kern_time.c revision 1.54.2.1 1 /* $NetBSD: kern_time.c,v 1.54.2.1 2001/03/05 22:49:43 nathanw Exp $ */
2
3 /*-
4 * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1989, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by the University of
54 * California, Berkeley and its contributors.
55 * 4. Neither the name of the University nor the names of its contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
72 */
73
74 #include "fs_nfs.h"
75 #include "opt_nfs.h"
76 #include "opt_nfsserver.h"
77
78 #include <sys/param.h>
79 #include <sys/resourcevar.h>
80 #include <sys/kernel.h>
81 #include <sys/systm.h>
82 #include <sys/lwp.h>
83 #include <sys/proc.h>
84 #include <sys/vnode.h>
85 #include <sys/signalvar.h>
86 #include <sys/syslog.h>
87
88 #include <sys/mount.h>
89 #include <sys/syscallargs.h>
90
91 #include <uvm/uvm_extern.h>
92
93 #if defined(NFS) || defined(NFSSERVER)
94 #include <nfs/rpcv2.h>
95 #include <nfs/nfsproto.h>
96 #include <nfs/nfs_var.h>
97 #endif
98
99 #include <machine/cpu.h>
100
101 /*
102 * Time of day and interval timer support.
103 *
104 * These routines provide the kernel entry points to get and set
105 * the time-of-day and per-process interval timers. Subroutines
106 * here provide support for adding and subtracting timeval structures
107 * and decrementing interval timers, optionally reloading the interval
108 * timers when they expire.
109 */
110
111 /* This function is used by clock_settime and settimeofday */
112 int
113 settime(tv)
114 struct timeval *tv;
115 {
116 struct timeval delta;
117 struct cpu_info *ci;
118 int s;
119
120 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
121 s = splclock();
122 timersub(tv, &time, &delta);
123 if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1)
124 return (EPERM);
125 #ifdef notyet
126 if ((delta.tv_sec < 86400) && securelevel > 0)
127 return (EPERM);
128 #endif
129 time = *tv;
130 (void) spllowersoftclock();
131 timeradd(&boottime, &delta, &boottime);
132 /*
133 * XXXSMP
134 * This is wrong. We should traverse a list of all
135 * CPUs and add the delta to the runtime of those
136 * CPUs which have a process on them.
137 */
138 ci = curcpu();
139 timeradd(&ci->ci_schedstate.spc_runtime, &delta,
140 &ci->ci_schedstate.spc_runtime);
141 # if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER)
142 nqnfs_lease_updatetime(delta.tv_sec);
143 # endif
144 splx(s);
145 resettodr();
146 return (0);
147 }
148
149 /* ARGSUSED */
150 int
151 sys_clock_gettime(l, v, retval)
152 struct lwp *l;
153 void *v;
154 register_t *retval;
155 {
156 struct sys_clock_gettime_args /* {
157 syscallarg(clockid_t) clock_id;
158 syscallarg(struct timespec *) tp;
159 } */ *uap = v;
160 clockid_t clock_id;
161 struct timeval atv;
162 struct timespec ats;
163
164 clock_id = SCARG(uap, clock_id);
165 if (clock_id != CLOCK_REALTIME)
166 return (EINVAL);
167
168 microtime(&atv);
169 TIMEVAL_TO_TIMESPEC(&atv,&ats);
170
171 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
172 }
173
174 /* ARGSUSED */
175 int
176 sys_clock_settime(l, v, retval)
177 struct lwp *l;
178 void *v;
179 register_t *retval;
180 {
181 struct sys_clock_settime_args /* {
182 syscallarg(clockid_t) clock_id;
183 syscallarg(const struct timespec *) tp;
184 } */ *uap = v;
185 struct proc *p = l->l_proc;
186 clockid_t clock_id;
187 struct timeval atv;
188 struct timespec ats;
189 int error;
190
191 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
192 return (error);
193
194 clock_id = SCARG(uap, clock_id);
195 if (clock_id != CLOCK_REALTIME)
196 return (EINVAL);
197
198 if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
199 return (error);
200
201 TIMESPEC_TO_TIMEVAL(&atv,&ats);
202 if ((error = settime(&atv)))
