kern_time.c revision 1.54.2.10 1 /* $NetBSD: kern_time.c,v 1.54.2.10 2002/02/19 23:25:10 nathanw Exp $ */
2
3 /*-
4 * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1989, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by the University of
54 * California, Berkeley and its contributors.
55 * 4. Neither the name of the University nor the names of its contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
72 */
73
74 #include <sys/cdefs.h>
75 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.54.2.10 2002/02/19 23:25:10 nathanw Exp $");
76
77 #include "fs_nfs.h"
78 #include "opt_nfs.h"
79 #include "opt_nfsserver.h"
80
81 #include <sys/param.h>
82 #include <sys/resourcevar.h>
83 #include <sys/kernel.h>
84 #include <sys/systm.h>
85 #include <sys/lwp.h>
86 #include <sys/malloc.h>
87 #include <sys/proc.h>
88 #include <sys/sa.h>
89 #include <sys/savar.h>
90 #include <sys/vnode.h>
91 #include <sys/signalvar.h>
92 #include <sys/syslog.h>
93
94 #include <sys/mount.h>
95 #include <sys/syscallargs.h>
96
97 #include <uvm/uvm_extern.h>
98
99 #if defined(NFS) || defined(NFSSERVER)
100 #include <nfs/rpcv2.h>
101 #include <nfs/nfsproto.h>
102 #include <nfs/nfs_var.h>
103 #endif
104
105 #include <machine/cpu.h>
106
107 static void realtimerupcall(struct lwp *, void *);
108
109
110 /* Time of day and interval timer support.
111 *
112 * These routines provide the kernel entry points to get and set
113 * the time-of-day and per-process interval timers. Subroutines
114 * here provide support for adding and subtracting timeval structures
115 * and decrementing interval timers, optionally reloading the interval
116 * timers when they expire.
117 */
118
119 /* This function is used by clock_settime and settimeofday */
120 int
121 settime(struct timeval *tv)
122 {
123 struct timeval delta;
124 struct cpu_info *ci;
125 int s;
126
127 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
128 s = splclock();
129 timersub(tv, &time, &delta);
130 if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1) {
131 splx(s);
132 return (EPERM);
133 }
134 #ifdef notyet
135 if ((delta.tv_sec < 86400) && securelevel > 0) {
136 splx(s);
137 return (EPERM);
138 }
139 #endif
140 time = *tv;
141 (void) spllowersoftclock();
142 timeradd(&boottime, &delta, &boottime);
143 /*
144 * XXXSMP
145 * This is wrong. We should traverse a list of all
146 * CPUs and add the delta to the runtime of those
147 * CPUs which have a process on them.
148 */
149 ci = curcpu();
150 timeradd(&ci->ci_schedstate.spc_runtime, &delta,
151 &ci->ci_schedstate.spc_runtime);
152 # if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER)
153 nqnfs_lease_updatetime(delta.tv_sec);
154 # endif
155 splx(s);
156 resettodr();
157 return (0);
158 }
159
160 /* ARGSUSED */
161 int
162 sys_clock_gettime(struct lwp *l, void *v, register_t *retval)
163 {
164 struct sys_clock_gettime_args /* {
165 syscallarg(clockid_t) clock_id;
166 syscallarg(struct timespec *) tp;
167 } */ *uap = v;
168 clockid_t clock_id;
169 struct timeval atv;
170 struct timespec ats;
171
172 clock_id = SCARG(uap, clock_id);
173 if (clock_id != CLOCK_REALTIME)
174 return (EINVAL);
175
176 microtime(&atv);
177 TIMEVAL_TO_TIMESPEC(&atv,&ats);
178
179 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
180 }
181
182 /* ARGSUSED */
183 int
184 sys_clock_settime(l, v, retval)
