kern_time.c revision 1.54.2.12 1 /* $NetBSD: kern_time.c,v 1.54.2.12 2002/04/02 00:16:00 nathanw Exp $ */
2
3 /*-
4 * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1989, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by the University of
54 * California, Berkeley and its contributors.
55 * 4. Neither the name of the University nor the names of its contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
72 */
73
74 #include <sys/cdefs.h>
75 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.54.2.12 2002/04/02 00:16:00 nathanw Exp $");
76
77 #include "fs_nfs.h"
78 #include "opt_nfs.h"
79 #include "opt_nfsserver.h"
80
81 #include <sys/param.h>
82 #include <sys/resourcevar.h>
83 #include <sys/kernel.h>
84 #include <sys/systm.h>
85 #include <sys/lwp.h>
86 #include <sys/malloc.h>
87 #include <sys/proc.h>
88 #include <sys/sa.h>
89 #include <sys/savar.h>
90 #include <sys/vnode.h>
91 #include <sys/signalvar.h>
92 #include <sys/syslog.h>
93
94 #include <sys/mount.h>
95 #include <sys/syscallargs.h>
96
97 #include <uvm/uvm_extern.h>
98
99 #if defined(NFS) || defined(NFSSERVER)
100 #include <nfs/rpcv2.h>
101 #include <nfs/nfsproto.h>
102 #include <nfs/nfs_var.h>
103 #endif
104
105 #include <machine/cpu.h>
106
107 static void realtimerupcall(struct lwp *, void *);
108
109
110 /* Time of day and interval timer support.
111 *
112 * These routines provide the kernel entry points to get and set
113 * the time-of-day and per-process interval timers. Subroutines
114 * here provide support for adding and subtracting timeval structures
115 * and decrementing interval timers, optionally reloading the interval
116 * timers when they expire.
117 */
118
119 /* This function is used by clock_settime and settimeofday */
120 int
121 settime(struct timeval *tv)
122 {
123 struct timeval delta;
124 struct cpu_info *ci;
125 int s;
126
127 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
128 s = splclock();
129 timersub(tv, &time, &delta);
130 if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1) {
131 splx(s);
132 return (EPERM);
133 }
134 #ifdef notyet
135 if ((delta.tv_sec < 86400) && securelevel > 0) {
136 splx(s);
137 return (EPERM);
138 }
139 #endif
140 time = *tv;
141 (void) spllowersoftclock();
142 timeradd(&boottime, &delta, &boottime);
143 /*
144 * XXXSMP
145 * This is wrong. We should traverse a list of all
146 * CPUs and add the delta to the runtime of those
147 * CPUs which have a process on them.
148 */
149 ci = curcpu();
150 timeradd(&ci->ci_schedstate.spc_runtime, &delta,
151 &ci->ci_schedstate.spc_runtime);
152 # if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER)
153 nqnfs_lease_updatetime(delta.tv_sec);
154 # endif
155 splx(s);
156 resettodr();
157 return (0);
158 }
159
160 /* ARGSUSED */
161 int
162 sys_clock_gettime(struct lwp *l, void *v, register_t *retval)
163 {
164 struct sys_clock_gettime_args /* {
165 syscallarg(clockid_t) clock_id;
166 syscallarg(struct timespec *) tp;
167 } */ *uap = v;
168 clockid_t clock_id;
169 struct timeval atv;
170 struct timespec ats;
171 int s;
172
173 clock_id = SCARG(uap, clock_id);
174 switch (clock_id) {
175 case CLOCK_REALTIME:
176 microtime(&atv);
177 TIMEVAL_TO_TIMESPEC(&atv,&ats);
178 break;
179 case CLOCK_MONOTONIC:
180 /* XXX "hz" granularity */
181 s = splclock();
182 atv = mono_time;
183 splx(s);
184 TIMEVAL_TO_TIMESPEC(&atv,&ats);
185 break;
186 default:
187 return (EINVAL);
188 }
189
190 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
191 }
192
193 /* ARGSUSED */
194 int
