kern_time.c revision 1.54 1 /* $NetBSD: kern_time.c,v 1.54 2000/09/19 23:26:25 bjh21 Exp $ */
2
3 /*-
4 * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1989, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by the University of
54 * California, Berkeley and its contributors.
55 * 4. Neither the name of the University nor the names of its contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
72 */
73
74 #include "fs_nfs.h"
75 #include "opt_nfs.h"
76 #include "opt_nfsserver.h"
77
78 #include <sys/param.h>
79 #include <sys/resourcevar.h>
80 #include <sys/kernel.h>
81 #include <sys/systm.h>
82 #include <sys/proc.h>
83 #include <sys/vnode.h>
84 #include <sys/signalvar.h>
85 #include <sys/syslog.h>
86
87 #include <sys/mount.h>
88 #include <sys/syscallargs.h>
89
90 #include <uvm/uvm_extern.h>
91
92 #if defined(NFS) || defined(NFSSERVER)
93 #include <nfs/rpcv2.h>
94 #include <nfs/nfsproto.h>
95 #include <nfs/nfs_var.h>
96 #endif
97
98 #include <machine/cpu.h>
99
100 /*
101 * Time of day and interval timer support.
102 *
103 * These routines provide the kernel entry points to get and set
104 * the time-of-day and per-process interval timers. Subroutines
105 * here provide support for adding and subtracting timeval structures
106 * and decrementing interval timers, optionally reloading the interval
107 * timers when they expire.
108 */
109
110 /* This function is used by clock_settime and settimeofday */
111 int
112 settime(tv)
113 struct timeval *tv;
114 {
115 struct timeval delta;
116 struct cpu_info *ci;
117 int s;
118
119 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
120 s = splclock();
121 timersub(tv, &time, &delta);
122 if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1)
123 return (EPERM);
124 #ifdef notyet
125 if ((delta.tv_sec < 86400) && securelevel > 0)
126 return (EPERM);
127 #endif
128 time = *tv;
129 (void) spllowersoftclock();
130 timeradd(&boottime, &delta, &boottime);
131 /*
132 * XXXSMP
133 * This is wrong. We should traverse a list of all
134 * CPUs and add the delta to the runtime of those
135 * CPUs which have a process on them.
136 */
137 ci = curcpu();
138 timeradd(&ci->ci_schedstate.spc_runtime, &delta,
139 &ci->ci_schedstate.spc_runtime);
140 # if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER)
141 nqnfs_lease_updatetime(delta.tv_sec);
142 # endif
143 splx(s);
144 resettodr();
145 return (0);
146 }
147
148 /* ARGSUSED */
149 int
150 sys_clock_gettime(p, v, retval)
151 struct proc *p;
152 void *v;
153 register_t *retval;
154 {
155 struct sys_clock_gettime_args /* {
156 syscallarg(clockid_t) clock_id;
157 syscallarg(struct timespec *) tp;
158 } */ *uap = v;
159 clockid_t clock_id;
160 struct timeval atv;
161 struct timespec ats;
162
163 clock_id = SCARG(uap, clock_id);
164 if (clock_id != CLOCK_REALTIME)
165 return (EINVAL);
166
167 microtime(&atv);
168 TIMEVAL_TO_TIMESPEC(&atv,&ats);
169
170 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
171 }
172
173 /* ARGSUSED */
174 int
175 sys_clock_settime(p, v, retval)
176 struct proc *p;
177 void *v;
178 register_t *retval;
179 {
180 struct sys_clock_settime_args /* {
181 syscallarg(clockid_t) clock_id;
182 syscallarg(const struct timespec *) tp;
183 } */ *uap = v;
184 clockid_t clock_id;
185 struct timeval atv;
186 struct timespec ats;
187 int error;
188
189 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
190 return (error);
191
192 clock_id = SCARG(uap, clock_id);
193 if (clock_id != CLOCK_REALTIME)
194 return (EINVAL);
195
196 if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
197 return (error);
198
199 TIMESPEC_TO_TIMEVAL(&atv,&ats);
200 if ((error = settime(&atv)))
201 return (error);
202