185 struct lwp *l;
186 void *v;
187 register_t *retval;
188 {
189 struct sys_clock_settime_args /* {
190 syscallarg(clockid_t) clock_id;
191 syscallarg(const struct timespec *) tp;
192 } */ *uap = v;
193 struct proc *p = l->l_proc;
194 int error;
195
196 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
197 return (error);
198
199 return (clock_settime1(SCARG(uap, clock_id), SCARG(uap, tp)));
200 }
201
202
203 int
204 clock_settime1(clock_id, tp)
205 clockid_t clock_id;
206 const struct timespec *tp;
207 {
208 struct timespec ats;
209 struct timeval atv;
210 int error;
211
212 if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
213 return (error);
214
215 if (clock_id != CLOCK_REALTIME)
216 return (EINVAL);
217
218 TIMESPEC_TO_TIMEVAL(&atv, &ats);
219 if ((error = settime(&atv)) != 0)
220 return (error);
221
222 return 0;
223 }
224
225 int
226 sys_clock_getres(struct lwp *l, void *v, register_t *retval)
227 {
228 struct sys_clock_getres_args /* {
229 syscallarg(clockid_t) clock_id;
230 syscallarg(struct timespec *) tp;
231 } */ *uap = v;
232 clockid_t clock_id;
233 struct timespec ts;
234 int error = 0;
235
236 clock_id = SCARG(uap, clock_id);
237 if (clock_id != CLOCK_REALTIME)
238 return (EINVAL);
239
240 if (SCARG(uap, tp)) {
241 ts.tv_sec = 0;
242 ts.tv_nsec = 1000000000 / hz;
243
244 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
245 }
246
247 return error;
248 }
249
250 /* ARGSUSED */
251 int
252 sys_nanosleep(struct lwp *l, void *v, register_t *retval)
253 {
254 static int nanowait;
255 struct sys_nanosleep_args/* {
256 syscallarg(struct timespec *) rqtp;
257 syscallarg(struct timespec *) rmtp;
258 } */ *uap = v;
259 struct timespec rqt;
260 struct timespec rmt;
261 struct timeval atv, utv;
262 int error, s, timo;
263
264 error = copyin((caddr_t)SCARG(uap, rqtp), (caddr_t)&rqt,
265 sizeof(struct timespec));
266 if (error)
267 return (error);
268
269 TIMESPEC_TO_TIMEVAL(&atv,&rqt)
270 if (itimerfix(&atv) || atv.tv_sec > 1000000000)
271 return (EINVAL);
272
273 s = splclock();
274 timeradd(&atv,&time,&atv);
275 timo = hzto(&atv);
276 /*
277 * Avoid inadvertantly sleeping forever
278 */
279 if (timo == 0)
280 timo = 1;
281 splx(s);
282
283 error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
284 if (error == ERESTART)
285 error = EINTR;
286 if (error == EWOULDBLOCK)
287 error = 0;
288
289 if (SCARG(uap, rmtp)) {
290 int error;
291
292 s = splclock();
293 utv = time;
294 splx(s);
295
296 timersub(&atv, &utv, &utv);
297 if (utv.tv_sec < 0)
298 timerclear(&utv);
299
300 TIMEVAL_TO_TIMESPEC(&utv,&rmt);
301 error = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
302 sizeof(rmt));
303 if (error)
304 return (error);
305 }
306
307 return error;
308 }
309
310 /* ARGSUSED */
311 int
312 sys_gettimeofday(struct lwp *l, void *v, register_t *retval)
313 {
314 struct sys_gettimeofday_args /* {
315 syscallarg(struct timeval *) tp;
316 syscallarg(struct timezone *) tzp;
317 } */ *uap = v;
318 struct timeval atv;
319 int error = 0;
320 struct timezone tzfake;
321
322 if (SCARG(uap, tp)) {
323 microtime(&atv);
324 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
325 if (error)
326 return (error);
327 }
328 if (SCARG(uap, tzp)) {
329 /*
330 * NetBSD has no kernel notion of time zone, so we just
331 * fake up a timezone struct and return it if demanded.
