Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.52
      1 /*	$NetBSD: kern_time.c,v 1.52 2000/07/13 17:33:39 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Christopher G. Demetriou.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Copyright (c) 1982, 1986, 1989, 1993
     41  *	The Regents of the University of California.  All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. All advertising materials mentioning features or use of this software
     52  *    must display the following acknowledgement:
     53  *	This product includes software developed by the University of
     54  *	California, Berkeley and its contributors.
     55  * 4. Neither the name of the University nor the names of its contributors
     56  *    may be used to endorse or promote products derived from this software
     57  *    without specific prior written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     69  * SUCH DAMAGE.
     70  *
     71  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     72  */
     73 
     74 #include "fs_nfs.h"
     75 #include "opt_nfsserver.h"
     76 
     77 #include <sys/param.h>
     78 #include <sys/resourcevar.h>
     79 #include <sys/kernel.h>
     80 #include <sys/systm.h>
     81 #include <sys/proc.h>
     82 #include <sys/vnode.h>
     83 #include <sys/signalvar.h>
     84 #include <sys/syslog.h>
     85 
     86 #include <sys/mount.h>
     87 #include <sys/syscallargs.h>
     88 
     89 #include <uvm/uvm_extern.h>
     90 
     91 #if defined(NFS) || defined(NFSSERVER)
     92 #include <nfs/rpcv2.h>
     93 #include <nfs/nfsproto.h>
     94 #include <nfs/nfs_var.h>
     95 #endif
     96 
     97 #include <machine/cpu.h>
     98 
     99 /*
    100  * Time of day and interval timer support.
    101  *
    102  * These routines provide the kernel entry points to get and set
    103  * the time-of-day and per-process interval timers.  Subroutines
    104  * here provide support for adding and subtracting timeval structures
    105  * and decrementing interval timers, optionally reloading the interval
    106  * timers when they expire.
    107  */
    108 
    109 /* This function is used by clock_settime and settimeofday */
    110 int
    111 settime(tv)
    112 	struct timeval *tv;
    113 {
    114 	struct timeval delta;
    115 	struct cpu_info *ci;
    116 	int s;
    117 
    118 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    119 	s = splclock();
    120 	timersub(tv, &time, &delta);
    121 	if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1)
    122 		return (EPERM);
    123 #ifdef notyet
    124 	if ((delta.tv_sec < 86400) && securelevel > 0)
    125 		return (EPERM);
    126 #endif
    127 	time = *tv;
    128 	(void) spllowersoftclock();
    129 	timeradd(&boottime, &delta, &boottime);
    130 	/*
    131 	 * XXXSMP
    132 	 * This is wrong.  We should traverse a list of all
    133 	 * CPUs and add the delta to the runtime of those
    134 	 * CPUs which have a process on them.
    135 	 */
    136 	ci = curcpu();
    137 	timeradd(&ci->ci_schedstate.spc_runtime, &delta,
    138 	    &ci->ci_schedstate.spc_runtime);
    139 #	if defined(NFS) || defined(NFSSERVER)
    140 		nqnfs_lease_updatetime(delta.tv_sec);
    141 #	endif
    142 	splx(s);
    143 	resettodr();
    144 	return (0);
    145 }
    146 
    147 /* ARGSUSED */
    148 int
    149 sys_clock_gettime(p, v, retval)
    150 	struct proc *p;
    151 	void *v;
    152 	register_t *retval;
    153 {
    154 	struct sys_clock_gettime_args /* {
    155 		syscallarg(clockid_t) clock_id;
    156 		syscallarg(struct timespec *) tp;
    157 	} */ *uap = v;
    158 	clockid_t clock_id;
    159 	struct timeval atv;
    160 	struct timespec ats;
    161 
    162 	clock_id = SCARG(uap, clock_id);
    163 	if (clock_id != CLOCK_REALTIME)
    164 		return (EINVAL);
    165 
    166 	microtime(&atv);
    167 	TIMEVAL_TO_TIMESPEC(&atv,&ats);
    168 
    169 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    170 }
    171 
