kern_time.c revision 1.46 1 /* $NetBSD: kern_time.c,v 1.46 2000/05/26 21:20:32 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1989, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by the University of
54 * California, Berkeley and its contributors.
55 * 4. Neither the name of the University nor the names of its contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
72 */
73
74 #include "fs_nfs.h"
75 #include "opt_nfsserver.h"
76
77 #include <sys/param.h>
78 #include <sys/resourcevar.h>
79 #include <sys/kernel.h>
80 #include <sys/systm.h>
81 #include <sys/proc.h>
82 #include <sys/vnode.h>
83 #include <sys/signalvar.h>
84 #include <sys/syslog.h>
85
86 #include <sys/mount.h>
87 #include <sys/syscallargs.h>
88
89 #include <vm/vm.h>
90 #include <uvm/uvm_extern.h>
91
92 #if defined(NFS) || defined(NFSSERVER)
93 #include <nfs/rpcv2.h>
94 #include <nfs/nfsproto.h>
95 #include <nfs/nfs_var.h>
96 #endif
97
98 #include <machine/cpu.h>
99
100 /*
101 * Time of day and interval timer support.
102 *
103 * These routines provide the kernel entry points to get and set
104 * the time-of-day and per-process interval timers. Subroutines
105 * here provide support for adding and subtracting timeval structures
106 * and decrementing interval timers, optionally reloading the interval
107 * timers when they expire.
108 */
109
110 /* This function is used by clock_settime and settimeofday */
111 int
112 settime(tv)
113 struct timeval *tv;
114 {
115 struct timeval delta;
116 struct schedstate_percpu *spc = &curcpu()->ci_schedstate;
117 int s;
118
119 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
120 s = splclock();
121 timersub(tv, &time, &delta);
122 if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1)
123 return (EPERM);
124 #ifdef notyet
125 if ((delta.tv_sec < 86400) && securelevel > 0)
126 return (EPERM);
127 #endif
128 time = *tv;
129 (void) spllowersoftclock();
130 timeradd(&boottime, &delta, &boottime);
131 timeradd(&spc->spc_runtime, &delta, &spc->spc_runtime);
132 # if defined(NFS) || defined(NFSSERVER)
133 nqnfs_lease_updatetime(delta.tv_sec);
134 # endif
135 splx(s);
136 resettodr();
137 return (0);
138 }
139
140 /* ARGSUSED */
141 int
142 sys_clock_gettime(p, v, retval)
143 struct proc *p;
144 void *v;
145 register_t *retval;
146 {
147 struct sys_clock_gettime_args /* {
148 syscallarg(clockid_t) clock_id;
149 syscallarg(struct timespec *) tp;
150 } */ *uap = v;
151 clockid_t clock_id;
152 struct timeval atv;
153 struct timespec ats;
154
155 clock_id = SCARG(uap, clock_id);
156 if (clock_id != CLOCK_REALTIME)
157 return (EINVAL);
158
159 microtime(&atv);
160 TIMEVAL_TO_TIMESPEC(&atv,&ats);
161
162 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
163 }
164
165 /* ARGSUSED */
166 int
167 sys_clock_settime(p, v, retval)
168 struct proc *p;
169 void *v;
170 register_t *retval;
171 {
172 struct sys_clock_settime_args /* {
173 syscallarg(clockid_t) clock_id;
174 syscallarg(const struct timespec *) tp;
175 } */ *uap = v;
176 clockid_t clock_id;
177 struct timeval atv;
178 struct timespec ats;
179 int error;
180
181 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
182 return (error);
183
184 clock_id = SCARG(uap, clock_id);
185 if (clock_id != CLOCK_REALTIME)
186 return (EINVAL);
187
188 if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
189 return (error);
190
191 TIMESPEC_TO_TIMEVAL(&atv,&ats);
192 if ((error = settime(&atv)))
193 return (error);
194
195 return 0;
196 }
197
198 int
199 sys_clock_getres(p, v, retval)
200 struct proc *p;
201 void *v;
202 register_t *retval;
203 {
204 struct sys_clock_getres_args /* {
205 syscallarg(clockid_t) clock_id;
206 syscallarg(struct timespec *) tp;
207 } */ *uap = v;
208 clockid_t clock_id;
209 struct timespec ts;
210 int error = 0;
211
212 clock_id = SCARG(uap, clock_id);
213 if (clock_id != CLOCK_REALTIME)
214 return (EINVAL);
215
216 if (SCARG(uap, tp)) {
217 ts.tv_sec = 0;
218 ts.tv_nsec = 1000000000 / hz;
219
220 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
221 }
222
223 return error;
224 }
225
226 /* ARGSUSED */
227 int
228 sys_nanosleep(p, v, retval)