332 */
333 tzfake.tz_minuteswest = 0;
334 tzfake.tz_dsttime = 0;
335 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
336 }
337 return (error);
338 }
339
340 /* ARGSUSED */
341 int
342 sys_settimeofday(struct lwp *l, void *v, register_t *retval)
343 {
344 struct sys_settimeofday_args /* {
345 syscallarg(const struct timeval *) tv;
346 syscallarg(const struct timezone *) tzp;
347 } */ *uap = v;
348 struct proc *p = l->l_proc;
349 int error;
350
351 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
352 return (error);
353
354 return settimeofday1(SCARG(uap, tv), SCARG(uap, tzp), p);
355 }
356
357 int
358 settimeofday1(utv, utzp, p)
359 const struct timeval *utv;
360 const struct timezone *utzp;
361 struct proc *p;
362 {
363 struct timeval atv;
364 struct timezone atz;
365 struct timeval *tv = NULL;
366 struct timezone *tzp = NULL;
367 int error;
368
369 /* Verify all parameters before changing time. */
370 if (utv) {
371 if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
372 return (error);
373 tv = &atv;
374 }
375 /* XXX since we don't use tz, probably no point in doing copyin. */
376 if (utzp) {
377 if ((error = copyin(utzp, &atz, sizeof(atz))) != 0)
378 return (error);
379 tzp = &atz;
380 }
381
382 if (tv)
383 if ((error = settime(tv)) != 0)
384 return (error);
385 /*
386 * NetBSD has no kernel notion of time zone, and only an
387 * obsolete program would try to set it, so we log a warning.
388 */
389 if (tzp)
390 log(LOG_WARNING, "pid %d attempted to set the "
391 "(obsolete) kernel time zone\n", p->p_pid);
392 return (0);
393 }
394
395 int tickdelta; /* current clock skew, us. per tick */
396 long timedelta; /* unapplied time correction, us. */
397 long bigadj = 1000000; /* use 10x skew above bigadj us. */
398
399 /* ARGSUSED */
400 int
401 sys_adjtime(struct lwp *l, void *v, register_t *retval)
402 {
403 struct sys_adjtime_args /* {
404 syscallarg(const struct timeval *) delta;
405 syscallarg(struct timeval *) olddelta;
406 } */ *uap = v;
407 struct proc *p = l->l_proc;
408 int error;
409
410 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
411 return (error);
412
413 return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), p);
414 }
415
416 int
417 adjtime1(delta, olddelta, p)
418 const struct timeval *delta;
419 struct timeval *olddelta;
420 struct proc *p;
421 {
422 struct timeval atv;
423 struct timeval *oatv = NULL;
424 long ndelta, ntickdelta, odelta;
425 int error;
426 int s;
427
428 error = copyin(delta, &atv, sizeof(struct timeval));
429 if (error)
430 return (error);
431
432 if (olddelta != NULL) {
433 if (uvm_useracc((caddr_t)olddelta,
434 sizeof(struct timeval), B_WRITE) == FALSE)
435 return (EFAULT);
436 oatv = olddelta;
437 }
438
439 /*
440 * Compute the total correction and the rate at which to apply it.
441 * Round the adjustment down to a whole multiple of the per-tick
442 * delta, so that after some number of incremental changes in
443 * hardclock(), tickdelta will become zero, lest the correction
444 * overshoot and start taking us away from the desired final time.
445 */
446 ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
447 if (ndelta > bigadj || ndelta < -bigadj)
448 ntickdelta = 10 * tickadj;
449 else
450 ntickdelta = tickadj;
451 if (ndelta % ntickdelta)
452 ndelta = ndelta / ntickdelta * ntickdelta;
453
454 /*
455 * To make hardclock()'s job easier, make the per-tick delta negative
456 * if we want time to run slower; then hardclock can simply compute
457 * tick + tickdelta, and subtract tickdelta from timedelta.
458 */
459 if (ndelta < 0)
460 ntickdelta = -ntickdelta;
461 s = splclock();
462 odelta = timedelta;
463 timedelta = ndelta;
464 tickdelta = ntickdelta;
465 splx(s);
466
467 if (olddelta) {
468 atv.tv_sec = odelta / 1000000;
469 atv.tv_usec = odelta % 1000000;
470 (void) copyout(&atv, olddelta, sizeof(struct timeval));
471 }
472 return (0);
473 }
474
475 /*
476 * Interval timer support. Both the BSD getitimer() family and the POSIX
477 * timer_*() family of routines are supported.
478 *
479 * All timers are kept in an array pointed to by p_timers, which is
480 * allocated on demand - many processes don't use timers at all. The
481 * first three elements in this array are reserved for the BSD timers:
482 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
483 * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
484 * syscall.