203 return 0;
204 }
205
206 int
207 sys_clock_getres(p, v, retval)
208 struct proc *p;
209 void *v;
210 register_t *retval;
211 {
212 struct sys_clock_getres_args /* {
213 syscallarg(clockid_t) clock_id;
214 syscallarg(struct timespec *) tp;
215 } */ *uap = v;
216 clockid_t clock_id;
217 struct timespec ts;
218 int error = 0;
219
220 clock_id = SCARG(uap, clock_id);
221 if (clock_id != CLOCK_REALTIME)
222 return (EINVAL);
223
224 if (SCARG(uap, tp)) {
225 ts.tv_sec = 0;
226 ts.tv_nsec = 1000000000 / hz;
227
228 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
229 }
230
231 return error;
232 }
233
234 /* ARGSUSED */
235 int
236 sys_nanosleep(p, v, retval)
237 struct proc *p;
238 void *v;
239 register_t *retval;
240 {
241 static int nanowait;
242 struct sys_nanosleep_args/* {
243 syscallarg(struct timespec *) rqtp;
244 syscallarg(struct timespec *) rmtp;
245 } */ *uap = v;
246 struct timespec rqt;
247 struct timespec rmt;
248 struct timeval atv, utv;
249 int error, s, timo;
250
251 error = copyin((caddr_t)SCARG(uap, rqtp), (caddr_t)&rqt,
252 sizeof(struct timespec));
253 if (error)
254 return (error);
255
256 TIMESPEC_TO_TIMEVAL(&atv,&rqt)
257 if (itimerfix(&atv))
258 return (EINVAL);
259
260 s = splclock();
261 timeradd(&atv,&time,&atv);
262 timo = hzto(&atv);
263 /*
264 * Avoid inadvertantly sleeping forever
265 */
266 if (timo == 0)
267 timo = 1;
268 splx(s);
269
270 error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
271 if (error == ERESTART)
272 error = EINTR;
273 if (error == EWOULDBLOCK)
274 error = 0;
275
276 if (SCARG(uap, rmtp)) {
277 int error;
278
279 s = splclock();
280 utv = time;
281 splx(s);
282
283 timersub(&atv, &utv, &utv);
284 if (utv.tv_sec < 0)
285 timerclear(&utv);
286
287 TIMEVAL_TO_TIMESPEC(&utv,&rmt);
288 error = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
289 sizeof(rmt));
290 if (error)
291 return (error);
292 }
293
294 return error;
295 }
296
297 /* ARGSUSED */
298 int
299 sys_gettimeofday(p, v, retval)
300 struct proc *p;
301 void *v;
302 register_t *retval;
303 {
304 struct sys_gettimeofday_args /* {
305 syscallarg(struct timeval *) tp;
306 syscallarg(struct timezone *) tzp;
307 } */ *uap = v;
308 struct timeval atv;
309 int error = 0;
310 struct timezone tzfake;
311
312 if (SCARG(uap, tp)) {
313 microtime(&atv);
314 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
315 if (error)
316 return (error);
317 }
318 if (SCARG(uap, tzp)) {
319 /*
320 * NetBSD has no kernel notion of time zone, so we just
321 * fake up a timezone struct and return it if demanded.
322 */
323 tzfake.tz_minuteswest = 0;
324 tzfake.tz_dsttime = 0;
325 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
326 }
327 return (error);
328 }
329
330 /* ARGSUSED */
331 int
332 sys_settimeofday(p, v, retval)
333 struct proc *p;
334 void *v;
335 register_t *retval;
336 {
337 struct sys_settimeofday_args /* {
338 syscallarg(const struct timeval *) tv;
339 syscallarg(const struct timezone *) tzp;
340 } */ *uap = v;
341 struct timeval atv;
342 struct timezone atz;
343 int error;
344
345 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
346 return (error);
347 /* Verify all parameters before changing time. */
348 if (SCARG(uap, tv) && (error = copyin(SCARG(uap, tv),
349 &atv, sizeof(atv))))
350 return (error);
351 /* XXX since we don't use tz, probably no point in doing copyin. */
352 if (SCARG(uap, tzp) && (error = copyin(SCARG(uap, tzp),
353 &atz, sizeof(atz))))
354 return (error);
355 if (SCARG(uap, tv))
356 if ((error = settime(&atv)))
357 return (error);
358 /*
359 * NetBSD has no kernel notion of time zone, and only an
360 * obsolete program would try to set it, so we log a warning.
