than the resolution of the clock, round it up.)
572 */
573 int
574 itimerfix(tv)
575 struct timeval *tv;
576 {
577
578 if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
579 tv->tv_usec < 0 || tv->tv_usec >= 1000000)
580 return (EINVAL);
581 if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
582 tv->tv_usec = tick;
583 return (0);
584 }
585
586 /*
587 * Decrement an interval timer by a specified number
588 * of microseconds, which must be less than a second,
589 * i.e. < 1000000. If the timer expires, then reload
590 * it. In this case, carry over (usec - old value) to
591 * reduce the value reloaded into the timer so that
592 * the timer does not drift. This routine assumes
593 * that it is called in a context where the timers
594 * on which it is operating cannot change in value.
595 */
596 int
597 itimerdecr(itp, usec)
598 register struct itimerval *itp;
599 int usec;
600 {
601
602 if (itp->it_value.tv_usec < usec) {
603 if (itp->it_value.tv_sec == 0) {
604 /* expired, and already in next interval */
605 usec -= itp->it_value.tv_usec;
606 goto expire;
607 }
608 itp->it_value.tv_usec += 1000000;
609 itp->it_value.tv_sec--;
610 }
611 itp->it_value.tv_usec -= usec;
612 usec = 0;
613 if (timerisset(&itp->it_value))
614 return (1);
615 /* expired, exactly at end of interval */
616 expire:
617 if (timerisset(&itp->it_interval)) {
618 itp->it_value = itp->it_interval;
619 itp->it_value.tv_usec -= usec;
620 if (itp->it_value.tv_usec < 0) {
621 itp->it_value.tv_usec += 1000000;
622 itp->it_value.tv_sec--;
623 }
624 } else
625 itp->it_value.tv_usec = 0; /* sec is already 0 */
626 return (0);
627 }
628
629 /*
630 * ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
631 * for usage and rationale.
632 */
633 int
634 ratecheck(lasttime, mininterval)
635 struct timeval *lasttime;
636 const struct timeval *mininterval;
637 {
638 struct timeval delta;
639 int s, rv = 0;
640
641 s = splclock();
642 timersub(lasttime, &mono_time, &delta);
643
644 /*
645 * check for 0,0 is so that the message will be seen at least once,
646 * even if interval is huge.
647 */
648 if (timercmp(&delta, mininterval, >=) ||
649 (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
650 *lasttime = mono_time;
651 rv = 1;
652 }
653 splx(s);
654
655 return (rv);
656 }
657