    172 /* ARGSUSED */
    173 int
    174 sys_clock_settime(p, v, retval)
    175 	struct proc *p;
    176 	void *v;
    177 	register_t *retval;
    178 {
    179 	struct sys_clock_settime_args /* {
    180 		syscallarg(clockid_t) clock_id;
    181 		syscallarg(const struct timespec *) tp;
    182 	} */ *uap = v;
    183 	clockid_t clock_id;
    184 	struct timeval atv;
    185 	struct timespec ats;
    186 	int error;
    187 
    188 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    189 		return (error);
    190 
    191 	clock_id = SCARG(uap, clock_id);
    192 	if (clock_id != CLOCK_REALTIME)
    193 		return (EINVAL);
    194 
    195 	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
    196 		return (error);
    197 
    198 	TIMESPEC_TO_TIMEVAL(&atv,&ats);
    199 	if ((error = settime(&atv)))
    200 		return (error);
    201 
    202 	return 0;
    203 }
    204 
    205 int
    206 sys_clock_getres(p, v, retval)
    207 	struct proc *p;
    208 	void *v;
    209 	register_t *retval;
    210 {
    211 	struct sys_clock_getres_args /* {
    212 		syscallarg(clockid_t) clock_id;
    213 		syscallarg(struct timespec *) tp;
    214 	} */ *uap = v;
    215 	clockid_t clock_id;
    216 	struct timespec ts;
    217 	int error = 0;
    218 
    219 	clock_id = SCARG(uap, clock_id);
    220 	if (clock_id != CLOCK_REALTIME)
    221 		return (EINVAL);
    222 
    223 	if (SCARG(uap, tp)) {
    224 		ts.tv_sec = 0;
    225 		ts.tv_nsec = 1000000000 / hz;
    226 
    227 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    228 	}
    229 
    230 	return error;
    231 }
    232 
    233 /* ARGSUSED */
    234 int
    235 sys_nanosleep(p, v, retval)
    236 	struct proc *p;
    237 	void *v;
    238 	register_t *retval;
    239 {
    240 	static int nanowait;
    241 	struct sys_nanosleep_args/* {
    242 		syscallarg(struct timespec *) rqtp;
    243 		syscallarg(struct timespec *) rmtp;
    244 	} */ *uap = v;
    245 	struct timespec rqt;
    246 	struct timespec rmt;
    247 	struct timeval atv, utv;
    248 	int error, s, timo;
    249 
    250 	error = copyin((caddr_t)SCARG(uap, rqtp), (caddr_t)&rqt,
    251 		       sizeof(struct timespec));
    252 	if (error)
    253 		return (error);
    254 
    255 	TIMESPEC_TO_TIMEVAL(&atv,&rqt)
    256 	if (itimerfix(&atv))
    257 		return (EINVAL);
    258 
    259 	s = splclock();
    260 	timeradd(&atv,&time,&atv);
    261 	timo = hzto(&atv);
    262 	/*
    263 	 * Avoid inadvertantly sleeping forever
    264 	 */
    265 	if (timo == 0)
    266 		timo = 1;
    267 	splx(s);
    268 
    269 	error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
    270 	if (error == ERESTART)
    271 		error = EINTR;
    272 	if (error == EWOULDBLOCK)
    273 		error = 0;
    274 
    275 	if (SCARG(uap, rmtp)) {
    276 		int error;
    277 
    278 		s = splclock();
    279 		utv = time;
    280 		splx(s);
    281 
    282 		timersub(&atv, &utv, &utv);
    283 		if (utv.tv_sec < 0)
    284 			timerclear(&utv);
    285 
    286 		TIMEVAL_TO_TIMESPEC(&utv,&rmt);
    287 		error = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
    288 			sizeof(rmt));
    289 		if (error)
    290 			return (error);
    291 	}
    292 
    293 	return error;
    294 }
    295 
    296 /* ARGSUSED */
    297 int
    298 sys_gettimeofday(p, v, retval)
    299 	struct proc *p;
    300 	void *v;
    301 	register_t *retval;
    302 {
    303 	struct sys_gettimeofday_args /* {
    304 		syscallarg(struct timeval *) tp;
    305 		syscallarg(struct timezone *) tzp;
    306 	} */ *uap = v;
    307 	struct timeval atv;
    308 	int error = 0;
    309 	struct timezone tzfake;
    310 
    311 	if (SCARG(uap, tp)) {
    312 		microtime(&atv);
    313 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    314 		if (error)
    315 			return (error);
    316 	}
    317 	if (SCARG(uap, tzp)) {
    318 		/*
    319 		 * NetBSD has no kernel notion of time zone, so we just
    320 		 * fake up a timezone struct and return it if demanded.