203 return (error);
204
205 return 0;
206 }
207
208 int
209 sys_clock_getres(l, v, retval)
210 struct lwp *l;
211 void *v;
212 register_t *retval;
213 {
214 struct sys_clock_getres_args /* {
215 syscallarg(clockid_t) clock_id;
216 syscallarg(struct timespec *) tp;
217 } */ *uap = v;
218 clockid_t clock_id;
219 struct timespec ts;
220 int error = 0;
221
222 clock_id = SCARG(uap, clock_id);
223 if (clock_id != CLOCK_REALTIME)
224 return (EINVAL);
225
226 if (SCARG(uap, tp)) {
227 ts.tv_sec = 0;
228 ts.tv_nsec = 1000000000 / hz;
229
230 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
231 }
232
233 return error;
234 }
235
236 /* ARGSUSED */
237 int
238 sys_nanosleep(l, v, retval)
239 struct lwp *l;
240 void *v;
241 register_t *retval;
242 {
243 static int nanowait;
244 struct sys_nanosleep_args/* {
245 syscallarg(struct timespec *) rqtp;
246 syscallarg(struct timespec *) rmtp;
247 } */ *uap = v;
248 struct timespec rqt;
249 struct timespec rmt;
250 struct timeval atv, utv;
251 int error, s, timo;
252
253 error = copyin((caddr_t)SCARG(uap, rqtp), (caddr_t)&rqt,
254 sizeof(struct timespec));
255 if (error)
256 return (error);
257
258 TIMESPEC_TO_TIMEVAL(&atv,&rqt)
259 if (itimerfix(&atv))
260 return (EINVAL);
261
262 s = splclock();
263 timeradd(&atv,&time,&atv);
264 timo = hzto(&atv);
265 /*
266 * Avoid inadvertantly sleeping forever
267 */
268 if (timo == 0)
269 timo = 1;
270 splx(s);
271
272 error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
273 if (error == ERESTART)
274 error = EINTR;
275 if (error == EWOULDBLOCK)
276 error = 0;
277
278 if (SCARG(uap, rmtp)) {
279 int error;
280
281 s = splclock();
282 utv = time;
283 splx(s);
284
285 timersub(&atv, &utv, &utv);
286 if (utv.tv_sec < 0)
287 timerclear(&utv);
288
289 TIMEVAL_TO_TIMESPEC(&utv,&rmt);
290 error = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
291 sizeof(rmt));
292 if (error)
293 return (error);
294 }
295
296 return error;
297 }
298
299 /* ARGSUSED */
300 int
301 sys_gettimeofday(l, v, retval)
302 struct lwp *l;
303 void *v;
304 register_t *retval;
305 {
306 struct sys_gettimeofday_args /* {
307 syscallarg(struct timeval *) tp;
308 syscallarg(struct timezone *) tzp;
309 } */ *uap = v;
310 struct timeval atv;
311 int error = 0;
312 struct timezone tzfake;
313
314 if (SCARG(uap, tp)) {
315 microtime(&atv);
316 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
317 if (error)
318 return (error);
319 }
320 if (SCARG(uap, tzp)) {
321 /*
322 * NetBSD has no kernel notion of time zone, so we just
323 * fake up a timezone struct and return it if demanded.
324 */
325 tzfake.tz_minuteswest = 0;
326 tzfake.tz_dsttime = 0;
327 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
328 }
329 return (error);
330 }
331
332 /* ARGSUSED */
333 int
334 sys_settimeofday(l, v, retval)
335 struct lwp *l;
336 void *v;
337 register_t *retval;
338 {
339 struct sys_settimeofday_args /* {
340 syscallarg(const struct timeval *) tv;
341 syscallarg(const struct timezone *) tzp;
342 } */ *uap = v;
343 struct proc *p = l->l_proc;
344 struct timeval atv;
345 struct timezone atz;
346 int error;
347
348 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
349 return (error);
350 /* Verify all parameters before changing time. */
351 if (SCARG(uap, tv) && (error = copyin(SCARG(uap, tv),
352 &atv, sizeof(atv))))
353 return (error);
354 /* XXX since we don't use tz, probably no point in doing copyin. */
355 if (SCARG(uap, tzp) && (error = copyin(SCARG(uap, tzp),
356 &atz, sizeof(atz))))
357 return (error);
358 if (SCARG(uap, tv))
359 if ((error = settime(&atv)))
360 return (error);
361 /*
362 * NetBSD has no kernel notion of time zone, and only an
363 * obsolete program would try to set it, so we log a warning.