229 struct proc *p;
230 void *v;
231 register_t *retval;
232 {
233 static int nanowait;
234 struct sys_nanosleep_args/* {
235 syscallarg(struct timespec *) rqtp;
236 syscallarg(struct timespec *) rmtp;
237 } */ *uap = v;
238 struct timespec rqt;
239 struct timespec rmt;
240 struct timeval atv, utv;
241 int error, s, timo;
242
243 error = copyin((caddr_t)SCARG(uap, rqtp), (caddr_t)&rqt,
244 sizeof(struct timespec));
245 if (error)
246 return (error);
247
248 TIMESPEC_TO_TIMEVAL(&atv,&rqt)
249 if (itimerfix(&atv))
250 return (EINVAL);
251
252 s = splclock();
253 timeradd(&atv,&time,&atv);
254 timo = hzto(&atv);
255 /*
256 * Avoid inadvertantly sleeping forever
257 */
258 if (timo == 0)
259 timo = 1;
260 splx(s);
261
262 error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
263 if (error == ERESTART)
264 error = EINTR;
265 if (error == EWOULDBLOCK)
266 error = 0;
267
268 if (SCARG(uap, rmtp)) {
269 int error;
270
271 s = splclock();
272 utv = time;
273 splx(s);
274
275 timersub(&atv, &utv, &utv);
276 if (utv.tv_sec < 0)
277 timerclear(&utv);
278
279 TIMEVAL_TO_TIMESPEC(&utv,&rmt);
280 error = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
281 sizeof(rmt));
282 if (error)
283 return (error);
284 }
285
286 return error;
287 }
288
289 /* ARGSUSED */
290 int
291 sys_gettimeofday(p, v, retval)
292 struct proc *p;
293 void *v;
294 register_t *retval;
295 {
296 struct sys_gettimeofday_args /* {
297 syscallarg(struct timeval *) tp;
298 syscallarg(struct timezone *) tzp;
299 } */ *uap = v;
300 struct timeval atv;
301 int error = 0;
302 struct timezone tzfake;
303
304 if (SCARG(uap, tp)) {
305 microtime(&atv);
306 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
307 if (error)
308 return (error);
309 }
310 if (SCARG(uap, tzp)) {
311 /*
312 * NetBSD has no kernel notion of time zone, so we just
313 * fake up a timezone struct and return it if demanded.
314 */
315 tzfake.tz_minuteswest = 0;
316 tzfake.tz_dsttime = 0;
317 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
318 }
319 return (error);
320 }
321
322 /* ARGSUSED */
323 int
324 sys_settimeofday(p, v, retval)
325 struct proc *p;
326 void *v;
327 register_t *retval;
328 {
329 struct sys_settimeofday_args /* {
330 syscallarg(const struct timeval *) tv;
331 syscallarg(const struct timezone *) tzp;
332 } */ *uap = v;
333 struct timeval atv;
334 struct timezone atz;
335 int error;
336
337 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
338 return (error);
339 /* Verify all parameters before changing time. */
340 if (SCARG(uap, tv) && (error = copyin(SCARG(uap, tv),
341 &atv, sizeof(atv))))
342 return (error);
343 /* XXX since we don't use tz, probably no point in doing copyin. */
344 if (SCARG(uap, tzp) && (error = copyin(SCARG(uap, tzp),
345 &atz, sizeof(atz))))
346 return (error);
347 if (SCARG(uap, tv))
348 if ((error = settime(&atv)))
349 return (error);
350 /*
351 * NetBSD has no kernel notion of time zone, and only an
352 * obsolete program would try to set it, so we log a warning.
353 */
354 if (SCARG(uap, tzp))
355 log(LOG_WARNING, "pid %d attempted to set the "
356 "(obsolete) kernel time zone\n", p->p_pid);
357 return (0);
358 }
359
360 int tickdelta; /* current clock skew, us. per tick */
361 long timedelta; /* unapplied time correction, us. */
362 long bigadj = 1000000; /* use 10x skew above bigadj us. */
363
364 /* ARGSUSED */
365 int
366 sys_adjtime(p, v, retval)
367 struct proc *p;
368 void *v;
369 register_t *retval;
370 {
371 struct sys_adjtime_args /* {
372 syscallarg(const struct timeval *) delta;
373 syscallarg(struct timeval *) olddelta;
374 } */ *uap = v;
375 struct timeval atv;
376 long ndelta, ntickdelta, odelta;
377 int s, error;
378
379 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
380 return (error);
381
382 error = copyin(SCARG(uap, delta), &atv, sizeof(struct timeval));
383 if (error)
384 return (error);
385 if (SCARG(uap, olddelta) != NULL &&
386 uvm_useracc((caddr_t)SCARG(uap, olddelta), sizeof(struct timeval),
387 B_WRITE) == FALSE)
388 return (EFAULT);
389
390 /*
391 * Compute the total correction and the rate at which to apply it.