    321 		 */
    322 		tzfake.tz_minuteswest = 0;
    323 		tzfake.tz_dsttime = 0;
    324 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    325 	}
    326 	return (error);
    327 }
    328 
    329 /* ARGSUSED */
    330 int
    331 sys_settimeofday(p, v, retval)
    332 	struct proc *p;
    333 	void *v;
    334 	register_t *retval;
    335 {
    336 	struct sys_settimeofday_args /* {
    337 		syscallarg(const struct timeval *) tv;
    338 		syscallarg(const struct timezone *) tzp;
    339 	} */ *uap = v;
    340 	struct timeval atv;
    341 	struct timezone atz;
    342 	int error;
    343 
    344 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    345 		return (error);
    346 	/* Verify all parameters before changing time. */
    347 	if (SCARG(uap, tv) && (error = copyin(SCARG(uap, tv),
    348 	    &atv, sizeof(atv))))
    349 		return (error);
    350 	/* XXX since we don't use tz, probably no point in doing copyin. */
    351 	if (SCARG(uap, tzp) && (error = copyin(SCARG(uap, tzp),
    352 	    &atz, sizeof(atz))))
    353 		return (error);
    354 	if (SCARG(uap, tv))
    355 		if ((error = settime(&atv)))
    356 			return (error);
    357 	/*
    358 	 * NetBSD has no kernel notion of time zone, and only an
    359 	 * obsolete program would try to set it, so we log a warning.
    360 	 */
    361 	if (SCARG(uap, tzp))
    362 		log(LOG_WARNING, "pid %d attempted to set the "
    363 		    "(obsolete) kernel time zone\n", p->p_pid);
    364 	return (0);
    365 }
    366 
    367 int	tickdelta;			/* current clock skew, us. per tick */
    368 long	timedelta;			/* unapplied time correction, us. */
    369 long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
    370 
    371 /* ARGSUSED */
    372 int
    373 sys_adjtime(p, v, retval)
    374 	struct proc *p;
    375 	void *v;
    376 	register_t *retval;
    377 {
    378 	struct sys_adjtime_args /* {
    379 		syscallarg(const struct timeval *) delta;
    380 		syscallarg(struct timeval *) olddelta;
    381 	} */ *uap = v;
    382 	struct timeval atv;
    383 	long ndelta, ntickdelta, odelta;
    384 	int s, error;
    385 
    386 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    387 		return (error);
    388 
    389 	error = copyin(SCARG(uap, delta), &atv, sizeof(struct timeval));
    390 	if (error)
    391 		return (error);
    392 	if (SCARG(uap, olddelta) != NULL &&
    393 	    uvm_useracc((caddr_t)SCARG(uap, olddelta), sizeof(struct timeval),
    394 	     B_WRITE) == FALSE)
    395 		return (EFAULT);
    396 
    397 	/*
    398 	 * Compute the total correction and the rate at which to apply it.
    399 	 * Round the adjustment down to a whole multiple of the per-tick
    400 	 * delta, so that after some number of incremental changes in
    401 	 * hardclock(), tickdelta will become zero, lest the correction
    402 	 * overshoot and start taking us away from the desired final time.