364 */
365 if (SCARG(uap, tzp))
366 log(LOG_WARNING, "pid %d attempted to set the "
367 "(obsolete) kernel time zone\n", p->p_pid);
368 return (0);
369 }
370
371 int tickdelta; /* current clock skew, us. per tick */
372 long timedelta; /* unapplied time correction, us. */
373 long bigadj = 1000000; /* use 10x skew above bigadj us. */
374
375 /* ARGSUSED */
376 int
377 sys_adjtime(l, v, retval)
378 struct lwp *l;
379 void *v;
380 register_t *retval;
381 {
382 struct sys_adjtime_args /* {
383 syscallarg(const struct timeval *) delta;
384 syscallarg(struct timeval *) olddelta;
385 } */ *uap = v;
386 struct proc *p = l->l_proc;
387 struct timeval atv;
388 long ndelta, ntickdelta, odelta;
389 int s, error;
390
391 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
392 return (error);
393
394 error = copyin(SCARG(uap, delta), &atv, sizeof(struct timeval));
395 if (error)
396 return (error);
397 if (SCARG(uap, olddelta) != NULL &&
398 uvm_useracc((caddr_t)SCARG(uap, olddelta), sizeof(struct timeval),
399 B_WRITE) == FALSE)
400 return (EFAULT);
401
402 /*
403 * Compute the total correction and the rate at which to apply it.
404 * Round the adjustment down to a whole multiple of the per-tick
405 * delta, so that after some number of incremental changes in
406 * hardclock(), tickdelta will become zero, lest the correction
407 * overshoot and start taking us away from the desired final time.
408 */
409 ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
410 if (ndelta > bigadj || ndelta < -bigadj)
411 ntickdelta = 10 * tickadj;
412 else
413 ntickdelta = tickadj;
414 if (ndelta % ntickdelta)
415 ndelta = ndelta / ntickdelta * ntickdelta;
416
417 /*
418 * To make hardclock()'s job easier, make the per-tick delta negative
419 * if we want time to run slower; then hardclock can simply compute
420 * tick + tickdelta, and subtract tickdelta from timedelta.
421 */
422 if (ndelta < 0)
423 ntickdelta = -ntickdelta;
424 s = splclock();
425 odelta = timedelta;
426 timedelta = ndelta;
427 tickdelta = ntickdelta;
428 splx(s);
429
430 if (SCARG(uap, olddelta)) {
431 atv.tv_sec = odelta / 1000000;
432 atv.tv_usec = odelta % 1000000;
433 (void) copyout(&atv, SCARG(uap, olddelta),
434 sizeof(struct timeval));
435 }
436 return (0);
437 }
438
439 /*
440 * Get value of an interval timer. The process virtual and
441 * profiling virtual time timers are kept in the p_stats area, since
442 * they can be swapped out. These are kept internally in the
443 * way they are specified externally: in time until they expire.
444 *
445 * The real time interval timer is kept in the process table slot
446 * for the process, and its value (it_value) is kept as an
447 * absolute time rather than as a delta, so that it is easy to keep
448 * periodic real-time signals from drifting.
449 *
450 * Virtual time timers are processed in the hardclock() routine of
451 * kern_clock.c. The real time timer is processed by a timeout
452 * routine, called from the softclock() routine. Since a callout
453 * may be delayed in real time due to interrupt processing in the system,
454 * it is possible for the real time timeout routine (realitexpire, given below),
455 * to be delayed in real time past when it is supposed to occur. It
456 * does not suffice, therefore, to reload the real timer .it_value from the
457 * real time timers .it_interval. Rather, we compute the next time in
458 * absolute time the timer should go off.
