Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.42
      1 /*	$NetBSD: kern_time.c,v 1.42 2000/02/03 23:04:46 cgd Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Christopher G. Demetriou.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Copyright (c) 1982, 1986, 1989, 1993
     41  *	The Regents of the University of California.  All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. All advertising materials mentioning features or use of this software
     52  *    must display the following acknowledgement:
     53  *	This product includes software developed by the University of
     54  *	California, Berkeley and its contributors.
     55  * 4. Neither the name of the University nor the names of its contributors
     56  *    may be used to endorse or promote products derived from this software
     57  *    without specific prior written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     69  * SUCH DAMAGE.
     70  *
     71  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     72  */
     73 
     74 #include "fs_nfs.h"
     75 #include "opt_nfsserver.h"
     76 
     77 #include <sys/param.h>
     78 #include <sys/resourcevar.h>
     79 #include <sys/kernel.h>
     80 #include <sys/systm.h>
     81 #include <sys/proc.h>
     82 #include <sys/vnode.h>
     83 #include <sys/signalvar.h>
     84 #include <sys/syslog.h>
     85 
     86 #include <sys/mount.h>
     87 #include <sys/syscallargs.h>
     88 
     89 #include <vm/vm.h>
     90 #include <uvm/uvm_extern.h>
     91 
     92 #if defined(NFS) || defined(NFSSERVER)
     93 #include <nfs/rpcv2.h>
     94 #include <nfs/nfsproto.h>
     95 #include <nfs/nfs_var.h>
     96 #endif
     97 
     98 #include <machine/cpu.h>
     99 
    100 /*
    101  * Time of day and interval timer support.
    102  *
    103  * These routines provide the kernel entry points to get and set
    104  * the time-of-day and per-process interval timers.  Subroutines
    105  * here provide support for adding and subtracting timeval structures
    106  * and decrementing interval timers, optionally reloading the interval
    107  * timers when they expire.
    108  */
    109 
    110 /* This function is used by clock_settime and settimeofday */
    111 int
    112 settime(tv)
    113 	struct timeval *tv;
    114 {
    115 	struct timeval delta;
    116 	int s;
    117 
    118 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    119 	s = splclock();
    120 	timersub(tv, &time, &delta);
    121 	if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1)
    122 		return (EPERM);
    123 #ifdef notyet
    124 	if ((delta.tv_sec < 86400) && securelevel > 0)
    125 		return (EPERM);
    126 #endif
    127 	time = *tv;
    128 	(void) spllowersoftclock();
    129 	timeradd(&boottime, &delta, &boottime);
    130 	timeradd(&runtime, &delta, &runtime);
    131 #	if defined(NFS) || defined(NFSSERVER)
    132 		nqnfs_lease_updatetime(delta.tv_sec);
    133 #	endif
    134 	splx(s);
    135 	resettodr();
    136 	return (0);
    137 }
    138 
    139 /* ARGSUSED */
    140 int
    141 sys_clock_gettime(p, v, retval)
    142 	struct proc *p;
    143 	void *v;
    144 	register_t *retval;
    145 {
    146 	register struct sys_clock_gettime_args /* {
    147 		syscallarg(clockid_t) clock_id;
    148 		syscallarg(struct timespec *) tp;
    149 	} */ *uap = v;
    150 	clockid_t clock_id;
    151 	struct timeval atv;
    152 	struct timespec ats;
    153 
    154 	clock_id = SCARG(uap, clock_id);
    155 	if (clock_id != CLOCK_REALTIME)
    156 		return (EINVAL);
    157 
    158 	microtime(&atv);
    159 	TIMEVAL_TO_TIMESPEC(&atv,&ats);
    160 
    161 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    162 }
    163 
    164 /* ARGSUSED */
    165 int
    166 sys_clock_settime(p, v, retval)
    167 	struct proc *p;
    168 	void *v;
    169 	register_t *retval;
    170 {