392 * Round the adjustment down to a whole multiple of the per-tick
393 * delta, so that after some number of incremental changes in
394 * hardclock(), tickdelta will become zero, lest the correction
395 * overshoot and start taking us away from the desired final time.
396 */
397 ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
398 if (ndelta > bigadj || ndelta < -bigadj)
399 ntickdelta = 10 * tickadj;
400 else
401 ntickdelta = tickadj;
402 if (ndelta % ntickdelta)
403 ndelta = ndelta / ntickdelta * ntickdelta;
404
405 /*
406 * To make hardclock()'s job easier, make the per-tick delta negative
407 * if we want time to run slower; then hardclock can simply compute
408 * tick + tickdelta, and subtract tickdelta from timedelta.
409 */
410 if (ndelta < 0)
411 ntickdelta = -ntickdelta;
412 s = splclock();
413 odelta = timedelta;
414 timedelta = ndelta;
415 tickdelta = ntickdelta;
416 splx(s);
417
418 if (SCARG(uap, olddelta)) {
419 atv.tv_sec = odelta / 1000000;
420 atv.tv_usec = odelta % 1000000;
421 (void) copyout(&atv, SCARG(uap, olddelta),
422 sizeof(struct timeval));
423 }
424 return (0);
425 }
426
427 /*
428 * Get value of an interval timer. The process virtual and
429 * profiling virtual time timers are kept in the p_stats area, since
430 * they can be swapped out. These are kept internally in the
431 * way they are specified externally: in time until they expire.
432 *
433 * The real time interval timer is kept in the process table slot
434 * for the process, and its value (it_value) is kept as an
435 * absolute time rather than as a delta, so that it is easy to keep
436 * periodic real-time signals from drifting.
437 *
438 * Virtual time timers are processed in the hardclock() routine of
439 * kern_clock.c. The real time timer is processed by a timeout
440 * routine, called from the softclock() routine. Since a callout
441 * may be delayed in real time due to interrupt processing in the system,
442 * it is possible for the real time timeout routine (realitexpire, given below),
443 * to be delayed in real time past when it is supposed to occur. It
444 * does not suffice, therefore, to reload the real timer .it_value from the
445 * real time timers .it_interval. Rather, we compute the next time in
446 * absolute time the timer should go off.
447 */
448 /* ARGSUSED */
449 int
450 sys_getitimer(p, v, retval)
451 struct proc *p;
452 void *v;
453 register_t *retval;
454 {
455 struct sys_getitimer_args /* {
456 syscallarg(int) which;
457 syscallarg(struct itimerval *) itv;
458 } */ *uap = v;
459 int which = SCARG(uap, which);
460 struct itimerval aitv;
461 int s;
462
463 if ((u_int)which > ITIMER_PROF)
464 return (EINVAL);
465 s = splclock();
466 if (which == ITIMER_REAL) {
467 /*
468 * Convert from absolute to relative time in .it_value
469 * part of real time timer. If time for real time timer
470 * has passed return 0, else return difference between
471 * current time and time for the timer to go off.
472 */
473 aitv = p->p_realtimer;
474 if (timerisset(&aitv.it_value)) {
475 if (timercmp(&aitv.it_value, &time, <))
476 timerclear(&aitv.it_value);
477 else
478 timersub(&aitv.it_value, &time, &aitv.it_value);
479 }
480 } else
481 aitv = p->p_stats->p_timer[which];
482 splx(s);
483 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
484 }
485
486 /* ARGSUSED */
487 int
488 sys_setitimer(p, v, retval)
489 struct proc *p;
490 void *v;
491 register_t *retval;
492 {
493 struct sys_setitimer_args /* {
494 syscallarg(int) which;
495 syscallarg(const struct itimerval *) itv;
496 syscallarg(struct itimerval *) oitv;
497 } */ *uap = v;
498 int which = SCARG(uap, which);
499 struct sys_getitimer_args getargs;
500 struct itimerval aitv;
501 const struct itimerval *itvp;
502 int s, error;
503
504 if ((u_int)which > ITIMER_PROF)
505 return (EINVAL);
506 itvp = SCARG(uap, itv);
507 if (itvp && (error = copyin(itvp, &aitv, sizeof(struct itimerval))))
508 return (error);
509 if (SCARG(uap, oitv) != NULL) {
510 SCARG(&getargs, which) = which;
511 SCARG(&getargs, itv) = SCARG(uap, oitv);
512 if ((error = sys_getitimer(p, &getargs, retval)) != 0)
513 return (error);
514 }
515 if (itvp == 0)
516 return (0);
517 if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
518 return (EINVAL);
519 s = splclock();
520 if (which == ITIMER_REAL) {
521 callout_stop(&p->p_realit_ch);
522 if (timerisset(&aitv.it_value)) {
523 timeradd(&aitv.it_value, &time, &aitv.it_value);
524 callout_reset(&p->p_realit_ch, hzto(&aitv.it_value),
525 realitexpire, p);
526 }
527 p->p_realtimer = aitv;
528 } else
529 p->p_stats->p_timer[which] = aitv;
530 splx(s);
531 return (0);
532 }
533
534 /*
535 * Real interval timer expired:
536 * send process whose timer expired an alarm signal.