459 */
460 /* ARGSUSED */
461 int
462 sys_getitimer(l, v, retval)
463 struct lwp *l;
464 void *v;
465 register_t *retval;
466 {
467 struct sys_getitimer_args /* {
468 syscallarg(int) which;
469 syscallarg(struct itimerval *) itv;
470 } */ *uap = v;
471 struct proc *p = l->l_proc;
472 int which = SCARG(uap, which);
473 struct itimerval aitv;
474 int s;
475
476 if ((u_int)which > ITIMER_PROF)
477 return (EINVAL);
478 s = splclock();
479 if (which == ITIMER_REAL) {
480 /*
481 * Convert from absolute to relative time in .it_value
482 * part of real time timer. If time for real time timer
483 * has passed return 0, else return difference between
484 * current time and time for the timer to go off.
485 */
486 aitv = p->p_realtimer;
487 if (timerisset(&aitv.it_value)) {
488 if (timercmp(&aitv.it_value, &time, <))
489 timerclear(&aitv.it_value);
490 else
491 timersub(&aitv.it_value, &time, &aitv.it_value);
492 }
493 } else
494 aitv = p->p_stats->p_timer[which];
495 splx(s);
496 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
497 }
498
499 /* ARGSUSED */
500 int
501 sys_setitimer(l, v, retval)
502 struct lwp *l;
503 void *v;
504 register_t *retval;
505 {
506 struct sys_setitimer_args /* {
507 syscallarg(int) which;
508 syscallarg(const struct itimerval *) itv;
509 syscallarg(struct itimerval *) oitv;
510 } */ *uap = v;
511 struct proc *p = l->l_proc;
512 int which = SCARG(uap, which);
513 struct sys_getitimer_args getargs;
514 struct itimerval aitv;
515 const struct itimerval *itvp;
516 int s, error;
517
518 if ((u_int)which > ITIMER_PROF)
519 return (EINVAL);
520 itvp = SCARG(uap, itv);
521 if (itvp && (error = copyin(itvp, &aitv, sizeof(struct itimerval))))
522 return (error);
523 if (SCARG(uap, oitv) != NULL) {
524 SCARG(&getargs, which) = which;
525 SCARG(&getargs, itv) = SCARG(uap, oitv);
526 if ((error = sys_getitimer(l, &getargs, retval)) != 0)
527 return (error);
528 }
529 if (itvp == 0)
530 return (0);
531 if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
532 return (EINVAL);
533 s = splclock();
534 if (which == ITIMER_REAL) {
535 callout_stop(&p->p_realit_ch);
536 if (timerisset(&aitv.it_value)) {
537 /*
538 * Don't need to check hzto() return value, here.
539 * callout_reset() does it for us.
540 */
541 timeradd(&aitv.it_value, &time, &aitv.it_value);
542 callout_reset(&p->p_realit_ch, hzto(&aitv.it_value),
543 realitexpire, p);
544 }
545 p->p_realtimer = aitv;
546 } else
547 p->p_stats->p_timer[which] = aitv;
548 splx(s);
549 return (0);
550 }
551
552 /*
553 * Real interval timer expired:
554 * send process whose timer expired an alarm signal.
555 * If time is not set up to reload, then just return.
556 * Else compute next time timer should go off which is > current time.
557 * This is where delay in processing this timeout causes multiple
558 * SIGALRM calls to be compressed into one.
559 */
560 void
561 realitexpire(arg)
562 void *arg;
563 {
564 struct proc *p;
565 int s;
566
567 p = (struct proc *)arg;
568 psignal(p, SIGALRM);
569 if (!timerisset(&p->p_realtimer.it_interval)) {
570 timerclear(&p->p_realtimer.it_value);
571 return;
572 }
573 for (;;) {
574 s = splclock();
575 timeradd(&p->p_realtimer.it_value,
576 &p->p_realtimer.it_interval, &p->p_realtimer.it_value);
577 if (timercmp(&p->p_realtimer.it_value, &time, >)) {
578 /*
579 * Don't need to check hzto() return value, here.
580 * callout_reset() does it for us.
581 */
582 callout_reset(&p->p_realit_ch,
583 hzto(&p->p_realtimer.it_value), realitexpire, p);
584 splx(s);
585 return;
586 }
587 splx(s);
588 }
589 }
590
591 /*
592 * Check that a proposed value to load into the .it_value or
593 * .it_interval part of an interval timer is acceptable, and
594 * fix it to have at least minimal value (i.e. if it is less
595 * than the resolution of the clock, round it up.)