    171 	register struct sys_clock_settime_args /* {
    172 		syscallarg(clockid_t) clock_id;
    173 		syscallarg(const struct timespec *) tp;
    174 	} */ *uap = v;
    175 	clockid_t clock_id;
    176 	struct timeval atv;
    177 	struct timespec ats;
    178 	int error;
    179 
    180 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    181 		return (error);
    182 
    183 	clock_id = SCARG(uap, clock_id);
    184 	if (clock_id != CLOCK_REALTIME)
    185 		return (EINVAL);
    186 
    187 	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
    188 		return (error);
    189 
    190 	TIMESPEC_TO_TIMEVAL(&atv,&ats);
    191 	if ((error = settime(&atv)))
    192 		return (error);
    193 
    194 	return 0;
    195 }
    196 
    197 int
    198 sys_clock_getres(p, v, retval)
    199 	struct proc *p;
    200 	void *v;
    201 	register_t *retval;
    202 {
    203 	register struct sys_clock_getres_args /* {
    204 		syscallarg(clockid_t) clock_id;
    205 		syscallarg(struct timespec *) tp;
    206 	} */ *uap = v;
    207 	clockid_t clock_id;
    208 	struct timespec ts;
    209 	int error = 0;
    210 
    211 	clock_id = SCARG(uap, clock_id);
    212 	if (clock_id != CLOCK_REALTIME)
    213 		return (EINVAL);
    214 
    215 	if (SCARG(uap, tp)) {
    216 		ts.tv_sec = 0;
    217 		ts.tv_nsec = 1000000000 / hz;
    218 
    219 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    220 	}
    221 
    222 	return error;
    223 }
    224 
    225 /* ARGSUSED */
    226 int
    227 sys_nanosleep(p, v, retval)
    228 	struct proc *p;
    229 	void *v;
    230 	register_t *retval;
    231 {
    232 	static int nanowait;
    233 	register struct sys_nanosleep_args/* {
    234 		syscallarg(struct timespec *) rqtp;
    235 		syscallarg(struct timespec *) rmtp;
    236 	} */ *uap = v;
    237 	struct timespec rqt;
    238 	struct timespec rmt;
    239 	struct timeval atv, utv;
    240 	int error, s, timo;
    241 
    242 	error = copyin((caddr_t)SCARG(uap, rqtp), (caddr_t)&rqt,
    243 		       sizeof(struct timespec));
    244 	if (error)
    245 		return (error);
    246 
    247 	TIMESPEC_TO_TIMEVAL(&atv,&rqt)
    248 	if (itimerfix(&atv))
    249 		return (EINVAL);
    250 
    251 	s = splclock();
    252 	timeradd(&atv,&time,&atv);
    253 	timo = hzto(&atv);
    254 	/*
    255 	 * Avoid inadvertantly sleeping forever
    256 	 */
    257 	if (timo == 0)
    258 		timo = 1;
    259 	splx(s);
    260 
    261 	error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
    262 	if (error == ERESTART)
    263 		error = EINTR;
    264 	if (error == EWOULDBLOCK)
    265 		error = 0;
    266 
    267 	if (SCARG(uap, rmtp)) {
    268 		int error;
    269 
    270 		s = splclock();
    271 		utv = time;
    272 		splx(s);
    273 
    274 		timersub(&atv, &utv, &utv);
    275 		if (utv.tv_sec < 0)
    276 			timerclear(&utv);
    277 
    278 		TIMEVAL_TO_TIMESPEC(&utv,&rmt);
    279 		error = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
    280 			sizeof(rmt));
    281 		if (error)
    282 			return (error);
    283 	}
    284 
    285 	return error;
    286 }
    287 
    288 /* ARGSUSED */
    289 int
    290 sys_gettimeofday(p, v, retval)
    291 	struct proc *p;
    292 	void *v;
    293 	register_t *retval;
    294 {
    295 	register struct sys_gettimeofday_args /* {
    296 		syscallarg(struct timeval *) tp;
    297 		syscallarg(struct timezone *) tzp;
    298 	} */ *uap = v;
    299 	struct timeval atv;
    300 	int error = 0;
    301 	struct timezone tzfake;
    302 
    303 	if (SCARG(uap, tp)) {
    304 		microtime(&atv);
    305 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    306 		if (error)
    307 			return (error);
    308 	}
    309 	if (SCARG(uap, tzp)) {
    310 		/*
    311 		 * NetBSD has no kernel notion of time zone, so we just
    312 		 * fake up a timezone struct and return it if demanded.