361 */
362 if (SCARG(uap, tzp))
363 log(LOG_WARNING, "pid %d attempted to set the "
364 "(obsolete) kernel time zone\n", p->p_pid);
365 return (0);
366 }
367
368 int tickdelta; /* current clock skew, us. per tick */
369 long timedelta; /* unapplied time correction, us. */
370 long bigadj = 1000000; /* use 10x skew above bigadj us. */
371
372 /* ARGSUSED */
373 int
374 sys_adjtime(p, v, retval)
375 struct proc *p;
376 void *v;
377 register_t *retval;
378 {
379 struct sys_adjtime_args /* {
380 syscallarg(const struct timeval *) delta;
381 syscallarg(struct timeval *) olddelta;
382 } */ *uap = v;
383 struct timeval atv;
384 long ndelta, ntickdelta, odelta;
385 int s, error;
386
387 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
388 return (error);
389
390 error = copyin(SCARG(uap, delta), &atv, sizeof(struct timeval));
391 if (error)
392 return (error);
393 if (SCARG(uap, olddelta) != NULL &&
394 uvm_useracc((caddr_t)SCARG(uap, olddelta), sizeof(struct timeval),
395 B_WRITE) == FALSE)
396 return (EFAULT);
397
398 /*
399 * Compute the total correction and the rate at which to apply it.
400 * Round the adjustment down to a whole multiple of the per-tick
401 * delta, so that after some number of incremental changes in
402 * hardclock(), tickdelta will become zero, lest the correction
403 * overshoot and start taking us away from the desired final time.
404 */
405 ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
406 if (ndelta > bigadj || ndelta < -bigadj)
407 ntickdelta = 10 * tickadj;
408 else
409 ntickdelta = tickadj;
410 if (ndelta % ntickdelta)
411 ndelta = ndelta / ntickdelta * ntickdelta;
412
413 /*
414 * To make hardclock()'s job easier, make the per-tick delta negative
415 * if we want time to run slower; then hardclock can simply compute
416 * tick + tickdelta, and subtract tickdelta from timedelta.
417 */
418 if (ndelta < 0)
419 ntickdelta = -ntickdelta;
420 s = splclock();
421 odelta = timedelta;
422 timedelta = ndelta;
423 tickdelta = ntickdelta;
424 splx(s);
425
426 if (SCARG(uap, olddelta)) {
427 atv.tv_sec = odelta / 1000000;
428 atv.tv_usec = odelta % 1000000;
429 (void) copyout(&atv, SCARG(uap, olddelta),
430 sizeof(struct timeval));
431 }
432 return (0);
433 }
434
435 /*
436 * Get value of an interval timer. The process virtual and
437 * profiling virtual time timers are kept in the p_stats area, since
438 * they can be swapped out. These are kept internally in the
439 * way they are specified externally: in time until they expire.
440 *
441 * The real time interval timer is kept in the process table slot
442 * for the process, and its value (it_value) is kept as an
443 * absolute time rather than as a delta, so that it is easy to keep
444 * periodic real-time signals from drifting.
445 *
446 * Virtual time timers are processed in the hardclock() routine of
447 * kern_clock.c. The real time timer is processed by a timeout
448 * routine, called from the softclock() routine. Since a callout
449 * may be delayed in real time due to interrupt processing in the system,
450 * it is possible for the real time timeout routine (realitexpire, given below),
451 * to be delayed in real time past when it is supposed to occur. It
452 * does not suffice, therefore, to reload the real timer .it_value from the
453 * real time timers .it_interval. Rather, we compute the next time in
454 * absolute time the timer should go off.