537 * If time is not set up to reload, then just return.
538 * Else compute next time timer should go off which is > current time.
539 * This is where delay in processing this timeout causes multiple
540 * SIGALRM calls to be compressed into one.
541 */
542 void
543 realitexpire(arg)
544 void *arg;
545 {
546 struct proc *p;
547 int s;
548
549 p = (struct proc *)arg;
550 psignal(p, SIGALRM);
551 if (!timerisset(&p->p_realtimer.it_interval)) {
552 timerclear(&p->p_realtimer.it_value);
553 return;
554 }
555 for (;;) {
556 s = splclock();
557 timeradd(&p->p_realtimer.it_value,
558 &p->p_realtimer.it_interval, &p->p_realtimer.it_value);
559 if (timercmp(&p->p_realtimer.it_value, &time, >)) {
560 callout_reset(&p->p_realit_ch,
561 hzto(&p->p_realtimer.it_value), realitexpire, p);
562 splx(s);
563 return;
564 }
565 splx(s);
566 }
567 }
568
569 /*
570 * Check that a proposed value to load into the .it_value or
571 * .it_interval part of an interval timer is acceptable, and
572 * fix it to have at least minimal value (i.e. if it is less
573 * than the resolution of the clock, round it up.)
574 */
575 int
576 itimerfix(tv)
577 struct timeval *tv;
578 {
579
580 if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
581 tv->tv_usec < 0 || tv->tv_usec >= 1000000)
582 return (EINVAL);
583 if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
584 tv->tv_usec = tick;
585 return (0);
586 }
587
588 /*
589 * Decrement an interval timer by a specified number
590 * of microseconds, which must be less than a second,
591 * i.e. < 1000000. If the timer expires, then reload
592 * it. In this case, carry over (usec - old value) to
593 * reduce the value reloaded into the timer so that
594 * the timer does not drift. This routine assumes
595 * that it is called in a context where the timers
596 * on which it is operating cannot change in value.
597 */
598 int
599 itimerdecr(itp, usec)
600 struct itimerval *itp;
601 int usec;
602 {
603
604 if (itp->it_value.tv_usec < usec) {
605 if (itp->it_value.tv_sec == 0) {
606 /* expired, and already in next interval */
607 usec -= itp->it_value.tv_usec;
608 goto expire;
609 }
610 itp->it_value.tv_usec += 1000000;
611 itp->it_value.tv_sec--;
612 }
613 itp->it_value.tv_usec -= usec;
614 usec = 0;
615 if (timerisset(&itp->it_value))
616 return (1);
617 /* expired, exactly at end of interval */
618 expire:
619 if (timerisset(&itp->it_interval)) {
620 itp->it_value = itp->it_interval;
621 itp->it_value.tv_usec -= usec;
622 if (itp->it_value.tv_usec < 0) {
623 itp->it_value.tv_usec += 1000000;
624 itp->it_value.tv_sec--;
625 }
626 } else
627 itp->it_value.tv_usec = 0; /* sec is already 0 */
628 return (0);
629 }
630
631 /*
632 * ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
633 * for usage and rationale.
634 */
635 int
636 ratecheck(lasttime, mininterval)
637 struct timeval *lasttime;
638 const struct timeval *mininterval;
639 {
640 struct timeval delta;
641 int s, rv = 0;
642
643 s = splclock();
644 timersub(&mono_time, lasttime, &delta);
645
646 /*
647 * check for 0,0 is so that the message will be seen at least once,
648 * even if interval is huge.
649 */
650 if (timercmp(&delta, mininterval, >=) ||
651 (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
652 *lasttime = mono_time;
653 rv = 1;
654 }
655 splx(s);
656
657 return (rv);
658 }
659