596 */
597 int
598 itimerfix(tv)
599 struct timeval *tv;
600 {
601
602 if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
603 tv->tv_usec < 0 || tv->tv_usec >= 1000000)
604 return (EINVAL);
605 if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
606 tv->tv_usec = tick;
607 return (0);
608 }
609
610 /*
611 * Decrement an interval timer by a specified number
612 * of microseconds, which must be less than a second,
613 * i.e. < 1000000. If the timer expires, then reload
614 * it. In this case, carry over (usec - old value) to
615 * reduce the value reloaded into the timer so that
616 * the timer does not drift. This routine assumes
617 * that it is called in a context where the timers
618 * on which it is operating cannot change in value.
619 */
620 int
621 itimerdecr(itp, usec)
622 struct itimerval *itp;
623 int usec;
624 {
625
626 if (itp->it_value.tv_usec < usec) {
627 if (itp->it_value.tv_sec == 0) {
628 /* expired, and already in next interval */
629 usec -= itp->it_value.tv_usec;
630 goto expire;
631 }
632 itp->it_value.tv_usec += 1000000;
633 itp->it_value.tv_sec--;
634 }
635 itp->it_value.tv_usec -= usec;
636 usec = 0;
637 if (timerisset(&itp->it_value))
638 return (1);
639 /* expired, exactly at end of interval */
640 expire:
641 if (timerisset(&itp->it_interval)) {
642 itp->it_value = itp->it_interval;
643 itp->it_value.tv_usec -= usec;
644 if (itp->it_value.tv_usec < 0) {
645 itp->it_value.tv_usec += 1000000;
646 itp->it_value.tv_sec--;
647 }
648 } else
649 itp->it_value.tv_usec = 0; /* sec is already 0 */
650 return (0);
651 }
652
653 /*
654 * ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
655 * for usage and rationale.
656 */
657 int
658 ratecheck(lasttime, mininterval)
659 struct timeval *lasttime;
660 const struct timeval *mininterval;
661 {
662 struct timeval tv, delta;
663 int s, rv = 0;
664
665 s = splclock();
666 tv = mono_time;
667 splx(s);
668
669 timersub(&tv, lasttime, &delta);
670
671 /*
672 * check for 0,0 is so that the message will be seen at least once,
673 * even if interval is huge.
674 */
675 if (timercmp(&delta, mininterval, >=) ||
676 (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
677 *lasttime = tv;
678 rv = 1;
679 }
680
681 return (rv);
682 }
683
684 /*
685 * ppsratecheck(): packets (or events) per second limitation.
686 */
687 int
688 ppsratecheck(lasttime, curpps, maxpps)
689 struct timeval *lasttime;
690 int *curpps;
691 int maxpps; /* maximum pps allowed */
692 {
693 struct timeval tv, delta;
694 int s, rv;
695
696 s = splclock();
697 tv = mono_time;
698 splx(s);
699
700 timersub(&tv, lasttime, &delta);
701
702 /*
703 * check for 0,0 is so that the message will be seen at least once.
704 * if more than one second have passed since the last update of
705 * lasttime, reset the counter.
706 *
707 * we do increment *curpps even in *curpps < maxpps case, as some may
708 * try to use *curpps for stat purposes as well.
709 */
710 if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
711 delta.tv_sec >= 1) {
712 *lasttime = tv;
713 *curpps = 0;
714 rv = 1;
715 } else if (maxpps < 0)
716 rv = 1;
717 else if (*curpps < maxpps)
718 rv = 1;
719 else
720 rv = 0;
721
722 #if 1 /*DIAGNOSTIC?*/
723 /* be careful about wrap-around */
724 if (*curpps + 1 > *curpps)
725 *curpps = *curpps + 1;
726 #else
727 /*
728 * assume that there's not too many calls to this function.
729 * not sure if the assumption holds, as it depends on *caller's*
730 * behavior, not the behavior of this function.
731 * IMHO it is wrong to make assumption on the caller's behavior,
732 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
733 */
734 *curpps = *curpps + 1;
735 #endif
736
737 return (rv);
738 }
739