455 */
456 /* ARGSUSED */
457 int
458 sys_getitimer(p, v, retval)
459 struct proc *p;
460 void *v;
461 register_t *retval;
462 {
463 struct sys_getitimer_args /* {
464 syscallarg(int) which;
465 syscallarg(struct itimerval *) itv;
466 } */ *uap = v;
467 int which = SCARG(uap, which);
468 struct itimerval aitv;
469 int s;
470
471 if ((u_int)which > ITIMER_PROF)
472 return (EINVAL);
473 s = splclock();
474 if (which == ITIMER_REAL) {
475 /*
476 * Convert from absolute to relative time in .it_value
477 * part of real time timer. If time for real time timer
478 * has passed return 0, else return difference between
479 * current time and time for the timer to go off.
480 */
481 aitv = p->p_realtimer;
482 if (timerisset(&aitv.it_value)) {
483 if (timercmp(&aitv.it_value, &time, <))
484 timerclear(&aitv.it_value);
485 else
486 timersub(&aitv.it_value, &time, &aitv.it_value);
487 }
488 } else
489 aitv = p->p_stats->p_timer[which];
490 splx(s);
491 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
492 }
493
494 /* ARGSUSED */
495 int
496 sys_setitimer(p, v, retval)
497 struct proc *p;
498 void *v;
499 register_t *retval;
500 {
501 struct sys_setitimer_args /* {
502 syscallarg(int) which;
503 syscallarg(const struct itimerval *) itv;
504 syscallarg(struct itimerval *) oitv;
505 } */ *uap = v;
506 int which = SCARG(uap, which);
507 struct sys_getitimer_args getargs;
508 struct itimerval aitv;
509 const struct itimerval *itvp;
510 int s, error;
511
512 if ((u_int)which > ITIMER_PROF)
513 return (EINVAL);
514 itvp = SCARG(uap, itv);
515 if (itvp && (error = copyin(itvp, &aitv, sizeof(struct itimerval))))
516 return (error);
517 if (SCARG(uap, oitv) != NULL) {
518 SCARG(&getargs, which) = which;
519 SCARG(&getargs, itv) = SCARG(uap, oitv);
520 if ((error = sys_getitimer(p, &getargs, retval)) != 0)
521 return (error);
522 }
523 if (itvp == 0)
524 return (0);
525 if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
526 return (EINVAL);
527 s = splclock();
528 if (which == ITIMER_REAL) {
529 callout_stop(&p->p_realit_ch);
530 if (timerisset(&aitv.it_value)) {
531 /*
532 * Don't need to check hzto() return value, here.
533 * callout_reset() does it for us.
534 */
535 timeradd(&aitv.it_value, &time, &aitv.it_value);
536 callout_reset(&p->p_realit_ch, hzto(&aitv.it_value),
537 realitexpire, p);
538 }
539 p->p_realtimer = aitv;
540 } else
541 p->p_stats->p_timer[which] = aitv;
542 splx(s);
543 return (0);
544 }
545
546 /*
547 * Real interval timer expired:
548 * send process whose timer expired an alarm signal.
549 * If time is not set up to reload, then just return.
550 * Else compute next time timer should go off which is > current time.
551 * This is where delay in processing this timeout causes multiple
552 * SIGALRM calls to be compressed into one.
553 */
554 void
555 realitexpire(arg)
556 void *arg;
557 {
558 struct proc *p;
559 int s;
560
561 p = (struct proc *)arg;
562 psignal(p, SIGALRM);
563 if (!timerisset(&p->p_realtimer.it_interval)) {
564 timerclear(&p->p_realtimer.it_value);
565 return;
566 }
567 for (;;) {
568 s = splclock();
569 timeradd(&p->p_realtimer.it_value,
570 &p->p_realtimer.it_interval, &p->p_realtimer.it_value);
571 if (timercmp(&p->p_realtimer.it_value, &time, >)) {
572 /*
573 * Don't need to check hzto() return value, here.
574 * callout_reset() does it for us.
575 */
576 callout_reset(&p->p_realit_ch,
577 hzto(&p->p_realtimer.it_value), realitexpire, p);
578 splx(s);
579 return;
580 }
581 splx(s);
582 }
583 }
584
585 /*
586 * Check that a proposed value to load into the .it_value or
587 * .it_interval part of an interval timer is acceptable, and
588 * fix it to have at least minimal value (i.e. if it is less
589 * than the resolution of the clock, round it up.)