    403 	 */
    404 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
    405 	if (ndelta > bigadj || ndelta < -bigadj)
    406 		ntickdelta = 10 * tickadj;
    407 	else
    408 		ntickdelta = tickadj;
    409 	if (ndelta % ntickdelta)
    410 		ndelta = ndelta / ntickdelta * ntickdelta;
    411 
    412 	/*
    413 	 * To make hardclock()'s job easier, make the per-tick delta negative
    414 	 * if we want time to run slower; then hardclock can simply compute
    415 	 * tick + tickdelta, and subtract tickdelta from timedelta.
    416 	 */
    417 	if (ndelta < 0)
    418 		ntickdelta = -ntickdelta;
    419 	s = splclock();
    420 	odelta = timedelta;
    421 	timedelta = ndelta;
    422 	tickdelta = ntickdelta;
    423 	splx(s);
    424 
    425 	if (SCARG(uap, olddelta)) {
    426 		atv.tv_sec = odelta / 1000000;
    427 		atv.tv_usec = odelta % 1000000;
    428 		(void) copyout(&atv, SCARG(uap, olddelta),
    429 		    sizeof(struct timeval));
    430 	}
    431 	return (0);
    432 }
    433 
    434 /*
    435  * Get value of an interval timer.  The process virtual and
    436  * profiling virtual time timers are kept in the p_stats area, since
    437  * they can be swapped out.  These are kept internally in the
    438  * way they are specified externally: in time until they expire.
    439  *
    440  * The real time interval timer is kept in the process table slot
    441  * for the process, and its value (it_value) is kept as an
    442  * absolute time rather than as a delta, so that it is easy to keep
    443  * periodic real-time signals from drifting.
    444  *
    445  * Virtual time timers are processed in the hardclock() routine of
    446  * kern_clock.c.  The real time timer is processed by a timeout
    447  * routine, called from the softclock() routine.  Since a callout
    448  * may be delayed in real time due to interrupt processing in the system,
    449  * it is possible for the real time timeout routine (realitexpire, given below),
    450  * to be delayed in real time past when it is supposed to occur.  It
    451  * does not suffice, therefore, to reload the real timer .it_value from the
    452  * real time timers .it_interval.  Rather, we compute the next time in
    453  * absolute time the timer should go off.
    454  */
    455 /* ARGSUSED */
    456 int
    457 sys_getitimer(p, v, retval)
    458 	struct proc *p;
    459 	void *v;
    460 	register_t *retval;
    461 {
    462 	struct sys_getitimer_args /* {
    463 		syscallarg(int) which;
    464 		syscallarg(struct itimerval *) itv;
    465 	} */ *uap = v;
    466 	int which = SCARG(uap, which);
    467 	struct itimerval aitv;
    468 	int s;
    469 
    470 	if ((u_int)which > ITIMER_PROF)
    471 		return (EINVAL);
    472 	s = splclock();
    473 	if (which == ITIMER_REAL) {
    474 		/*
    475 		 * Convert from absolute to relative time in .it_value
    476 		 * part of real time timer.  If time for real time timer
    477 		 * has passed return 0, else return difference between
    478 		 * current time and time for the timer to go off.