195 sys_clock_settime(l, v, retval)
196 struct lwp *l;
197 void *v;
198 register_t *retval;
199 {
200 struct sys_clock_settime_args /* {
201 syscallarg(clockid_t) clock_id;
202 syscallarg(const struct timespec *) tp;
203 } */ *uap = v;
204 struct proc *p = l->l_proc;
205 int error;
206
207 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
208 return (error);
209
210 return (clock_settime1(SCARG(uap, clock_id), SCARG(uap, tp)));
211 }
212
213
214 int
215 clock_settime1(clock_id, tp)
216 clockid_t clock_id;
217 const struct timespec *tp;
218 {
219 struct timespec ats;
220 struct timeval atv;
221 int error;
222
223 if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
224 return (error);
225
226 switch (clock_id) {
227 case CLOCK_REALTIME:
228 TIMESPEC_TO_TIMEVAL(&atv, &ats);
229 if ((error = settime(&atv)) != 0)
230 return (error);
231 break;
232 case CLOCK_MONOTONIC:
233 return (EINVAL); /* read-only clock */
234 default:
235 return (EINVAL);
236 }
237
238 return 0;
239 }
240
241 int
242 sys_clock_getres(struct lwp *l, void *v, register_t *retval)
243 {
244 struct sys_clock_getres_args /* {
245 syscallarg(clockid_t) clock_id;
246 syscallarg(struct timespec *) tp;
247 } */ *uap = v;
248 clockid_t clock_id;
249 struct timespec ts;
250 int error = 0;
251
252 clock_id = SCARG(uap, clock_id);
253 switch (clock_id) {
254 case CLOCK_REALTIME:
255 case CLOCK_MONOTONIC:
256 ts.tv_sec = 0;
257 ts.tv_nsec = 1000000000 / hz;
258 break;
259 default:
260 return (EINVAL);
261 }
262
263 if (SCARG(uap, tp))
264 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
265
266 return error;
267 }
268
269 /* ARGSUSED */
270 int
271 sys_nanosleep(struct lwp *l, void *v, register_t *retval)
272 {
273 static int nanowait;
274 struct sys_nanosleep_args/* {
275 syscallarg(struct timespec *) rqtp;
276 syscallarg(struct timespec *) rmtp;
277 } */ *uap = v;
278 struct timespec rqt;
279 struct timespec rmt;
280 struct timeval atv, utv;
281 int error, s, timo;
282
283 error = copyin((caddr_t)SCARG(uap, rqtp), (caddr_t)&rqt,
284 sizeof(struct timespec));
285 if (error)
286 return (error);
287
288 TIMESPEC_TO_TIMEVAL(&atv,&rqt)
289 if (itimerfix(&atv) || atv.tv_sec > 1000000000)
290 return (EINVAL);
291
292 s = splclock();
293 timeradd(&atv,&time,&atv);
294 timo = hzto(&atv);
295 /*
296 * Avoid inadvertantly sleeping forever
297 */
298 if (timo == 0)
299 timo = 1;
300 splx(s);
301
302 error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
303 if (error == ERESTART)
304 error = EINTR;
305 if (error == EWOULDBLOCK)
306 error = 0;
307
308 if (SCARG(uap, rmtp)) {
309 int error;
310
311 s = splclock();
312 utv = time;
313 splx(s);
314
315 timersub(&atv, &utv, &utv);
316 if (utv.tv_sec < 0)
317 timerclear(&utv);
318
319 TIMEVAL_TO_TIMESPEC(&utv,&rmt);
320 error = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
321 sizeof(rmt));
322 if (error)
323 return (error);
324 }
325
326 return error;
327 }
328
329 /* ARGSUSED */
330 int
331 sys_gettimeofday(struct lwp *l, void *v, register_t *retval)
332 {
333 struct sys_gettimeofday_args /* {
334 syscallarg(struct timeval *) tp;
335 syscallarg(struct timezone *) tzp;
336 } */ *uap = v;
337 struct timeval atv;
338 int error = 0;
339 struct timezone tzfake;
340
341 if (SCARG(uap, tp)) {
342 microtime(&atv);
343 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
344 if (error)
345 return (error);
346 }
347 if (SCARG(uap, tzp)) {
348 /*
349 * NetBSD has no kernel notion of time zone, so we just
350 * fake up a timezone struct and return it if demanded.