    313 		 */
    314 		tzfake.tz_minuteswest = 0;
    315 		tzfake.tz_dsttime = 0;
    316 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    317 	}
    318 	return (error);
    319 }
    320 
    321 /* ARGSUSED */
    322 int
    323 sys_settimeofday(p, v, retval)
    324 	struct proc *p;
    325 	void *v;
    326 	register_t *retval;
    327 {
    328 	struct sys_settimeofday_args /* {
    329 		syscallarg(const struct timeval *) tv;
    330 		syscallarg(const struct timezone *) tzp;
    331 	} */ *uap = v;
    332 	struct timeval atv;
    333 	struct timezone atz;
    334 	int error;
    335 
    336 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    337 		return (error);
    338 	/* Verify all parameters before changing time. */
    339 	if (SCARG(uap, tv) && (error = copyin(SCARG(uap, tv),
    340 	    &atv, sizeof(atv))))
    341 		return (error);
    342 	/* XXX since we don't use tz, probably no point in doing copyin. */
    343 	if (SCARG(uap, tzp) && (error = copyin(SCARG(uap, tzp),
    344 	    &atz, sizeof(atz))))
    345 		return (error);
    346 	if (SCARG(uap, tv))
    347 		if ((error = settime(&atv)))
    348 			return (error);
    349 	/*
    350 	 * NetBSD has no kernel notion of time zone, and only an
    351 	 * obsolete program would try to set it, so we log a warning.
    352 	 */
    353 	if (SCARG(uap, tzp))
    354 		log(LOG_WARNING, "pid %d attempted to set the "
    355 		    "(obsolete) kernel time zone\n", p->p_pid);
    356 	return (0);
    357 }
    358 
    359 int	tickdelta;			/* current clock skew, us. per tick */
    360 long	timedelta;			/* unapplied time correction, us. */
    361 long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
    362 
    363 /* ARGSUSED */
    364 int
    365 sys_adjtime(p, v, retval)
    366 	struct proc *p;
    367 	void *v;
    368 	register_t *retval;
    369 {
    370 	register struct sys_adjtime_args /* {
    371 		syscallarg(const struct timeval *) delta;
    372 		syscallarg(struct timeval *) olddelta;
    373 	} */ *uap = v;
    374 	struct timeval atv;
    375 	register long ndelta, ntickdelta, odelta;
    376 	int s, error;
    377 
    378 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    379 		return (error);
    380 
    381 	error = copyin(SCARG(uap, delta), &atv, sizeof(struct timeval));
    382 	if (error)
    383 		return (error);
    384 	if (SCARG(uap, olddelta) != NULL &&
    385 	    uvm_useracc((caddr_t)SCARG(uap, olddelta), sizeof(struct timeval),
    386 	     B_WRITE) == FALSE)
    387 		return (EFAULT);
    388 
    389 	/*
    390 	 * Compute the total correction and the rate at which to apply it.
    391 	 * Round the adjustment down to a whole multiple of the per-tick
    392 	 * delta, so that after some number of incremental changes in
    393 	 * hardclock(), tickdelta will become zero, lest the correction
    394 	 * overshoot and start taking us away from the desired final time.
    395 	 */
    396 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
    397 	if (ndelta > bigadj || ndelta < -bigadj)
    398 		ntickdelta = 10 * tickadj;
    399 	else
    400 		ntickdelta = tickadj;
    401 	if (ndelta % ntickdelta)
    402 		ndelta = ndelta / ntickdelta * ntickdelta;
    403 
    404 	/*
    405 	 * To make hardclock()'s job easier, make the per-tick delta negative
    406 	 * if we want time to run slower; then hardclock can simply compute
    407 	 * tick + tickdelta, and subtract tickdelta from timedelta.
    408 	 */
    409 	if (ndelta < 0)
    410 		ntickdelta = -ntickdelta;
    411 	s = splclock();
    412 	odelta = timedelta;
    413 	timedelta = ndelta;
    414 	tickdelta = ntickdelta;
    415 	splx(s);
    416 
    417 	if (SCARG(uap, olddelta)) {
    418 		atv.tv_sec = odelta / 1000000;
    419 		atv.tv_usec = odelta % 1000000;
    420 		(void) copyout(&atv, SCARG(uap, olddelta),
    421 		    sizeof(struct timeval));
    422 	}
    423 	return (0);
    424 }
    425 
    426 /*
    427  * Get value of an interval timer.  The process virtual and
    428  * profiling virtual time timers are kept in the p_stats area, since
    429  * they can be swapped out.  These are kept internally in the
    430  * way they are specified externally: in time until they expire.