485 *
486 * Realtime timers are kept in the ptimer structure as an absolute
487 * time; virtual time timers are kept as deltas. Virtual time timers
488 * are processed in the hardclock() routine of kern_clock.c. The real
489 * time timer is processed by a callout routine, called from the
490 * softclock() routine. Since a callout may be delayed in real time
491 * due to interrupt processing in the system, it is possible for the
492 * real time timeout routine (realtimeexpire, given below), to be
493 * delayed in real time past when it is supposed to occur. It does
494 * not suffice, therefore, to reload the real timer .it_value from the
495 * real time timers .it_interval. Rather, we compute the next time in
496 * absolute time the timer should go off.
497 */
498
499 /* Allocate a POSIX realtime timer. */
500 int
501 sys_timer_create(struct lwp *l, void *v, register_t *retval)
502 {
503 struct sys_timer_create_args /* {
504 syscallarg(clockid_t) clock_id;
505 syscallarg(struct sigevent *) evp;
506 syscallarg(timer_t *) timerid;
507 } */ *uap = v;
508 struct proc *p = l->l_proc;
509 clockid_t id;
510 struct sigevent *evp;
511 struct ptimer *pt;
512 int timerid, error;
513
514 id = SCARG(uap, clock_id);
515 if (id != CLOCK_REALTIME)
516 return (EINVAL);
517
518 if (p->p_timers == NULL)
519 timers_alloc(p);
520
521 for (timerid = 3; timerid < TIMER_MAX; timerid++)
522 if (p->p_timers[timerid] == NULL)
523 break;
524
525 if (timerid == TIMER_MAX)
526 return EAGAIN;
527
528 pt = pool_get(&ptimer_pool, PR_WAITOK);
529 evp = SCARG(uap, evp);
530 if (evp) {
531 if (((error =
532 copyin(evp, &pt->pt_ev, sizeof (pt->pt_ev))) != 0) ||
533 ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
534 (pt->pt_ev.sigev_notify > SIGEV_SA))) {
535 pool_put(&ptimer_pool, pt);
536 return (error ? error : EINVAL);
537 }
538 } else {
539 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
540 pt->pt_ev.sigev_signo = SIGALRM;
541 pt->pt_ev.sigev_value.sival_int = timerid;
542 }
543 pt->pt_info.si_signo = pt->pt_ev.sigev_signo;
544 pt->pt_info.si_errno = 0;
545 pt->pt_info.si_code = 0;
546 pt->pt_info.si_pid = p->p_pid;
547 pt->pt_info.si_uid = p->p_cred->p_ruid;
548 pt->pt_info.si_addr = NULL;
549 pt->pt_info.si_status = 0;
550 pt->pt_info.si_value = pt->pt_ev.sigev_value;
551
552 callout_init(&pt->pt_ch);
553 pt->pt_type = CLOCK_REALTIME;
554 pt->pt_proc = p;
555 pt->pt_overruns = 0;
556
557 p->p_timers[timerid] = pt;
558
559 return copyout(&timerid, SCARG(uap, timerid), sizeof(timerid));
560 }
561
562
563 /* Delete a POSIX realtime timer */
564 int
565 sys_timer_delete(struct lwp *l, void *v, register_t *retval)
566 {
567 struct sys_timer_delete_args /* {
568 syscallarg(timer_t) timerid;
569 } */ *uap = v;
570 struct proc *p = l->l_proc;
571 int timerid;
572 struct ptimer *pt;
573
574 timerid = SCARG(uap, timerid);
575
576 if ((p->p_timers == NULL) ||
577 (timerid < 2) || (timerid >= TIMER_MAX) ||
578 ((pt = p->p_timers[timerid]) == NULL))
579 return (EINVAL);
580
581 callout_stop(&pt->pt_ch);
582 p->p_timers[timerid] = NULL;
583 pool_put(&ptimer_pool, pt);
584
585 return (0);
586 }
587
588 /* Set and arm a POSIX realtime timer */
589 int
590 sys_timer_settime(struct lwp *l, void *v, register_t *retval)
591 {
592 struct sys_timer_settime_args /* {
593 syscallarg(timer_t) timerid;
594 syscallarg(int) flags;
595 syscallarg(const struct itimerspec *) value;
596 syscallarg(struct itimerspec *) ovalue;
597 } */ *uap = v;
598 struct proc *p = l->l_proc;
599 int error, s, timerid;
600 struct itimerval val, oval;
601 struct itimerspec value, ovalue;
602 struct ptimer *pt;
603