351 */
352 tzfake.tz_minuteswest = 0;
353 tzfake.tz_dsttime = 0;
354 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
355 }
356 return (error);
357 }
358
359 /* ARGSUSED */
360 int
361 sys_settimeofday(struct lwp *l, void *v, register_t *retval)
362 {
363 struct sys_settimeofday_args /* {
364 syscallarg(const struct timeval *) tv;
365 syscallarg(const struct timezone *) tzp;
366 } */ *uap = v;
367 struct proc *p = l->l_proc;
368 int error;
369
370 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
371 return (error);
372
373 return settimeofday1(SCARG(uap, tv), SCARG(uap, tzp), p);
374 }
375
376 int
377 settimeofday1(utv, utzp, p)
378 const struct timeval *utv;
379 const struct timezone *utzp;
380 struct proc *p;
381 {
382 struct timeval atv;
383 struct timezone atz;
384 struct timeval *tv = NULL;
385 struct timezone *tzp = NULL;
386 int error;
387
388 /* Verify all parameters before changing time. */
389 if (utv) {
390 if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
391 return (error);
392 tv = &atv;
393 }
394 /* XXX since we don't use tz, probably no point in doing copyin. */
395 if (utzp) {
396 if ((error = copyin(utzp, &atz, sizeof(atz))) != 0)
397 return (error);
398 tzp = &atz;
399 }
400
401 if (tv)
402 if ((error = settime(tv)) != 0)
403 return (error);
404 /*
405 * NetBSD has no kernel notion of time zone, and only an
406 * obsolete program would try to set it, so we log a warning.
407 */
408 if (tzp)
409 log(LOG_WARNING, "pid %d attempted to set the "
410 "(obsolete) kernel time zone\n", p->p_pid);
411 return (0);
412 }
413
414 int tickdelta; /* current clock skew, us. per tick */
415 long timedelta; /* unapplied time correction, us. */
416 long bigadj = 1000000; /* use 10x skew above bigadj us. */
417
418 /* ARGSUSED */
419 int
420 sys_adjtime(struct lwp *l, void *v, register_t *retval)
421 {
422 struct sys_adjtime_args /* {
423 syscallarg(const struct timeval *) delta;
424 syscallarg(struct timeval *) olddelta;
425 } */ *uap = v;
426 struct proc *p = l->l_proc;
427 int error;
428
429 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
430 return (error);
431
432 return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), p);
433 }
434
435 int
436 adjtime1(delta, olddelta, p)
437 const struct timeval *delta;
438 struct timeval *olddelta;
439 struct proc *p;
440 {
441 struct timeval atv;
442 struct timeval *oatv = NULL;
443 long ndelta, ntickdelta, odelta;
444 int error;
445 int s;
446
447 error = copyin(delta, &atv, sizeof(struct timeval));
448 if (error)
449 return (error);
450
451 if (olddelta != NULL) {
452 if (uvm_useracc((caddr_t)olddelta,
453 sizeof(struct timeval), B_WRITE) == FALSE)
454 return (EFAULT);
455 oatv = olddelta;
456 }
457
458 /*
459 * Compute the total correction and the rate at which to apply it.
460 * Round the adjustment down to a whole multiple of the per-tick
461 * delta, so that after some number of incremental changes in
462 * hardclock(), tickdelta will become zero, lest the correction
463 * overshoot and start taking us away from the desired final time.
464 */
465 ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
466 if (ndelta > bigadj || ndelta < -bigadj)
467 ntickdelta = 10 * tickadj;
468 else
469 ntickdelta = tickadj;
470 if (ndelta % ntickdelta)
471 ndelta = ndelta / ntickdelta * ntickdelta;
472
473 /*
474 * To make hardclock()'s job easier, make the per-tick delta negative
475 * if we want time to run slower; then hardclock can simply compute
476 * tick + tickdelta, and subtract tickdelta from timedelta.
477 */
478 if (ndelta < 0)
479 ntickdelta = -ntickdelta;
480 s = splclock();
481 odelta = timedelta;
482 timedelta = ndelta;
483 tickdelta = ntickdelta;
484 splx(s);
485
486 if (olddelta) {
487 atv.tv_sec = odelta / 1000000;
488 atv.tv_usec = odelta % 1000000;
489 (void) copyout(&atv, olddelta, sizeof(struct timeval));
490 }
491 return (0);
492 }
493
494 /*
495 * Interval timer support. Both the BSD getitimer() family and the POSIX
496 * timer_*() family of routines are supported.