    479 		 */
    480 		aitv = p->p_realtimer;
    481 		if (timerisset(&aitv.it_value)) {
    482 			if (timercmp(&aitv.it_value, &time, <))
    483 				timerclear(&aitv.it_value);
    484 			else
    485 				timersub(&aitv.it_value, &time, &aitv.it_value);
    486 		}
    487 	} else
    488 		aitv = p->p_stats->p_timer[which];
    489 	splx(s);
    490 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
    491 }
    492 
    493 /* ARGSUSED */
    494 int
    495 sys_setitimer(p, v, retval)
    496 	struct proc *p;
    497 	void *v;
    498 	register_t *retval;
    499 {
    500 	struct sys_setitimer_args /* {
    501 		syscallarg(int) which;
    502 		syscallarg(const struct itimerval *) itv;
    503 		syscallarg(struct itimerval *) oitv;
    504 	} */ *uap = v;
    505 	int which = SCARG(uap, which);
    506 	struct sys_getitimer_args getargs;
    507 	struct itimerval aitv;
    508 	const struct itimerval *itvp;
    509 	int s, error;
    510 
    511 	if ((u_int)which > ITIMER_PROF)
    512 		return (EINVAL);
    513 	itvp = SCARG(uap, itv);
    514 	if (itvp && (error = copyin(itvp, &aitv, sizeof(struct itimerval))))
    515 		return (error);
    516 	if (SCARG(uap, oitv) != NULL) {
    517 		SCARG(&getargs, which) = which;
    518 		SCARG(&getargs, itv) = SCARG(uap, oitv);
    519 		if ((error = sys_getitimer(p, &getargs, retval)) != 0)
    520 			return (error);
    521 	}
    522 	if (itvp == 0)
    523 		return (0);
    524 	if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
    525 		return (EINVAL);
    526 	s = splclock();
    527 	if (which == ITIMER_REAL) {
    528 		callout_stop(&p->p_realit_ch);
    529 		if (timerisset(&aitv.it_value)) {
    530 			/*
    531 			 * Don't need to check hzto() return value, here.
    532 			 * callout_reset() does it for us.
    533 			 */
    534 			timeradd(&aitv.it_value, &time, &aitv.it_value);
    535 			callout_reset(&p->p_realit_ch, hzto(&aitv.it_value),
    536 			    realitexpire, p);
    537 		}
    538 		p->p_realtimer = aitv;
    539 	} else
    540 		p->p_stats->p_timer[which] = aitv;
    541 	splx(s);
    542 	return (0);
    543 }
    544 
    545 /*
    546  * Real interval timer expired:
    547  * send process whose timer expired an alarm signal.
    548  * If time is not set up to reload, then just return.
    549  * Else compute next time timer should go off which is > current time.
    550  * This is where delay in processing this timeout causes multiple
    551  * SIGALRM calls to be compressed into one.
    552  */
    553 void
    554 realitexpire(arg)
    555 	void *arg;
    556 {
    557 	struct proc *p;
    558 	int s;
    559 
    560 	p = (struct proc *)arg;
    561 	psignal(p, SIGALRM);
    562 	if (!timerisset(&p->p_realtimer.it_interval)) {
    563 		timerclear(&p->p_realtimer.it_value);
    564 		return;
    565 	}
    566 	for (;;) {
    567 		s = splclock();
    568 		timeradd(&p->p_realtimer.it_value,
    569 		    &p->p_realtimer.it_interval, &p->p_realtimer.it_value);
    570 		if (timercmp(&p->p_realtimer.it_value, &time, >)) {
    571 			/*
    572 			 * Don't need to check hzto() return value, here.
    573 			 * callout_reset() does it for us.
    574 			 */
    575 			callout_reset(&p->p_realit_ch,
    576 			    hzto(&p->p_realtimer.it_value), realitexpire, p);
    577 			splx(s);
    578 			return;
    579 		}
    580 		splx(s);
    581 	}
    582 }
    583 
    584 /*
    585  * Check that a proposed value to load into the .it_value or
    586  * .it_interval part of an interval timer is acceptable, and
    587  * fix it to have at least minimal value (i.e. if it is less
    588  * than the resolution of the clock, round it up.)
    589  */
    590 int
    591 itimerfix(tv)
    592 	struct timeval *tv;
    593 {
    594 
    595 	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
    596 	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
    597 		return (EINVAL);
    598 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
    599 		tv->tv_usec = tick;
    600 	return (0);
    601 }
    602 
    603 /*
    604  * Decrement an interval timer by a specified number
    605  * of microseconds, which must be less than a second,
    606  * i.e. < 1000000.  If the timer expires, then reload
    607  * it.  In this case, carry over (usec - old value) to
    608  * reduce the value reloaded into the timer so that
    609  * the timer does not drift.  This routine assumes
    610  * that it is called in a context where the timers
    611  * on which it is operating cannot change in value.