604 timerid = SCARG(uap, timerid);
605
606 if ((p->p_timers == NULL) ||
607 (timerid < 2) || (timerid >= TIMER_MAX) ||
608 ((pt = p->p_timers[timerid]) == NULL))
609 return (EINVAL);
610
611 if ((error = copyin(SCARG(uap, value), &value,
612 sizeof(struct itimerspec))) != 0)
613 return (error);
614
615 TIMESPEC_TO_TIMEVAL(&val.it_value, &value.it_value);
616 TIMESPEC_TO_TIMEVAL(&val.it_interval, &value.it_interval);
617 if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
618 return (EINVAL);
619
620 oval = pt->pt_time;
621 pt->pt_time = val;
622
623 s = splclock();
624 callout_stop(&pt->pt_ch);
625 if (timerisset(&pt->pt_time.it_value)) {
626 if ((SCARG(uap, flags) & TIMER_ABSTIME) == 0)
627 timeradd(&pt->pt_time.it_value, &time,
628 &pt->pt_time.it_value);
629 /*
630 * Don't need to check hzto() return value, here.
631 * callout_reset() does it for us.
632 */
633 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
634 realtimerexpire, pt);
635 }
636 splx(s);
637
638 if (SCARG(uap, ovalue)) {
639 TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue.it_value);
640 TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue.it_interval);
641 return copyout(&ovalue, SCARG(uap, ovalue),
642 sizeof(struct itimerspec));
643 }
644
645 return (0);
646 }
647
648 /* Return the time remaining until a POSIX timer fires. */
649 int
650 sys_timer_gettime(struct lwp *l, void *v, register_t *retval)
651 {
652 struct sys_timer_gettime_args /* {
653 syscallarg(timer_t) timerid;
654 syscallarg(struct itimerspec *) value;
655 } */ *uap = v;
656 struct itimerval aitv;
657 struct itimerspec its;
658 struct proc *p = l->l_proc;
659 int timerid;
660 struct ptimer *pt;
661
662 timerid = SCARG(uap, timerid);
663
664 if ((p->p_timers == NULL) ||
665 (timerid < 2) || (timerid >= TIMER_MAX) ||
666 ((pt = p->p_timers[timerid]) == NULL))
667 return (EINVAL);
668
669 aitv = pt->pt_time;
670
671 /*
672 * Real-time timers are kept in absolute time, but this interface
673 * is supposed to return a relative time.
674 */
675 if (timerisset(&aitv.it_value)) {
676 if (timercmp(&aitv.it_value, &time, <))
677 timerclear(&aitv.it_value);
678 else
679 timersub(&aitv.it_value, &time, &aitv.it_value);
680 }
681
682 TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its.it_interval);
683 TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its.it_value);
684
685 return copyout(&its, SCARG(uap, value), sizeof(its));
686 }
687
688 /*
689 * Return the count of the number of times a periodic timer expired
690 * while a notification was already pending. The counter is reset when
691 * a timer expires and a notification can be posted.
692 */
693 int
694 sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
695 {
696 struct sys_timer_getoverrun_args /* {
697 syscallarg(timer_t) timerid;
698 } */ *uap = v;
699 struct proc *p = l->l_proc;
700 int timerid;
701 struct ptimer *pt;
702
703 timerid = SCARG(uap, timerid);
704
705 if ((p->p_timers == NULL) ||
706 (timerid < 2) || (timerid >= TIMER_MAX) ||
707 ((pt = p->p_timers[timerid]) == NULL))
708 return (EINVAL);
709
710 *retval = pt->pt_overruns;
711
712 return (0);
713 }
714
715 /* Glue function that triggers an upcall; called from userret(). */
716 static void
717 realtimerupcall(struct lwp *l, void *arg)
718 {
719 struct ptimer *pt;
720
721 pt = (struct ptimer *)arg;
722 sa_upcall(l, SA_UPCALL_SIGEV, NULL, l, sizeof(siginfo_t),
723 &pt->pt_info);
724
725 /* The upcall should only be generated once. */
726 l->l_proc->p_userret = NULL;
727 }
728
729
730 /*
731 * Real interval timer expired:
732 * send process whose timer expired an alarm signal.