497 *
498 * All timers are kept in an array pointed to by p_timers, which is
499 * allocated on demand - many processes don't use timers at all. The
500 * first three elements in this array are reserved for the BSD timers:
501 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
502 * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
503 * syscall.
504 *
505 * Realtime timers are kept in the ptimer structure as an absolute
506 * time; virtual time timers are kept as deltas. Virtual time timers
507 * are processed in the hardclock() routine of kern_clock.c. The real
508 * time timer is processed by a callout routine, called from the
509 * softclock() routine. Since a callout may be delayed in real time
510 * due to interrupt processing in the system, it is possible for the
511 * real time timeout routine (realtimeexpire, given below), to be
512 * delayed in real time past when it is supposed to occur. It does
513 * not suffice, therefore, to reload the real timer .it_value from the
514 * real time timers .it_interval. Rather, we compute the next time in
515 * absolute time the timer should go off.
516 */
517
518 /* Allocate a POSIX realtime timer. */
519 int
520 sys_timer_create(struct lwp *l, void *v, register_t *retval)
521 {
522 struct sys_timer_create_args /* {
523 syscallarg(clockid_t) clock_id;
524 syscallarg(struct sigevent *) evp;
525 syscallarg(timer_t *) timerid;
526 } */ *uap = v;
527 struct proc *p = l->l_proc;
528 clockid_t id;
529 struct sigevent *evp;
530 struct ptimer *pt;
531 int timerid, error;
532
533 id = SCARG(uap, clock_id);
534 if (id != CLOCK_REALTIME)
535 return (EINVAL);
536
537 if (p->p_timers == NULL)
538 timers_alloc(p);
539
540 for (timerid = 3; timerid < TIMER_MAX; timerid++)
541 if (p->p_timers[timerid] == NULL)
542 break;
543
544 if (timerid == TIMER_MAX)
545 return EAGAIN;
546
547 pt = pool_get(&ptimer_pool, PR_WAITOK);
548 evp = SCARG(uap, evp);
549 if (evp) {
550 if (((error =
551 copyin(evp, &pt->pt_ev, sizeof (pt->pt_ev))) != 0) ||
552 ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
553 (pt->pt_ev.sigev_notify > SIGEV_SA))) {
554 pool_put(&ptimer_pool, pt);
555 return (error ? error : EINVAL);
556 }
557 } else {
558 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
559 pt->pt_ev.sigev_signo = SIGALRM;
560 pt->pt_ev.sigev_value.sival_int = timerid;
561 }
562 pt->pt_info.si_signo = pt->pt_ev.sigev_signo;
563 pt->pt_info.si_errno = 0;
564 pt->pt_info.si_code = 0;
565 pt->pt_info.si_pid = p->p_pid;
566 pt->pt_info.si_uid = p->p_cred->p_ruid;
567 pt->pt_info.si_addr = NULL;
568 pt->pt_info.si_status = 0;
569 pt->pt_info.si_value = pt->pt_ev.sigev_value;
570
571 callout_init(&pt->pt_ch);
572 pt->pt_type = CLOCK_REALTIME;
573 pt->pt_proc = p;
574 pt->pt_overruns = 0;
575
576 p->p_timers[timerid] = pt;
577
578 return copyout(&timerid, SCARG(uap, timerid), sizeof(timerid));
579 }
580
581
582 /* Delete a POSIX realtime timer */
583 int
584 sys_timer_delete(struct lwp *l, void *v, register_t *retval)
585 {
586 struct sys_timer_delete_args /* {
587 syscallarg(timer_t) timerid;
588 } */ *uap = v;
589 struct proc *p = l->l_proc;
590 int timerid;
591 struct ptimer *pt;
592
593 timerid = SCARG(uap, timerid);
594
595 if ((p->p_timers == NULL) ||
596 (timerid < 2) || (timerid >= TIMER_MAX) ||
597 ((pt = p->p_timers[timerid]) == NULL))
598 return (EINVAL);
599
600 callout_stop(&pt->pt_ch);
601 p->p_timers[timerid] = NULL;
602 pool_put(&ptimer_pool, pt);
603
604 return (0);
605 }
606
607 /* Set and arm a POSIX realtime timer */
608 int
609 sys_timer_settime(struct lwp *l, void *v, register_t *retval)
610 {
611 struct sys_timer_settime_args /* {
612 syscallarg(timer_t) timerid;
613 syscallarg(int) flags;
614 syscallarg(const struct itimerspec *) value;
615 syscallarg(struct itimerspec *) ovalue;