    612  */
    613 int
    614 itimerdecr(itp, usec)
    615 	struct itimerval *itp;
    616 	int usec;
    617 {
    618 
    619 	if (itp->it_value.tv_usec < usec) {
    620 		if (itp->it_value.tv_sec == 0) {
    621 			/* expired, and already in next interval */
    622 			usec -= itp->it_value.tv_usec;
    623 			goto expire;
    624 		}
    625 		itp->it_value.tv_usec += 1000000;
    626 		itp->it_value.tv_sec--;
    627 	}
    628 	itp->it_value.tv_usec -= usec;
    629 	usec = 0;
    630 	if (timerisset(&itp->it_value))
    631 		return (1);
    632 	/* expired, exactly at end of interval */
    633 expire:
    634 	if (timerisset(&itp->it_interval)) {
    635 		itp->it_value = itp->it_interval;
    636 		itp->it_value.tv_usec -= usec;
    637 		if (itp->it_value.tv_usec < 0) {
    638 			itp->it_value.tv_usec += 1000000;
    639 			itp->it_value.tv_sec--;
    640 		}
    641 	} else
    642 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
    643 	return (0);
    644 }
    645 
    646 /*
    647  * ratecheck(): simple time-based rate-limit checking.  see ratecheck(9)
    648  * for usage and rationale.
    649  */
    650 int
    651 ratecheck(lasttime, mininterval)
    652 	struct timeval *lasttime;
    653 	const struct timeval *mininterval;
    654 {
    655 	struct timeval tv, delta;
    656 	int s, rv = 0;
    657 
    658 	s = splclock();
    659 	tv = mono_time;
    660 	splx(s);
    661 
    662 	timersub(&tv, lasttime, &delta);
    663 
    664 	/*
    665 	 * check for 0,0 is so that the message will be seen at least once,
    666 	 * even if interval is huge.
    667 	 */
    668 	if (timercmp(&delta, mininterval, >=) ||
    669 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
    670 		*lasttime = tv;
    671 		rv = 1;
    672 	}
    673 
    674 	return (rv);
    675 }
    676 
    677 /*
    678  * ppsratecheck(): packets (or events) per second limitation.
    679  */
    680 int
    681 ppsratecheck(lasttime, curpps, maxpps)
    682 	struct timeval *lasttime;
    683 	int *curpps;
    684 	int maxpps;	/* maximum pps allowed */
    685 {
    686 	struct timeval tv, delta;
    687 	int s, rv;
    688 
    689 	s = splclock();
    690 	tv = mono_time;
    691 	splx(s);
    692 
    693 	timersub(&tv, lasttime, &delta);
    694 
    695 	/*
    696 	 * check for 0,0 is so that the message will be seen at least once.
    697 	 * if more than one second have passed since the last update of
    698 	 * lasttime, reset the counter.
    699 	 *
    700 	 * we do increment *curpps even in *curpps < maxpps case, as some may
    701 	 * try to use *curpps for stat purposes as well.
    702 	 */
    703 	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
    704 	    delta.tv_sec >= 1) {
    705 		*lasttime = tv;
    706 		*curpps = 0;
    707 		rv = 1;
    708 	} else if (*curpps < maxpps)
    709 		rv = 1;
    710 	else
    711 		rv = 0;
    712 
    713 #if 1 /*DIAGNOSTIC?*/
    714 	/* be careful about wrap-around */
    715 	if (*curpps + 1 > *curpps)
    716 		*curpps = *curpps + 1;
    717 #else
    718 	/*
    719 	 * assume that there's not too many calls to this function.
    720 	 * not sure if the assumption holds, as it depends on *caller's*
    721 	 * behavior, not the behavior of this function.
    722 	 * IMHO it is wrong to make assumption on the caller's behavior,
    723 	 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
    724 	 */
    725 	*curpps = *curpps + 1;
    726 #endif
    727 
    728 	return (rv);
    729 }
    730