733 * If time is not set up to reload, then just return.
734 * Else compute next time timer should go off which is > current time.
735 * This is where delay in processing this timeout causes multiple
736 * SIGALRM calls to be compressed into one.
737 */
738 void
739 realtimerexpire(void *arg)
740 {
741 struct ptimer *pt;
742 struct proc *p;
743 int s;
744
745 pt = (struct ptimer *)arg;
746 p = pt->pt_proc;
747 if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
748 /*
749 * No RT signal infrastructure exists at this time;
750 * just post the signal number and throw away the
751 * value.
752 */
753 if (sigismember(&p->p_sigctx.ps_siglist, pt->pt_ev.sigev_signo))
754 pt->pt_overruns++;
755 else {
756 pt->pt_overruns = 0;
757 psignal(p, pt->pt_ev.sigev_signo);
758 }
759 } else if (pt->pt_ev.sigev_notify == SIGEV_SA && (p->p_flag & P_SA)) {
760 int notified = 0;
761 /* Cause the process to generate an upcall when it returns. */
762
763 if (p->p_nrlwps == 0) {
764 struct sadata_upcall *sd;
765 struct lwp *l2;
766 int s, ret;
767
768 SCHED_LOCK(s);
769 l2 = sa_getcachelwp(p);
770 if (l2 != NULL) {
771 sd = sadata_upcall_alloc(0);
772 cpu_setfunc(l2, sa_switchcall, NULL);
773 ret = sa_upcall0(l2, SA_UPCALL_SIGEV,
774 NULL, NULL, sizeof(siginfo_t),
775 &pt->pt_info, sd);
776 if (ret == 0) {
777 p->p_nrlwps++;
778 l2->l_priority = l2->l_usrpri;
779 PRELE(l2);
780 setrunnable(l2);
781 notified = 1;
782 } else
783 sa_putcachelwp(p, l2);
784 }
785 SCHED_UNLOCK(s);
786 } else if (p->p_userret == NULL) {
787 pt->pt_overruns = 0;
788 p->p_userret = realtimerupcall;
789 p->p_userret_arg = pt;
790 notified = 1;
791 }
792 if (notified == 0)
793 pt->pt_overruns++;
794 }
795 if (!timerisset(&pt->pt_time.it_interval)) {
796 timerclear(&pt->pt_time.it_value);
797 return;
798 }
799 for (;;) {
800 s = splclock();
801 timeradd(&pt->pt_time.it_value,
802 &pt->pt_time.it_interval, &pt->pt_time.it_value);
803 if (timercmp(&pt->pt_time.it_value, &time, >)) {
804 /*
805 * Don't need to check hzto() return value, here.
806 * callout_reset() does it for us.
807 */
808 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
809 realtimerexpire, pt);
810 splx(s);
811 return;
812 }
813 splx(s);
814 pt->pt_overruns++;
815 }
816 }
817
818 /* BSD routine to get the value of an interval timer. */
819 /* ARGSUSED */
820 int
821 sys_getitimer(struct lwp *l, void *v, register_t *retval)
822 {
823 struct sys_getitimer_args /* {
824 syscallarg(int) which;
825 syscallarg(struct itimerval *) itv;
826 } */ *uap = v;
827 struct proc *p = l->l_proc;
828 struct itimerval aitv;
829 int s, which;
830
831 which = SCARG(uap, which);
832
833 if ((u_int)which > ITIMER_PROF)
834 return (EINVAL);
835
836 if ((p->p_timers == NULL) || (p->p_timers[which] == NULL)) {
837 timerclear(&aitv.it_value);
838 timerclear(&aitv.it_interval);
839 } else {
840 s = splclock();
841 if (which == ITIMER_REAL) {
842 /*
843 * Convert from absolute to relative time in
844 * .it_value part of real time timer. If time
845 * for real time timer has passed return 0,
846 * else return difference between current time
847 * and time for the timer to go off.