616 } */ *uap = v;
617 struct proc *p = l->l_proc;
618 int error, s, timerid;
619 struct itimerval val, oval;
620 struct itimerspec value, ovalue;
621 struct ptimer *pt;
622
623 timerid = SCARG(uap, timerid);
624
625 if ((p->p_timers == NULL) ||
626 (timerid < 2) || (timerid >= TIMER_MAX) ||
627 ((pt = p->p_timers[timerid]) == NULL))
628 return (EINVAL);
629
630 if ((error = copyin(SCARG(uap, value), &value,
631 sizeof(struct itimerspec))) != 0)
632 return (error);
633
634 TIMESPEC_TO_TIMEVAL(&val.it_value, &value.it_value);
635 TIMESPEC_TO_TIMEVAL(&val.it_interval, &value.it_interval);
636 if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
637 return (EINVAL);
638
639 oval = pt->pt_time;
640 pt->pt_time = val;
641
642 s = splclock();
643 callout_stop(&pt->pt_ch);
644 if (timerisset(&pt->pt_time.it_value)) {
645 if ((SCARG(uap, flags) & TIMER_ABSTIME) == 0)
646 timeradd(&pt->pt_time.it_value, &time,
647 &pt->pt_time.it_value);
648 /*
649 * Don't need to check hzto() return value, here.
650 * callout_reset() does it for us.
651 */
652 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
653 realtimerexpire, pt);
654 }
655 splx(s);
656
657 if (SCARG(uap, ovalue)) {
658 TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue.it_value);
659 TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue.it_interval);
660 return copyout(&ovalue, SCARG(uap, ovalue),
661 sizeof(struct itimerspec));
662 }
663
664 return (0);
665 }
666
667 /* Return the time remaining until a POSIX timer fires. */
668 int
669 sys_timer_gettime(struct lwp *l, void *v, register_t *retval)
670 {
671 struct sys_timer_gettime_args /* {
672 syscallarg(timer_t) timerid;
673 syscallarg(struct itimerspec *) value;
674 } */ *uap = v;
675 struct itimerval aitv;
676 struct itimerspec its;
677 struct proc *p = l->l_proc;
678 int timerid;
679 struct ptimer *pt;
680
681 timerid = SCARG(uap, timerid);
682
683 if ((p->p_timers == NULL) ||
684 (timerid < 2) || (timerid >= TIMER_MAX) ||
685 ((pt = p->p_timers[timerid]) == NULL))
686 return (EINVAL);
687
688 aitv = pt->pt_time;
689
690 /*
691 * Real-time timers are kept in absolute time, but this interface
692 * is supposed to return a relative time.
693 */
694 if (timerisset(&aitv.it_value)) {
695 if (timercmp(&aitv.it_value, &time, <))
696 timerclear(&aitv.it_value);
697 else
698 timersub(&aitv.it_value, &time, &aitv.it_value);
699 }
700
701 TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its.it_interval);
702 TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its.it_value);
703
704 return copyout(&its, SCARG(uap, value), sizeof(its));
705 }
706
707 /*
708 * Return the count of the number of times a periodic timer expired
709 * while a notification was already pending. The counter is reset when
710 * a timer expires and a notification can be posted.
711 */
712 int
713 sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
714 {
715 struct sys_timer_getoverrun_args /* {
716 syscallarg(timer_t) timerid;
717 } */ *uap = v;
718 struct proc *p = l->l_proc;
719 int timerid;
720 struct ptimer *pt;
721
722 timerid = SCARG(uap, timerid);
723
724 if ((p->p_timers == NULL) ||
725 (timerid < 2) || (timerid >= TIMER_MAX) ||
726 ((pt = p->p_timers[timerid]) == NULL))
727 return (EINVAL);
728
729 *retval = pt->pt_overruns;
730
731 return (0);
732 }
733
734 /* Glue function that triggers an upcall; called from userret(). */
735 static void
736 realtimerupcall(struct lwp *l, void *arg)
737 {
738 struct ptimer *pt;
739
740 pt = (struct ptimer *)arg;
741 sa_upcall(l, SA_UPCALL_SIGEV, NULL, l, sizeof(siginfo_t),
742 &pt->pt_info);
743
744 /* The upcall should only be generated once. */
745 l->l_proc->p_userret = NULL;
746 }
747
748
749 /*
750 * Real interval timer expired:
751 * send process whose timer expired an alarm signal.