590 */
591 int
592 itimerfix(tv)
593 struct timeval *tv;
594 {
595
596 if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
597 tv->tv_usec < 0 || tv->tv_usec >= 1000000)
598 return (EINVAL);
599 if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
600 tv->tv_usec = tick;
601 return (0);
602 }
603
604 /*
605 * Decrement an interval timer by a specified number
606 * of microseconds, which must be less than a second,
607 * i.e. < 1000000. If the timer expires, then reload
608 * it. In this case, carry over (usec - old value) to
609 * reduce the value reloaded into the timer so that
610 * the timer does not drift. This routine assumes
611 * that it is called in a context where the timers
612 * on which it is operating cannot change in value.
613 */
614 int
615 itimerdecr(itp, usec)
616 struct itimerval *itp;
617 int usec;
618 {
619
620 if (itp->it_value.tv_usec < usec) {
621 if (itp->it_value.tv_sec == 0) {
622 /* expired, and already in next interval */
623 usec -= itp->it_value.tv_usec;
624 goto expire;
625 }
626 itp->it_value.tv_usec += 1000000;
627 itp->it_value.tv_sec--;
628 }
629 itp->it_value.tv_usec -= usec;
630 usec = 0;
631 if (timerisset(&itp->it_value))
632 return (1);
633 /* expired, exactly at end of interval */
634 expire:
635 if (timerisset(&itp->it_interval)) {
636 itp->it_value = itp->it_interval;
637 itp->it_value.tv_usec -= usec;
638 if (itp->it_value.tv_usec < 0) {
639 itp->it_value.tv_usec += 1000000;
640 itp->it_value.tv_sec--;
641 }
642 } else
643 itp->it_value.tv_usec = 0; /* sec is already 0 */
644 return (0);
645 }
646
647 /*
648 * ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
649 * for usage and rationale.
650 */
651 int
652 ratecheck(lasttime, mininterval)
653 struct timeval *lasttime;
654 const struct timeval *mininterval;
655 {
656 struct timeval tv, delta;
657 int s, rv = 0;
658
659 s = splclock();
660 tv = mono_time;
661 splx(s);
662
663 timersub(&tv, lasttime, &delta);
664
665 /*
666 * check for 0,0 is so that the message will be seen at least once,
667 * even if interval is huge.
668 */
669 if (timercmp(&delta, mininterval, >=) ||
670 (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
671 *lasttime = tv;
672 rv = 1;
673 }
674
675 return (rv);
676 }
677
678 /*
679 * ppsratecheck(): packets (or events) per second limitation.
680 */
681 int
682 ppsratecheck(lasttime, curpps, maxpps)
683 struct timeval *lasttime;
684 int *curpps;
685 int maxpps; /* maximum pps allowed */
686 {
687 struct timeval tv, delta;
688 int s, rv;
689
690 s = splclock();
691 tv = mono_time;
692 splx(s);
693
694 timersub(&tv, lasttime, &delta);
695
696 /*
697 * check for 0,0 is so that the message will be seen at least once.
698 * if more than one second have passed since the last update of
699 * lasttime, reset the counter.
700 *
701 * we do increment *curpps even in *curpps < maxpps case, as some may
702 * try to use *curpps for stat purposes as well.
703 */
704 if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
705 delta.tv_sec >= 1) {
706 *lasttime = tv;
707 *curpps = 0;
708 rv = 1;
709 } else if (maxpps < 0)
710 rv = 1;
711 else if (*curpps < maxpps)
712 rv = 1;
713 else
714 rv = 0;
715
716 #if 1 /*DIAGNOSTIC?*/
717 /* be careful about wrap-around */
718 if (*curpps + 1 > *curpps)
719 *curpps = *curpps + 1;
720 #else
721 /*
722 * assume that there's not too many calls to this function.
723 * not sure if the assumption holds, as it depends on *caller's*
724 * behavior, not the behavior of this function.
725 * IMHO it is wrong to make assumption on the caller's behavior,
726 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
727 */
728 *curpps = *curpps + 1;
729 #endif
730
731 return (rv);
732 }
733