848 */
849 aitv = p->p_timers[ITIMER_REAL]->pt_time;
850 if (timerisset(&aitv.it_value)) {
851 if (timercmp(&aitv.it_value, &time, <))
852 timerclear(&aitv.it_value);
853 else
854 timersub(&aitv.it_value, &time, &aitv.it_value);
855 }
856 } else
857 aitv = p->p_timers[which]->pt_time;
858 splx(s);
859 }
860
861 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
862
863 }
864
865 /* BSD routine to set/arm an interval timer. */
866 /* ARGSUSED */
867 int
868 sys_setitimer(struct lwp *l, void *v, register_t *retval)
869 {
870 struct sys_setitimer_args /* {
871 syscallarg(int) which;
872 syscallarg(const struct itimerval *) itv;
873 syscallarg(struct itimerval *) oitv;
874 } */ *uap = v;
875 struct proc *p = l->l_proc;
876 int which = SCARG(uap, which);
877 struct sys_getitimer_args getargs;
878 struct itimerval aitv;
879 const struct itimerval *itvp;
880 struct ptimer *pt;
881 int s, error;
882
883 if ((u_int)which > ITIMER_PROF)
884 return (EINVAL);
885 itvp = SCARG(uap, itv);
886 if (itvp &&
887 (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
888 return (error);
889 if (SCARG(uap, oitv) != NULL) {
890 SCARG(&getargs, which) = which;
891 SCARG(&getargs, itv) = SCARG(uap, oitv);
892 if ((error = sys_getitimer(l, &getargs, retval)) != 0)
893 return (error);
894 }
895 if (itvp == 0)
896 return (0);
897 if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
898 return (EINVAL);
899
900 /*
901 * Don't bother allocating data structures if the process just
902 * wants to clear the timer.
903 */
904 if (!timerisset(&aitv.it_value) &&
905 ((p->p_timers == NULL) || (p->p_timers[which] == NULL)))
906 return (0);
907
908 if (p->p_timers == NULL)
909 timers_alloc(p);
910 if (p->p_timers[which] == NULL) {
911 pt = pool_get(&ptimer_pool, PR_WAITOK);
912 callout_init(&pt->pt_ch);
913 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
914 pt->pt_overruns = 0;
915 pt->pt_proc = p;
916 pt->pt_type = which;
917 switch (which) {
918 case ITIMER_REAL:
919 pt->pt_ev.sigev_signo = SIGALRM;
920 break;
921 case ITIMER_VIRTUAL:
922 pt->pt_ev.sigev_signo = SIGVTALRM;
923 break;
924 case ITIMER_PROF:
925 pt->pt_ev.sigev_signo = SIGPROF;
926 break;
927 }
928 } else
929 pt = p->p_timers[which];
930
931 pt->pt_time = aitv;
932 p->p_timers[which] = pt;
933 if (which == ITIMER_REAL) {
934 s = splclock();
935 callout_stop(&pt->pt_ch);
936 if (timerisset(&pt->pt_time.it_value)) {
937 timeradd(&pt->pt_time.it_value, &time,
938 &pt->pt_time.it_value);
939 /*
940 * Don't need to check hzto() return value, here.
941 * callout_reset() does it for us.
942 */
943 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
944 realtimerexpire, pt);
945 }
946 splx(s);
947 }
948
949 return (0);
950 }
951
952 /* Utility routines to manage the array of pointers to timers. */
953 void
954 timers_alloc(struct proc *p)
955 {
956 int i;
957 struct ptimer **pts;
958
959 pts = malloc(TIMER_MAX * sizeof(struct timer *), M_SUBPROC, 0);
960 for (i = 0; i < TIMER_MAX; i++)
961 pts[i] = NULL;
962 p->p_timers = pts;
963 }
964
965 void
966 timers_free(struct proc *p)
967 {
968 int i;
969 struct ptimer *pt, **pts;
970
971 if (p->p_timers) {
972 pts = p->p_timers;
973 p->p_timers = NULL;
974 for (i = 0; i < TIMER_MAX; i++)
975 if ((pt = pts[i]) != NULL) {
976 if (pt->pt_type == CLOCK_REALTIME)
977 callout_stop(&pt->pt_ch);
978 pool_put(&ptimer_pool, pt);
979 }
980 free(pts, M_SUBPROC);
981 }
982 }
983
984 /*
985 * Check that a proposed value to load into the .it_value or
986 * .it_interval part of an interval timer is acceptable, and
987 * fix it to have at least minimal value (i.e. if it is less
988 * than the resolution of the clock, round it up.)