752 * If time is not set up to reload, then just return.
753 * Else compute next time timer should go off which is > current time.
754 * This is where delay in processing this timeout causes multiple
755 * SIGALRM calls to be compressed into one.
756 */
757 void
758 realtimerexpire(void *arg)
759 {
760 struct ptimer *pt;
761 struct proc *p;
762 int s;
763
764 pt = (struct ptimer *)arg;
765 p = pt->pt_proc;
766 if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
767 /*
768 * No RT signal infrastructure exists at this time;
769 * just post the signal number and throw away the
770 * value.
771 */
772 if (sigismember(&p->p_sigctx.ps_siglist, pt->pt_ev.sigev_signo))
773 pt->pt_overruns++;
774 else {
775 pt->pt_overruns = 0;
776 psignal(p, pt->pt_ev.sigev_signo);
777 }
778 } else if (pt->pt_ev.sigev_notify == SIGEV_SA && (p->p_flag & P_SA)) {
779 int notified = 0;
780 /* Cause the process to generate an upcall when it returns. */
781
782 if (p->p_nrlwps == 0) {
783 struct sadata_upcall *sd;
784 struct lwp *l2;
785 int s, ret;
786
787 SCHED_LOCK(s);
788 l2 = sa_getcachelwp(p);
789 if (l2 != NULL) {
790 sd = sadata_upcall_alloc(0);
791 cpu_setfunc(l2, sa_switchcall, NULL);
792 ret = sa_upcall0(l2, SA_UPCALL_SIGEV,
793 NULL, NULL, sizeof(siginfo_t),
794 &pt->pt_info, sd);
795 if (ret == 0) {
796 l2->l_priority = l2->l_usrpri;
797 PRELE(l2);
798 setrunnable(l2);
799 notified = 1;
800 } else
801 sa_putcachelwp(p, l2);
802 }
803 SCHED_UNLOCK(s);
804 } else if (p->p_userret == NULL) {
805 pt->pt_overruns = 0;
806 p->p_userret = realtimerupcall;
807 p->p_userret_arg = pt;
808 notified = 1;
809 }
810 if (notified == 0)
811 pt->pt_overruns++;
812 }
813 if (!timerisset(&pt->pt_time.it_interval)) {
814 timerclear(&pt->pt_time.it_value);
815 return;
816 }
817 for (;;) {
818 s = splclock();
819 timeradd(&pt->pt_time.it_value,
820 &pt->pt_time.it_interval, &pt->pt_time.it_value);
821 if (timercmp(&pt->pt_time.it_value, &time, >)) {
822 /*
823 * Don't need to check hzto() return value, here.
824 * callout_reset() does it for us.
825 */
826 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
827 realtimerexpire, pt);
828 splx(s);
829 return;
830 }
831 splx(s);
832 pt->pt_overruns++;
833 }
834 }
835
836 /* BSD routine to get the value of an interval timer. */
837 /* ARGSUSED */
838 int
839 sys_getitimer(struct lwp *l, void *v, register_t *retval)
840 {
841 struct sys_getitimer_args /* {
842 syscallarg(int) which;
843 syscallarg(struct itimerval *) itv;
844 } */ *uap = v;
845 struct proc *p = l->l_proc;
846 struct itimerval aitv;
847 int s, which;
848
849 which = SCARG(uap, which);
850
851 if ((u_int)which > ITIMER_PROF)
852 return (EINVAL);
853
854 if ((p->p_timers == NULL) || (p->p_timers[which] == NULL)) {
855 timerclear(&aitv.it_value);
856 timerclear(&aitv.it_interval);
857 } else {
858 s = splclock();
859 if (which == ITIMER_REAL) {
860 /*
861 * Convert from absolute to relative time in
862 * .it_value part of real time timer. If time
863 * for real time timer has passed return 0,
864 * else return difference between current time
865 * and time for the timer to go off.