    431  *
    432  * The real time interval timer is kept in the process table slot
    433  * for the process, and its value (it_value) is kept as an
    434  * absolute time rather than as a delta, so that it is easy to keep
    435  * periodic real-time signals from drifting.
    436  *
    437  * Virtual time timers are processed in the hardclock() routine of
    438  * kern_clock.c.  The real time timer is processed by a timeout
    439  * routine, called from the softclock() routine.  Since a callout
    440  * may be delayed in real time due to interrupt processing in the system,
    441  * it is possible for the real time timeout routine (realitexpire, given below),
    442  * to be delayed in real time past when it is supposed to occur.  It
    443  * does not suffice, therefore, to reload the real timer .it_value from the
    444  * real time timers .it_interval.  Rather, we compute the next time in
    445  * absolute time the timer should go off.
    446  */
    447 /* ARGSUSED */
    448 int
    449 sys_getitimer(p, v, retval)
    450 	struct proc *p;
    451 	void *v;
    452 	register_t *retval;
    453 {
    454 	register struct sys_getitimer_args /* {
    455 		syscallarg(int) which;
    456 		syscallarg(struct itimerval *) itv;
    457 	} */ *uap = v;
    458 	int which = SCARG(uap, which);
    459 	struct itimerval aitv;
    460 	int s;
    461 
    462 	if ((u_int)which > ITIMER_PROF)
    463 		return (EINVAL);
    464 	s = splclock();
    465 	if (which == ITIMER_REAL) {
    466 		/*
    467 		 * Convert from absolute to relative time in .it_value
    468 		 * part of real time timer.  If time for real time timer
    469 		 * has passed return 0, else return difference between
    470 		 * current time and time for the timer to go off.
    471 		 */
    472 		aitv = p->p_realtimer;
    473 		if (timerisset(&aitv.it_value)) {
    474 			if (timercmp(&aitv.it_value, &time, <))
    475 				timerclear(&aitv.it_value);
    476 			else
    477 				timersub(&aitv.it_value, &time, &aitv.it_value);
    478 		}
    479 	} else
    480 		aitv = p->p_stats->p_timer[which];
    481 	splx(s);
    482 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
    483 }
    484 
    485 /* ARGSUSED */
    486 int
    487 sys_setitimer(p, v, retval)
    488 	struct proc *p;
    489 	register void *v;
    490 	register_t *retval;
    491 {
    492 	register struct sys_setitimer_args /* {
    493 		syscallarg(int) which;
    494 		syscallarg(const struct itimerval *) itv;
    495 		syscallarg(struct itimerval *) oitv;
    496 	} */ *uap = v;
    497 	int which = SCARG(uap, which);
    498 	struct sys_getitimer_args getargs;
    499 	struct itimerval aitv;
    500 	register const struct itimerval *itvp;
    501 	int s, error;
    502 
    503 	if ((u_int)which > ITIMER_PROF)
    504 		return (EINVAL);
    505 	itvp = SCARG(uap, itv);
    506 	if (itvp && (error = copyin(itvp, &aitv, sizeof(struct itimerval))))
    507 		return (error);
    508 	if (SCARG(uap, oitv) != NULL) {
    509 		SCARG(&getargs, which) = which;
    510 		SCARG(&getargs, itv) = SCARG(uap, oitv);
    511 		if ((error = sys_getitimer(p, &getargs, retval)) != 0)
    512 			return (error);
    513 	}
    514 	if (itvp == 0)
    515 		return (0);
    516 	if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
    517 		return (EINVAL);
    518 	s = splclock();
    519 	if (which == ITIMER_REAL) {
    520 		untimeout(realitexpire, p);
    521 		if (timerisset(&aitv.it_value)) {
    522 			timeradd(&aitv.it_value, &time, &aitv.it_value);
    523 			timeout(realitexpire, p, hzto(&aitv.it_value));
    524 		}
    525 		p->p_realtimer = aitv;
    526 	} else
    527 		p->p_stats->p_timer[which] = aitv;
    528 	splx(s);
    529 	return (0);
    530 }
    531 
    532 /*
    533  * Real interval timer expired:
    534  * send process whose timer expired an alarm signal.