989 */
990 int
991 itimerfix(struct timeval *tv)
992 {
993
994 if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
995 return (EINVAL);
996 if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
997 tv->tv_usec = tick;
998 return (0);
999 }
1000
1001 /*
1002 * Decrement an interval timer by a specified number
1003 * of microseconds, which must be less than a second,
1004 * i.e. < 1000000. If the timer expires, then reload
1005 * it. In this case, carry over (usec - old value) to
1006 * reduce the value reloaded into the timer so that
1007 * the timer does not drift. This routine assumes
1008 * that it is called in a context where the timers
1009 * on which it is operating cannot change in value.
1010 */
1011 int
1012 itimerdecr(struct itimerval *itp, int usec)
1013 {
1014
1015 if (itp->it_value.tv_usec < usec) {
1016 if (itp->it_value.tv_sec == 0) {
1017 /* expired, and already in next interval */
1018 usec -= itp->it_value.tv_usec;
1019 goto expire;
1020 }
1021 itp->it_value.tv_usec += 1000000;
1022 itp->it_value.tv_sec--;
1023 }
1024 itp->it_value.tv_usec -= usec;
1025 usec = 0;
1026 if (timerisset(&itp->it_value))
1027 return (1);
1028 /* expired, exactly at end of interval */
1029 expire:
1030 if (timerisset(&itp->it_interval)) {
1031 itp->it_value = itp->it_interval;
1032 itp->it_value.tv_usec -= usec;
1033 if (itp->it_value.tv_usec < 0) {
1034 itp->it_value.tv_usec += 1000000;
1035 itp->it_value.tv_sec--;
1036 }
1037 } else
1038 itp->it_value.tv_usec = 0; /* sec is already 0 */
1039 return (0);
1040 }
1041
1042 /*
1043 * ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
1044 * for usage and rationale.
1045 */
1046 int
1047 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1048 {
1049 struct timeval tv, delta;
1050 int s, rv = 0;
1051
1052 s = splclock();
1053 tv = mono_time;
1054 splx(s);
1055
1056 timersub(&tv, lasttime, &delta);
1057
1058 /*
1059 * check for 0,0 is so that the message will be seen at least once,
1060 * even if interval is huge.
1061 */
1062 if (timercmp(&delta, mininterval, >=) ||
1063 (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1064 *lasttime = tv;
1065 rv = 1;
1066 }
1067
1068 return (rv);
1069 }
1070
1071 /*
1072 * ppsratecheck(): packets (or events) per second limitation.
1073 */
1074 int
1075 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1076 {
1077 struct timeval tv, delta;
1078 int s, rv;
1079
1080 s = splclock();
1081 tv = mono_time;
1082 splx(s);
1083
1084 timersub(&tv, lasttime, &delta);
1085
1086 /*
1087 * check for 0,0 is so that the message will be seen at least once.
1088 * if more than one second have passed since the last update of
1089 * lasttime, reset the counter.
1090 *
1091 * we do increment *curpps even in *curpps < maxpps case, as some may
1092 * try to use *curpps for stat purposes as well.
1093 */
1094 if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
1095 delta.tv_sec >= 1) {
1096 *lasttime = tv;
1097 *curpps = 0;
1098 rv = 1;
1099 } else if (maxpps < 0)
1100 rv = 1;
1101 else if (*curpps < maxpps)
1102 rv = 1;
1103 else
1104 rv = 0;
1105
1106 #if 1 /*DIAGNOSTIC?*/
1107 /* be careful about wrap-around */
1108 if (*curpps + 1 > *curpps)
1109 *curpps = *curpps + 1;
1110 #else
1111 /*
1112 * assume that there's not too many calls to this function.
1113 * not sure if the assumption holds, as it depends on *caller's*
1114 * behavior, not the behavior of this function.
1115 * IMHO it is wrong to make assumption on the caller's behavior,
1116 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
1117 */
1118 *curpps = *curpps + 1;
1119 #endif
1120
1121 return (rv);
1122 }
1123