866 */
867 aitv = p->p_timers[ITIMER_REAL]->pt_time;
868 if (timerisset(&aitv.it_value)) {
869 if (timercmp(&aitv.it_value, &time, <))
870 timerclear(&aitv.it_value);
871 else
872 timersub(&aitv.it_value, &time, &aitv.it_value);
873 }
874 } else
875 aitv = p->p_timers[which]->pt_time;
876 splx(s);
877 }
878
879 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
880
881 }
882
883 /* BSD routine to set/arm an interval timer. */
884 /* ARGSUSED */
885 int
886 sys_setitimer(struct lwp *l, void *v, register_t *retval)
887 {
888 struct sys_setitimer_args /* {
889 syscallarg(int) which;
890 syscallarg(const struct itimerval *) itv;
891 syscallarg(struct itimerval *) oitv;
892 } */ *uap = v;
893 struct proc *p = l->l_proc;
894 int which = SCARG(uap, which);
895 struct sys_getitimer_args getargs;
896 struct itimerval aitv;
897 const struct itimerval *itvp;
898 struct ptimer *pt;
899 int s, error;
900
901 if ((u_int)which > ITIMER_PROF)
902 return (EINVAL);
903 itvp = SCARG(uap, itv);
904 if (itvp &&
905 (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
906 return (error);
907 if (SCARG(uap, oitv) != NULL) {
908 SCARG(&getargs, which) = which;
909 SCARG(&getargs, itv) = SCARG(uap, oitv);
910 if ((error = sys_getitimer(l, &getargs, retval)) != 0)
911 return (error);
912 }
913 if (itvp == 0)
914 return (0);
915 if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
916 return (EINVAL);
917
918 /*
919 * Don't bother allocating data structures if the process just
920 * wants to clear the timer.
921 */
922 if (!timerisset(&aitv.it_value) &&
923 ((p->p_timers == NULL) || (p->p_timers[which] == NULL)))
924 return (0);
925
926 if (p->p_timers == NULL)
927 timers_alloc(p);
928 if (p->p_timers[which] == NULL) {
929 pt = pool_get(&ptimer_pool, PR_WAITOK);
930 callout_init(&pt->pt_ch);
931 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
932 pt->pt_overruns = 0;
933 pt->pt_proc = p;
934 pt->pt_type = which;
935 switch (which) {
936 case ITIMER_REAL:
937 pt->pt_ev.sigev_signo = SIGALRM;
938 break;
939 case ITIMER_VIRTUAL:
940 pt->pt_ev.sigev_signo = SIGVTALRM;
941 break;
942 case ITIMER_PROF:
943 pt->pt_ev.sigev_signo = SIGPROF;
944 break;
945 }
946 } else
947 pt = p->p_timers[which];
948
949 pt->pt_time = aitv;
950 p->p_timers[which] = pt;
951 if (which == ITIMER_REAL) {
952 s = splclock();
953 callout_stop(&pt->pt_ch);
954 if (timerisset(&pt->pt_time.it_value)) {
955 timeradd(&pt->pt_time.it_value, &time,
956 &pt->pt_time.it_value);
957 /*
958 * Don't need to check hzto() return value, here.
959 * callout_reset() does it for us.
960 */
961 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
962 realtimerexpire, pt);
963 }
964 splx(s);
965 }
966
967 return (0);
968 }
969
970 /* Utility routines to manage the array of pointers to timers. */
971 void
972 timers_alloc(struct proc *p)
973 {
974 int i;
975 struct ptimer **pts;
976
977 pts = malloc(TIMER_MAX * sizeof(struct timer *), M_SUBPROC, 0);
978 for (i = 0; i < TIMER_MAX; i++)
979 pts[i] = NULL;
980 p->p_timers = pts;
981 }
982
983 void
984 timers_free(struct proc *p)
985 {
986 int i;
987 struct ptimer *pt, **pts;
988
989 if (p->p_timers) {
990 pts = p->p_timers;
991 p->p_timers = NULL;
992 for (i = 0; i < TIMER_MAX; i++)
993 if ((pt = pts[i]) != NULL) {
994 if (pt->pt_type == CLOCK_REALTIME)
995 callout_stop(&pt->pt_ch);
996 pool_put(&ptimer_pool, pt);
997 }
998 free(pts, M_SUBPROC);
999 }
1000 }
1001
1002 /*
1003 * Check that a proposed value to load into the .it_value or
1004 * .it_interval part of an interval timer is acceptable, and
1005 * fix it to have at least minimal value (i.e. if it is less
1006 * than the resolution of the clock, round it up.)