    535  * If time is not set up to reload, then just return.
    536  * Else compute next time timer should go off which is > current time.
    537  * This is where delay in processing this timeout causes multiple
    538  * SIGALRM calls to be compressed into one.
    539  */
    540 void
    541 realitexpire(arg)
    542 	void *arg;
    543 {
    544 	register struct proc *p;
    545 	int s;
    546 
    547 	p = (struct proc *)arg;
    548 	psignal(p, SIGALRM);
    549 	if (!timerisset(&p->p_realtimer.it_interval)) {
    550 		timerclear(&p->p_realtimer.it_value);
    551 		return;
    552 	}
    553 	for (;;) {
    554 		s = splclock();
    555 		timeradd(&p->p_realtimer.it_value,
    556 		    &p->p_realtimer.it_interval, &p->p_realtimer.it_value);
    557 		if (timercmp(&p->p_realtimer.it_value, &time, >)) {
    558 			timeout(realitexpire, p,
    559 			    hzto(&p->p_realtimer.it_value));
    560 			splx(s);
    561 			return;
    562 		}
    563 		splx(s);
    564 	}
    565 }
    566 
    567 /*
    568  * Check that a proposed value to load into the .it_value or
    569  * .it_interval part of an interval timer is acceptable, and
    570  * fix it to have at least minimal value (i.e. if it is less
    571  * than the resolution of the clock, round it up.)
    572  */
    573 int
    574 itimerfix(tv)
    575 	struct timeval *tv;
    576 {
    577 
    578 	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
    579 	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
    580 		return (EINVAL);
    581 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
    582 		tv->tv_usec = tick;
    583 	return (0);
    584 }
    585 
    586 /*
    587  * Decrement an interval timer by a specified number
    588  * of microseconds, which must be less than a second,
    589  * i.e. < 1000000.  If the timer expires, then reload
    590  * it.  In this case, carry over (usec - old value) to
    591  * reduce the value reloaded into the timer so that
    592  * the timer does not drift.  This routine assumes
    593  * that it is called in a context where the timers
    594  * on which it is operating cannot change in value.
    595  */
    596 int
    597 itimerdecr(itp, usec)
    598 	register struct itimerval *itp;
    599 	int usec;
    600 {
    601 
    602 	if (itp->it_value.tv_usec < usec) {
    603 		if (itp->it_value.tv_sec == 0) {
    604 			/* expired, and already in next interval */
    605 			usec -= itp->it_value.tv_usec;
    606 			goto expire;
    607 		}
    608 		itp->it_value.tv_usec += 1000000;
    609 		itp->it_value.tv_sec--;
    610 	}
    611 	itp->it_value.tv_usec -= usec;
    612 	usec = 0;
    613 	if (timerisset(&itp->it_value))
    614 		return (1);
    615 	/* expired, exactly at end of interval */
    616 expire:
    617 	if (timerisset(&itp->it_interval)) {
    618 		itp->it_value = itp->it_interval;
    619 		itp->it_value.tv_usec -= usec;
    620 		if (itp->it_value.tv_usec < 0) {
    621 			itp->it_value.tv_usec += 1000000;
    622 			itp->it_value.tv_sec--;
    623 		}
    624 	} else
    625 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
    626 	return (0);
    627 }
    628 
    629 /*
    630  * ratecheck(): simple time-based rate-limit checking.  see ratecheck(9)
    631  * for usage and rationale.
    632  */
    633 int
    634 ratecheck(lasttime, mininterval)
    635 	struct timeval *lasttime;
    636 	const struct timeval *mininterval;
    637 {
    638 	struct timeval delta;
    639 	int s, rv = 0;
    640 
    641 	s = splclock();
    642 	timersub(lasttime, &mono_time, &delta);
    643 
    644 	/*
    645 	 * check for 0,0 is so that the message will be seen at least once,
    646 	 * even if interval is huge.
    647 	 */
    648 	if (timercmp(&delta, mininterval, >=) ||
    649 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
    650 		*lasttime = mono_time;
    651 		rv = 1;
    652 	}
    653 	splx(s);
    654 
    655 	return (rv);
    656 }
    657