1007 */
1008 int
1009 itimerfix(struct timeval *tv)
1010 {
1011
1012 if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
1013 return (EINVAL);
1014 if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
1015 tv->tv_usec = tick;
1016 return (0);
1017 }
1018
1019 /*
1020 * Decrement an interval timer by a specified number
1021 * of microseconds, which must be less than a second,
1022 * i.e. < 1000000. If the timer expires, then reload
1023 * it. In this case, carry over (usec - old value) to
1024 * reduce the value reloaded into the timer so that
1025 * the timer does not drift. This routine assumes
1026 * that it is called in a context where the timers
1027 * on which it is operating cannot change in value.
1028 */
1029 int
1030 itimerdecr(struct itimerval *itp, int usec)
1031 {
1032
1033 if (itp->it_value.tv_usec < usec) {
1034 if (itp->it_value.tv_sec == 0) {
1035 /* expired, and already in next interval */
1036 usec -= itp->it_value.tv_usec;
1037 goto expire;
1038 }
1039 itp->it_value.tv_usec += 1000000;
1040 itp->it_value.tv_sec--;
1041 }
1042 itp->it_value.tv_usec -= usec;
1043 usec = 0;
1044 if (timerisset(&itp->it_value))
1045 return (1);
1046 /* expired, exactly at end of interval */
1047 expire:
1048 if (timerisset(&itp->it_interval)) {
1049 itp->it_value = itp->it_interval;
1050 itp->it_value.tv_usec -= usec;
1051 if (itp->it_value.tv_usec < 0) {
1052 itp->it_value.tv_usec += 1000000;
1053 itp->it_value.tv_sec--;
1054 }
1055 } else
1056 itp->it_value.tv_usec = 0; /* sec is already 0 */
1057 return (0);
1058 }
1059
1060 /*
1061 * ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
1062 * for usage and rationale.
1063 */
1064 int
1065 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1066 {
1067 struct timeval tv, delta;
1068 int s, rv = 0;
1069
1070 s = splclock();
1071 tv = mono_time;
1072 splx(s);
1073
1074 timersub(&tv, lasttime, &delta);
1075
1076 /*
1077 * check for 0,0 is so that the message will be seen at least once,
1078 * even if interval is huge.
1079 */
1080 if (timercmp(&delta, mininterval, >=) ||
1081 (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1082 *lasttime = tv;
1083 rv = 1;
1084 }
1085
1086 return (rv);
1087 }
1088
1089 /*
1090 * ppsratecheck(): packets (or events) per second limitation.
1091 */
1092 int
1093 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1094 {
1095 struct timeval tv, delta;
1096 int s, rv;
1097
1098 s = splclock();
1099 tv = mono_time;
1100 splx(s);
1101
1102 timersub(&tv, lasttime, &delta);
1103
1104 /*
1105 * check for 0,0 is so that the message will be seen at least once.
1106 * if more than one second have passed since the last update of
1107 * lasttime, reset the counter.
1108 *
1109 * we do increment *curpps even in *curpps < maxpps case, as some may
1110 * try to use *curpps for stat purposes as well.
1111 */
1112 if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
1113 delta.tv_sec >= 1) {
1114 *lasttime = tv;
1115 *curpps = 0;
1116 rv = 1;
1117 } else if (maxpps < 0)
1118 rv = 1;
1119 else if (*curpps < maxpps)
1120 rv = 1;
1121 else
1122 rv = 0;
1123
1124 #if 1 /*DIAGNOSTIC?*/
1125 /* be careful about wrap-around */
1126 if (*curpps + 1 > *curpps)
1127 *curpps = *curpps + 1;
1128 #else
1129 /*
1130 * assume that there's not too many calls to this function.
1131 * not sure if the assumption holds, as it depends on *caller's*
1132 * behavior, not the behavior of this function.
1133 * IMHO it is wrong to make assumption on the caller's behavior,
1134 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
1135 */
1136 *curpps = *curpps + 1;
1137 #endif
1138
1139 return (rv);
1140 }
1141